

Lecture Notes in Computer Science 1862
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Peter G. Clote Helmut Schwichtenberg (Eds.)

Computer Science Logic

14th International Workshop, CSL 2000
Annual Conference of the EACSL
Fischbachau, Germany, August 21 - 26, 2000
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Peter G. Clote
Boston College
Department of Computer Science and Department of Biology
Fulton Hall 410B, Chestnut Hill, MA 02467, USA
E-mail: clote@bc.edu

Helmut Schwichtenberg
Ludwig-Maximilian-Universität München
Mathematisches Institut
Theresienstr. 39, 80333 München, Germany
E-mail: schwicht@rz.mathematik.uni-muenchen.de

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Computer science logic : 14th international workshop ; proceedings /
CSL 2000, Fischbachau, Germany, August 21 - 26, 2000. Peter Clote ;
Helmut Schwichtenberg (ed.). - Berlin ; Heidelberg ; NewYork ;
Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo :
Springer, 2000

(Annual Conference of the EACSL . . . ; 9)
(Lecture notes in computer science ; Vol. 1862)
ISBN 3-540-67895-6

CR Subject Classification (1998): F.4, I.2.3-4, F.3

ISSN 0302-9743
ISBN 3-540-67895-6 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg NewYork
a member of BertelsmannSpringer Science+Business Media GmbH
© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingräber Satztechnik GmbH, Heidelberg
Printed on acid-free paper SPIN 10722230 06/3142 5 4 3 2 1 0

Preface

CSL is the annual conference of the European Association for Computer Science
Logic (EACSL). CSL 2000 is the 14th such annual conference, thus witnessing
the importance and sustained international interest in the application of meth-
ods from mathematical logic to computer science. The current conference was
organized by the Mathematics Institute and the Computer Science Institute of
the Ludwig-Maximilians-Universität München (LMU), with generous financial
support from the Deutsche Forschungsgemeinschaft, Forschungsinstitut für ange-
wandte Softwaretechnologie (FAST e.V.), Münchener Universitätsgesellschaft
e.V., and Siemens AG. Our sponsors’ generosity enabled, among other things,
stipends for the financial support of students as well as of researchers from East-
ern Europe.

Topics in the call for papers for CSL 2000 included: automated deduction
and interactive theorem proving, categorical logic and topological semantics, con-
structive mathematics and type theory, domain theory, equational logic and term
rewriting, finite model theory, database theory, higher order logic, lambda and
combinatory calculi, logical aspects of computational complexity, logical foun-
dations of programming paradigms, logic programming and constraints, linear
logic, modal and temporal logics, model checking, program extraction, program
logics and semantics, program specification, transformation and verification. The
invited speakers were: Moshe Vardi (Houston), Paul Beame (Washington), An-
dreas Blass (Ann Arbor), Egon Börger (Pisa), Yuri Gurevich (Redmond), Bruno
Poizat (Lyons), Wolfram Schulte (Redmond), Saharon Shelah (Jerusalem), and
Colin Sterling (Edinburgh). Special thanks to Moshe Vardi for being willing to
speak in the place of Miklós Ajtai (Almaden), who could not attend the meeting.

The day of 24 August 2000, during the week-long CSL 2000 meeting, was
reserved for the Gurevich Symposium, a special, one-day tribute to the scientific
contributions of Professor Yuri Gurevich, at the occasion of his 60th birthday.
Many of the previously listed invited speakers delivered a talk at the Gurevich
Symposium. As editors of the proceedings, we would like to dedicate this volume
of the Springer Lecture Notes in Computer Science to Professor Gurevich.

We would like to thank the Program Committee, the referees, and our spon-
sors for making this conference possible. A special thanks goes to the Organizing
Committee for its professional work ranging from practical to editorial matters.
Finally, thanks to the assistance of the authors, who formatted their articles us-
ing LATEXwith Springer macros. This allowed rapid production of the proceedings
first distributed at the conference.

May 2000 Peter Clote and Helmut Schwichtenberg

VI Organization

Sponsors

Deutsche Forschungsgemeinschaft
Forschungsinstitut für angewandte Softwaretechnologie (FAST e.V.)
Münchener Universitätsgesellschaft e.V.
Siemens AG.

Organizing Committee

Thorsten Altenkirch
Rolf Backofen
Peter Clote
Hans Leiß
Ralph Matthes
Martin Ruckert
Helmut Schwichtenberg.

Program Committee

Peter Clote (Boston, co-chair)
Kevin Compton (Ann Arbor)
Stephen Cook (Toronto)
Laurent Fribourg (Cachan)
Erich Grädel (Aachen)
Gerhard Jäger (Bern)
Klaus Keimel (Darmstadt)
Jan Willem Klop (Nijmegen)
Jan Kraj́ıček (Praha)
Daniel Leivant (Bloomington)
Tobias Nipkow (Munich)
Helmut Schwichtenberg (Munich, co-chair)
Moshe Vardi (Houston).

Organization VII

Referees

S. Abramsky Th. Altenkirch R. Amadio A. Asperti
S. Awodey A. Beckmann S. Bellantoni S. Berardi
U. Berger G. Bezhanishvili M. Bezem M. Bidoit
N. Bjørner H. Blair F. de Boer T. Borghuis
K. Bruce A. Bucciarelli W. Buchholz P. Bürgisser
A. Cichon P. Clote H. Comon K. Compton
T. Coquand S. Cosmadakisos K. Crary G. Curi
D. van Dalen V. Danos P. Darondeau A. Dawar
O. Deiser S. Demri P. Dybjer R. Dyckhoff
L. Errington M. Escardo S. Etalle A. Felty
Ch. Fermüller M. Fiore W.-J. Fokkink I. Gnaedig
R. Goldblatt Y. Gordon R. Gore G. Governatori
E. Grädel M. Große-Rhode S. Guerrini P. Gumm
P. Hájek S. Heilmann H. Herbelin Ch. Herrmann
R. Hinze M. Hofmann F. Honsell N. Immerman
F. Jacquemard R. Jagadeesan F. Joachimski A. Jung
B. Kapron M. Kegelmann J.W. Klop J. Kraj́ıček
U. Kohlenbach Ch. Kreitz S. Kreutzer O. Kullmann
G. Kuper H. Lauri C. Lautemann D. Leivant
S. Lindell M. Loebl B. Long J. Makowsky
L. Maksimova P. Malacaria C. Marché R. Matthes
J. Meseguer W. Meyer-Viol D. Miller A. Momigliano
G. Nadathur T. Nipkow H. de Nivelle D. Norman
J. Nurmonen D. von Oheimb P. Ölveczky L. Ong
V. van Oostrom M. Otto C. Palamidessi E. Palmgren
Ch. Paulin A. Poetzsch-Heffter E. Poll P. Pudlák
F. van Raamsdonk L. Regnier D. Remy L. Roversi
M. Ruckert G. Salzer V. Sazonov Ch. Schallhart
K. Schlechta M. Schmidt-Schauß P. Schnoebelen P. Schroeder-Heister
H. Schwichtenberg L. Segoufin P. Selinger A. Setzer
S. Soloviev R. Stärk C. Stone T. Strahm
T. Streicher F. Tang A. Tarlecki S. Tobies
J. Tucker S. Tupailo L. Vandeurzen M. Vardi
H. Veith A. Visser A. Voronkov G. Voutsadakis
I. Walukiewicz C. Weidenbach T. Wilke F. Wolter

VIII Egon Börger

Yuri Gurevich: The Evolution of a Research Life from
Algebra through Logic to Computer Science
by Egon Börger (University of Pisa)

Yuri Gurevich is the man whose life embraces three worlds—Russia, Israel, and
United States—and whose research spans three disciplines—algebra, logic, and
computer science—all of which shaped the 20th century. In each of these re-
search areas Gurevich set milestones and became a leading figure. Indeed the
outstanding constant in his life is his courage and strength to think about the
fundamentals which underly problems of impact in the field.

He was born on May 7, 1940, in Nikolayev (Ukraine) and was moved by life
through Stalingrad (41-42), Chimkent (Uzbekistan, 42-44), Cheliabinsk (44-59,
school and polytechnic) to Sverdlovsk where he studied, graduated, and taught
at the Ural University (59-64, 65-71) and where he married Zoe, a student of
mathematics and later system programmer who has given him two daughters,
Hava and Naomi, and accompanies his life.

Gurevich started his research in algebra where he became famous through
his work on ordered abelian groups. For his diploma in 1962 he solved [1]1 one
of the problems which was listed as open in Petr Kontorovich’s algebra semi-
nar. Gurevich learned logic from Kleene’s Introduction to Metamathematics and
in 1962 heard about Tarski’s program of classifying elementary theories into
decidable and undecidable. A year after Tarski and Smielev announced the de-
cidability of the elementary theory of ordered abelian groups but then found an
error in their proof, Gurevich proved the decidability of the first-order theory of
ordered abelian groups [3], which became his PhD thesis (1964) and made him
an assistant professor at the University of Krasnoyarsk (64-65).

Since the theorems in the then known algebra of ordered abelian groups
were not first-order, and the standard extensions of classical first-order logic
(like monadic second-order logic) give rise to undecidable theories, Gurevich
wondered whether there is a logic that fits ordered abelian groups, so that the
corresponding theory expresses most of the relevant algebra but yet is manage-
able and hopefully decidable. He proved that the extension of the elementary
theory of ordered abelian groups with quantification over so-called convex sub-
groups, even though it is much richer than the elementary theory and expresses
virtually all known algebra of ordered abelian groups, is not only decidable [25],
but allows the elimination of the elementary quantifiers. When in 1973, via
Krasnodar (71-72) and Tbilisi (Georgia, 72-73), Gurevich emigrated to Israel
(Beer Sheva, 74-82), he met Saharon Shelah, studied Shelah’s seminal paper on
the theory of order (Annals of Mathematics, 1975), and solved in [26, 27] most
of its numerous conjectures, which led to a still ongoing fruitful collaboration
between the two logicians (see the survey [64]).

For Hilbert’s Entscheidungsproblem, one of the major themes of mathematical
logic in the twentieth century, Gurevich [6] resolved the most difficult of the
1 The numbers in brackets refer to the Annotated Publication List at
http://research.microsoft.com/˜gurevich/, except where marked by reference below.

Yuri Gurevich: The Evolution of a Research Life IX

prefix-predicate classes and thereby completed the prefix-predicate classification
of the fragments of the restricted predicate calculus as decidable or undecidable.
He found a general explanation of the classifiability phenomenon [13], confirmed
it for the classification of fragments with function symbols [18], and conjectured
the classification of fragments with equality and at least one function symbol,
one of the most difficult problems in the area which was later proved by Saharon
Shelah. Details can be found in [2] (reference below).

The year 1982, when the University of Michigan appointed Gurevich, marks
the beginning of his commitment to computer science and of his close collab-
oration with Andreas Blass from the mathematics department there. Gurevich
shaped the two emerging fields of finite model theory and of average case com-
plexity. It started with his first talk to a computer science conference [41], where
Gurevich saw Moshe Vardi applying the definability theorem of first-order logic
to databases, which were assumed to be possibly infinite - and immediately wor-
ried whether such classical theorems would remain valid if only finite databases
were allowed. The answer turned out to be negative [60], the counter-example
to Lyndon’s interpolation theorem [72] gave a uniform sequence of constant-
depth polynomial-size (functionally) monotone boolean circuits not equivalent
to any (however nonuniform) sequence of constant-depth polynomial-size posi-
tive boolean circuits. Other landmark contributions to finite model theory are
the characterization of primitive recursive (resp. recursive) functions over finite
structures as log-space (resp. polynomial time) computable [51], the characteriza-
tion of the inflationary fixed-point extension of first-order logic as equi-expressive
with its least fixed-point extension on finite structures [70], the boundedness of
every first-order expressible datalog query [83], etc.

Gurevich’s contributions to complexity theory are no less important. He
solved special but important cases of NP-hard problems [54], on time-space
trade-offs [87], on linear time [82], and critically analyzed some non-traditional
approaches [81,80], but above all we see Gurevich work here on average case com-
plexity, side by side with Leonid Levin. An NP-hard problem, when equipped
with a probability distribution, may become easy. For example, for random
graphs with n vertices and a fixed edge probability, the algorithm of [71] solves
the Hamiltonian Circuit Problem in average time O(n). In 1984, Leonid Levin
generalized the NP-completeness theory to such distributional (DNP) problems
and constructed one DNP problem that was hard in the average case. [76] pro-
vides new hard cases and shows that Levin’s original deterministic reductions are
inadequate, which led Levin and Venkatesan to define more powerful random-
izing reductions. [88,93,94,96,97] contains pioneering work towards establishing
the average-case intractability of important problems.

Reconsidering Turing’s thesis and the fundamental problem of semantics of
programming languages led Gurevich to his epochal concept of Abstract State
Machines [74,92,103,141]. It has already triggered hundreds of publications, in
finite model theory [109,120,135], in complexity theory [118,121], and in numer-
ous areas of applied computer science, e.g. programming languages, protocols,
architectures, and embedded control software (see the survey in [1] (reference

X Egon Börger

below) and [77,89,98,106,107,111,116,117,119,121,122,137-140]); even more im-
portantly it is changing the way we think about high-level software design and
analysis. In this extraordinarily rich, deep, and wide ranging life in research,
all the strands are woven together. By investing that wealth into building and
leading the Foundations of Software Engineering group at Microsoft Research
(since August 1998), Gurevich professes his conviction that there is nothing more
practical than a good theory.

References

1. E. Börger, High level system design and analysis using Abstract State
Machines. In: Hutter, D., Stephan, W., Traverso, P., Ullmann, M.
(eds): Current Trends in Applied Formal Methods (FM-Trends 98).
LNCS 1641, pp. 1-43. Springer-Verlag, Berlin etc. (1999)

2. E. Börger, E. Grädel, and Y. Gurevich, The Classical Decision Prob-
lem. Perspectives in Mathematical Logic, Springer-Verlag Berlin etc.
(1997), pp. XII+482.

Yuri Gurevich

Table of Contents

Invited Papers

Background, Reserve, and Gandy Machines
A. Blass, Y. Gurevich . 1

Choiceless Polynomial Time Computation and the Zero-One Law
A. Blass, Y. Gurevich . 18

Composition and Submachine Concepts for Sequential ASMs
E. Börger, J. Schmid . 41

Une tentative malheureuse de construire une structure éliminant
rapidement les quanteurs
B. Poizat . 61

Translating Theory into Practice – Abstract State Machines
within Microsoft
W. Schulte . 71

Choiceless Polynomial Time Logic: Inability to Express
S. Shelah . 72

Schema Revisited
C. Stirling . 126

Automated Verification = Graphs, Automata, and Logic
M.Y. Vardi . 139

Contributed Papers

A Fully Complete PER Model for ML Polymorphic Types
S. Abramsky, M. Lenisa . 140

Subtyping with Power Types
D. Aspinall . 156

The Descriptive Complexity of the Fixed-Points of Bounded Formulas
A. Atserias . 172

Hypersequent and the Proof Theory of Intuitionistic Fuzzy Logic
M. Baaz, R. Zach . 187

Continuous Functionals of Dependent Types and Equilogical Spaces
A. Bauer, L. Birkedal . 202

XII Table of Contents

Definability over Linear Constraints
M. Benedikt, H.J. Keisler . 217

Bounded Arithmetic and Descriptive Complexity
A. Blumensath . 232

Independence: Logics and Concurrency
J.C. Bradfield . 247

Flatness Is Not a Weakness
H. Comon, V. Cortier . 262

Sequents, Frames, and Completeness
T. Coquand, G.-Q. Zhang . 277

Disjunctive Tautologies as Synchronisation Schemes
V. Danos, J.-L. Krivine . 292

Axiomatizing the Least Fixed Point Operation and Binary Supremum
Z. Ésik . 302

Interactive Programs in Dependent Type Theory
P. Hancock, A. Setzer . 317

Modal Satisfiability Is in Deterministic Linear Space
E. Hemaspaandra . 332

Logic Programming and Co-inductive Definitions
M. Jaume . 343

A Theory of Explicit Mathematics Equivalent to ID1
R. Kahle, T. Studer . 356

On the Complexity of Explicit Modal Logics
R. Kuznets . 371

Finite Models and Full Completeness
J. Laird . 384

On the Complexity of Combinatorial and Metafinite Generating
Functions of Graph Properties in the Computational Model
of Blum, Shub and Smale.
J.A. Makowsky, K. Meer . 399

Elimination of Negation in a Logical Framework
A. Momigliano . 411

Discreet Games, Light Affine Logic and PTIME Computation
A.S. Murawski, C.-H.L. Ong . 427

Table of Contents XIII

Completeness of Higher-Order Duration Calculus
Z. Naijun . 442

Equational Termination by Semantic Labelling
H. Ohsaki, A. Middeldorp, J. Giesl . 457

On the Computational Interpretation of Negation
M. Parigot . 472

From Programs to Games: Invariance and Safety for Bisimulation
M. Pauly . 485

Logical Relations and Data Abstraction
J. Power, E. Robinson . 497

Elementary Choiceless Constructive Analysis
P.M. Schuster . 512

On the Logic of the Standard Proof Predicate
R.E. Yavorsky . 527

Author Index . 543

Background, Reserve, and Gandy Machines

Andreas Blass1,� and Yuri Gurevich2

1 Mathematics Dept., University of Michigan, Ann Arbor, MI 48109–1109, U.S.A.
ablass@umich.edu

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
gurevich@microsoft.com

Abstract. The reserve of a state of an abstract state machine was de-
fined to be a “naked set”. In applications, it may be convenient to have
tuples, sets, lists, arrays, etc. defined ahead of time on all elements, in-
cluding the reserve elements. We generalize the notion of reserve appro-
priately. As an application, we solve a foundational problem in Gandy’s
formalization of mechanical devices.

Part 1
Introduction and Preliminaries

1 Introduction

In this paper, we address two closely related foundational issues. We encoun-
tered these issues in connection with the notion of “reserve” in abstract state
machines (ASMs), but they are of somewhat broader relevance, for example
to the computing mechanisms described in [Gandy 1980]. In this introduction,
we shall discuss these issues in general terms, specializing later to the cases of
primary interest.

Algorithms often need to increase their working space, and there are two ways
to view this increase. One is that the additional space was really there all along
but was not previously used; the other is that genuinely new space is created.
For example, from the first viewpoint, a Turing machine has an infinite tape,
only finitely much of which is in use at any stage of the computation. From
the second viewpoint, a Turing machine’s tape is finite but new squares can be
appended to it as needed.

For foundational purposes, it is usually more convenient to adopt the first view-
point, so as not to have to worry about the nature of newly created elements. In
� Preparation of this paper was partially supported by a grant from Microsoft Corpo-
ration.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 1–17, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

2 A. Blass and Y. Gurevich

particular, ASMs have, by definition [Gurevich 1995], an infinite reserve which is
a part of the base set. All the basic functions and relations except equality take
only their default values if at least one of the arguments belongs to the reserve,
and no basic function outputs a reserve element. When a new element is needed
in the active part of the state, one is imported from the reserve.

Although the reserve has no internal structure (except equality), it is often de-
sirable to have some external structure over it. For example, in [BGS 1999] every
state was required to include all the hereditarily finite sets over its atoms. This
means that finite sets of reserve elements (and finite sets of these, etc.) were
present, with their membership relation. Thus, when a reserve element is im-
ported, sets involving it already exist and do not need to be created separately
(by importing additional elements and appropriately defining the membership
relation on them). Similarly, one might want to have other sorts of structure
already available, for example lists or arrays of reserve elements.

The first issue treated in this paper is to make precise the notion of a sort of
structure (like sets, or lists, or arrays) that can exist above a set of atoms without
putting any structure (except equality) on the atoms themselves. We formalize
this in the notion of a background class of structures. Thus, for example, the
background class relevant to [BGS 1999] would consist of structures of the form:
set U of atoms plus all hereditarily finite sets over U (as well as isomorphic
copies of such structures). The idea is that such a class of structures specifies
the constructions (like finite sets) available as “background” for algorithms.

The second issue is the choice of elements to be imported from the reserve. If the
importation is to be algorithmic, it must be non-deterministic, since an algorithm
has no way to distinguish one reserve element from another. But this sort of non-
determinism is intuitively much more benign than general non-determinism. We
attempt to capture what accounts for this intuition, by introducing the notion of
inessential non-determinism. The idea here is that the various options allowed by
the non-determinism all lead to isomorphic states, so that it makes no difference
which option is chosen.

Alternatively, one could insist on determinism, specifying a particular one of the
available reserve elements to be imported. This is the approach used in [Gandy
1980]. The price of this insistence is that the specification cannot be algorith-
mic or even canonical. We shall show how to turn a Gandy-style deterministic,
non-algorithmic process into a non-deterministic algorithm of the sort described
above, and we shall prove that Gandy’s notion of “structural” for his processes
corresponds to our notion of “inessential non-determinism.”

2 Structures

The notion of (first-order) structure is found in textbooks on mathematical logic;
for example see [Enderton 1972]. We use a slight modification of the notion of
classical structures [Gurevich 1991].

Background, Reserve, and Gandy Machines 3

2.1 Syntax

A vocabulary is a finite collection of function names, each of a fixed arity. Some
function names may be marked as relational . Every vocabulary contains the
equality sign, the nullary names true, false, undef, the unary name Boole,
and the names of the usual Boolean operations. With the exception of undef,
all these logic names are relational. A function name can be marked (by the
vocabulary) as static.

Terms (more exactly ground terms; by default, terms are ground in this article)
are defined by the usual induction. A nullary function name is a term. If f is a
function name of positive arity j and if t1, . . . , tj are terms, then f(t1, . . . , tj) is
a term. If the outermost function name is relational, then the term is Boolean.

2.2 Semantics

A structure X of vocabulary Υ is a nonempty set S (the base set of X) together
with interpretations of the function names in Υ over S. Elements of S are also
called elements of X. A j-ary function name is interpreted as a function from
Sj to S, a basic function of X. We identify a nullary function with its value.
Thus, in the context of a given structure, true means a particular element,
namely the interpretation of the name true; the same applies to false and
undef. It is required that true be distinct from the interpretations of the names
false and undef. The interpretation of a j-ary relation R is a function from
Sj to {true, false}, a basic relation of X. The equality sign is interpreted as
the identity relation on the base set. Think about a basic relation R as the set
of tuples ā such that R(ā) = true. If relation R is unary it can be viewed as
a universe. Boole is (interpreted as) the universe {true, false}. The Boolean
operations behave in the usual way on Boole and produce false if at least one
of the arguments is not Boolean. undef allows us to represent intuitively-partial
functions as total.

The domain of a non-relational j-ary basic function f is the set of j-tuples ā
such that f(ā) �= undef. The range of f is the set of elements f(ā) different from
undef where ā ranges over all j-tuples of elements of the base set.

A straightforward induction gives the value Val(t,X) of a term t in a structure
X whose vocabulary includes that of t. If Val(t,X) = Val(t′, X), we may say
that t = t′ in X. If t = true (resp. t = false) in X, we may say that t holds or
is true (resp. fails or is false) in X.

3 Sequential-Time and Abstract-State Postulates

Restrict attention to one-thread algorithms. (In the terminology of [Gurevich
1995], this means that we allow parallel algorithms but not independent agents.)
Following [Gurevich 2000], we make the following assumptions.

4 A. Blass and Y. Gurevich

Sequential Time

Postulate 1 (Deterministic Sequential Time) Every deterministic algo-
rithm A is associated with

– a set S(A) whose elements will be called states of A,
– a subset I(A) of S(A) whose elements will be called initial states of A, and
– a map τA : S(A) −→ S(A) that will be called the one-step transformation

of A.

Postulate 2 (Nondeterministic Sequential Time) Every nondeterministic
algorithm A is associated with

– a set S(A) whose elements will be called states of A,
– a subset I(A) of S(A) whose elements will be called initial states of A, and
– a relation τA ⊆ S(A)×S(A) that will be called the one-step transformation

of A.

Abstract State

Postulate 3 (Deterministic Abstract State) Let A be an arbitrary deter-
ministic algorithm.

– States of A are first-order structures.
– All states of A have the same vocabulary.
– The one-step transformation τA does not change the base set of any state.

Nor does it change the interpretations of static basic functions.
– S(A) and I(A) are closed under isomorphisms. Further, any isomorphism

from a state X onto a state Y is also an isomorphism from τA(X) onto
τA(Y).

Postulate 4 (Nondeterministic Abstract State) Let A be an arbitrary
nondeterministic algorithm.

– States of A are first-order structures.
– All states of A have the same vocabulary.
– If (X,X ′) ∈ τA then X and X ′ have the same base set and the same basic

static functions.
– S(A) and I(A) are closed under isomorphisms. Further, let ζ be an isomor-

phism from a state X onto a state Y . For every state X ′ with (X,X ′) ∈ τA,
there is a state Y ′ with (Y, Y ′) ∈ τA such that ζ is an isomorphism from X ′

onto Y ′.

Notation. τ [A] ⇀↽ τA. Notation τ [A] is more convenient when the algorithm name
is complex.

Background, Reserve, and Gandy Machines 5

Lemma 3.1 (Symmetry Preservation) Suppose that A is a deterministic al-
gorithm and let X ∈ S(A). Every automorphism of X is also an automorphism
of τA(X).

Proof This is the last part of the deterministic abstract-state postulate applied
to the special case that X = Y . ✷

3.1 Hereditarily Finite Sets

We recall a couple of set-theoretic notions.

A set x is transitive if it contains all elements of its elements: if z ∈ y ∈ x then
z ∈ x. The transitive closure TC(x) of a set x is the least transitive set that
includes x. A set x is hereditarily finite if TC(x) is finite.

A set x may contain elements which are not sets; these are called atoms. The
collection of atoms in TC(x) is the atomic support of x. Following Gandy [1980],
the atomic support of a set x will be denoted Sup(x).

Let U be a set of atoms. The collection HF(U) of hereditarily finite sets over U
is the collection of all hereditarily finite sets x with Sup(x) ⊆ U . It is easy to see
that HF(U) is the least set S such that every finite subset of U ∪S is an element
of S.

Corollary 3.2 Consider a family {Ui : i ∈ I} of subsets of U . We have
⋂
i

HF(Ui) = HF
(⋂

i

Ui

)

Proof By definition of HF and of intersection, a set x belongs to
⋂
iHF(Ui) if

and only if Sup(x) ⊆ Ui for each i. But this is the same as saying Sup(x) ⊆ ⋂i Ui,
which is the definition of x belonging to HF

(⋂
i Ui

)
. ✷

Part 2
Background Classes and Reserve

4 Background Classes

4.1 Preliminaries

In this section, every vocabulary contains a unary predicate Atomic. We call
this predicate and the logical symbols obligatory and all other symbols non-
obligatory. If X |= Atomic(x), call x an atom of X. The set of atoms of X will

6 A. Blass and Y. Gurevich

be denoted Atoms(X).X is explicitly atom-generated if the smallest substructure
of X that includes all atoms is X itself.

Given two structures X,Y of the same vocabulary, we write X ≤ Y to indicate
that X is a substructure of Y . If X ≤ Y and X belongs to a class K of structures
then X is a K-substructure of Y .

4.2 Main Definitions

Definition 4.1 A class K of structures of a fixed vocabulary is a background
class if the following requirements BC0–BC3 are satisfied.

BC0 K is closed under isomorphisms.
BC1 For every set U , there is a structure X ∈ K with Atoms(X) = U .
BC2 For allX,Y ∈ K and every embedding (of sets) ζ : Atoms(X)→Atoms(Y),

there is a unique embedding (of structures) η of X into Y that extends ζ.
BC3 For all X ∈ K and every x ∈ Base(X), there is a smallest K-substructure

Y of X that contains x.

Definition 4.2 Suppose that K is a background class, X ∈ K, S ⊆ Base(X),
and F is the set of substructures Y ≤ X such that Y belongs to K and includes
S. If F has a smallest member Y then Y is called the envelope EX(S) of S in
X and Atoms(Y) is called the support SupX(S) of S in X.

Notice that the smallest background substructure ofX that contains a particular
element x ∈ X is EX({x}). It is tempting to simplify the notation by writing
simply EX(x), but this can lead to ambiguity if x is both an element and a
subset of X.

BC3 asserts that, in a background structure, every singleton subset has an en-
velope.

Definition 4.3 A background class K is finitary if, in every background struc-
ture, the support of every singleton set is finite.

4.3 Analysis

Let K be a background class. Members of K are background structures, K-
substructures are background substructures.

Lemma 4.4 In BC2, if ζ is onto then η is onto as well.

Proof Suppose that ζ is onto. By BC2 (existence), ζ−1 extends to an embed-
ding θ : Y → X. The identity map ζ ◦ ζ−1 : Atoms(Y)→ Atoms(Y) extends to
η ◦ θ : Y → Y . By BC2 (uniqueness), η ◦ θ is the identity map on Y . It follows
that η is onto. ✷

Background, Reserve, and Gandy Machines 7

Lemma 4.5 Suppose Z is a background structure, X,Y are background sub-
structures of Z, U = Atoms(X) and V = Atoms(Y).

1. If U ⊆ V then the identity on X is the unique embedding of X into Y that
is the identity on U .

2. If U ⊆ V then X ≤ Y .

Proof

1. Suppose that U ⊆ V and let ζ be the identity on U and thus an embedding
of U into V . By BC2 (existence), there is an extension of ζ to an embedding η
of X into Y and therefore into Z. The identity θ on X is another extension of ζ
that is an embedding of X into Z. By BC2 (uniqueness), η = θ.

2. follows from 1. ✷

Lemma 4.6 In a background structure X, every set U of atoms has an envelope.

Proof By BC1, there is a background structure Y with Atoms(Y) = U . Let
ζ be the identity map on U . By BC2 (existence), ζ extends to an embedding
η : Y → X. Let Z be the range of η. Clearly, Atoms(Z) = U . By BC0, Z is a
background structure and thus a background substructure of X.

By Lemma 4.5, Z is included in every background substructure of X that in-
cludes U . This means that Z = E(U). ✷

It follows that {a} has an envelope for every atom a. This is weaker than BC3
which asserts that, in a background structure, every singleton subset has an
envelope. Until now we used only BC0–BC2. BC3 does not follow from BC0–
BC2, as the following example shows.

Example 4.7 Let K be the class of structures X satisfying the following con-
ditions. The logic elements true, false, and undef are distinct. If Atoms(X) is
empty then X contains no non-logic elements. Otherwise the non-logic part of
X consists of atoms and exactly one non-atomic element. It is easy to see that
this class K satisfies BC0–BC2. However, if X has more than one atom and x is
the unique non-logic non-atomic element, then {x} does not have an envelope.

Lemma 4.8 Every background class has the following property.

BC3′ In a background structure X, every S ⊆ Base(X) has an envelope.

8 A. Blass and Y. Gurevich

Proof Let U ⇀↽
⋃{Sup({x}) : x ∈ S}. By Lemma 4.6, U has an envelope

E(U). We show that E(U) is also the envelope of S.

S ⊆ E(U). Indeed, for all x ∈ S, Atoms(E({x})) = Sup({x}) ⊆ U so that, by
Lemma 4.5, E({x}) ≤ E(U).

E(U) is the smallest K-substructure of X that includes S. Indeed, let Z be any
K-substructure of X that includes S. For every x ∈ S, Z includes E({x}) and
therefore includes Sup({x}) = Atoms(E({x})). Hence Z includes U . Hence Z
includes E(U). ✷

Lemma 4.9 Every background class has the following property.

BC3′′ For all X ∈ K, the intersection of any family of K-substructures of X is
a K-substructure of X.

Proof Let F be a family of K-substructures of X. We prove that the substruc-
ture

⋂
F is a background structure. Let U =

⋂{Atoms(Y) : Y ∈ F}. It suffices
to prove that

⋂
F = E(U).

E(U) ≤ ⋂F . Indeed, by the definition of E(U), E(U)) ≤ Y for all Y ∈ F .⋂
F ≤ E(U). Indeed let x be an element of

⋂
F . Every Y ∈ F contains x,

therefore includes E({x}), and therefore includes Atoms(E({x})). It follows that
Atoms(E({x})) ⊆ U . By Lemma 4.5, E({x}) ≤ E(U) and therefore E(U) con-
tains x. ✷

This proof gives rise to the following corollary.

Corollary 4.10 Assume that X is a background structure and let
Ui ⊆ Atoms(X) for all i ∈ I. Then

⋂
i

E(Ui) = E(
⋂
i

Ui)

Lemma 4.11 In Definition 4.1, BC3 can be replaced with BC3′′.

Proof Assume BC3′′ and let X ∈ K. Given an element x of X, let F be the
collection of K-substructures Y of X such that Y contains x. By BC3′′,

⋂
F

is a K-substructure of X. Clearly, it is the smallest K-substructure of X that
contains x. ✷

Remark 4.12 The definition of background classes has a simple category-theory
version. Consider two categories:

Υ -Str The category of structures for a vocabulary Υ , with embeddings as mor-
phisms.

Background, Reserve, and Gandy Machines 9

Set The category of sets, also with embeddings (i.e., one to one maps) as mor-
phisms.

Of course Set is just the special case of Υ -Str, where the vocabulary Υ is empty.
But we’re interested in the case where Υ contains at least the unary predicate
symbol Atomic. This symbol gives rise to a functor F from Υ -Str to Set. The
functor sends each Υ -structure to its set of atoms; on morphisms it acts by
restriction. Now a background class is a full subcategory C of Υ -Str that is
closed under isomorphisms and under intersections and such that the functor F
when restricted to C is an equivalence of categories C and Set.

Here “full subcategory” means a subclass of the objects, with all of the Υ -Str
morphisms between them. And “closed under intersections” should be taken
in the category-theoretic sense. In set-theoretic terminology, this means that,
given a structure in C and some substructures, also in C, then their intersection
should also be in C. One needs the single superstructure to make sense of the
intersection.

Lemma 4.13 Suppose that X is a background structure. For every permutation
π of Atoms(X) there is a unique extension of π to an automorphism of X.

Proof Use BC2 and Lemma 4.4. ✷

5 Examples of Background Classes

In this section we shall describe some specific background classes. Some of these
were the motivation for the general definition of background class.

Recall that the non-obligatory part of a vocabulary is the part that is obtained
by removing all logic names as well as the name Atomic.

5.1 Set Background

Up to isomorphism, the non-logic part of a background structureX with atoms U
consists of the hereditarily finite sets over U . (See Part 1 about the hereditarily
finite sets.) The only non-obligatory basic function of X is the containment
relation ∈. For future reference, this background class will be called the set-
background class SB.

There are other versions of set backgrounds. The vocabulary of SB can be en-
riched in various ways. We consider two ways to do that.

1. The additional basic functions are ∅, Singleton(x) = {x}, and

BinaryUnion(x, y) =⇀↽
{
x ∪ y if both x and y are sets
∅ otherwise

10 A. Blass and Y. Gurevich

The resulting background class is explicitly atom-generated.

2. The additional basic functions are as in [BGS 1999]: ∅, Pair(x, y) ⇀↽ {x, y}
and

UnaryUnion(x) ⇀↽
{⋃

y∈x y if x is a set
∅ otherwise

TheUnique(x) ⇀↽
{
a if x is a singleton {a}
∅ otherwise

Again the resulting background class is explicitly atom-generated.

5.2 String Background

The set of non-logic elements of a background structure with atoms U is the set
of strings of elements of U . Let the vocabulary contain symbols for the nullary
function Nil (the empty string), the unary function sending a member of U to
the one-term string containing it, and the binary operation of concatenation
of strings. Then this background class is explicitly atom-generated. If desired,
one can introduce additional basic functions Head(x) and Tail(x) defined by
induction on x. If x is the empty string Nil then Head(x) ⇀↽ Tail(x) ⇀↽ Nil. If
x = ay where a is an atom, then Head(x) ⇀↽ a and Tail(x) ⇀↽ y.

5.3 List Background

Up to isomorphism, the non-logic part of a backgound structure X with atoms
U consist of the lists over U . The terms in the lists can be elements of U or other
lists. (So lists differ from the strings in the preceding example in that nesting is
allowed.) The non-logic basic functions are Nil and Append. Nil desginates the
empty list. Given an atom or a list x and given a list 〈y1, . . . , yn〉, Append(x, y) ⇀↽
〈x, y1, . . . , yn〉. Every list has a unique presentation. As above, this allows us to
introduce additional basic functions Head(x) and Tail(x) where x ranges over
lists. In either version, this background class is explicitly atom-generated.

5.4 Set/List Background

Up to isomorphism, the set of non-logic elements of a background structure with
atoms U is the least set V such that

– U ⊆ V ,
– for every natural number n, if x1, . . . , xn ∈ V then {x1, . . . , xn} ∈ V and
〈x1, . . . , xn〉 ∈ V .

Here we do not adopt any of the codings of lists as sets; we regards sets and lists
as independent basic constructions.

We leave the choice of the vocabulary to the reader.

Background, Reserve, and Gandy Machines 11

5.5 A Non-finitary Background

All example background classes above are finitary. To obtain a non-finitary back-
ground class, modify the string-background class by allowing infinite strings.

6 Background Structures and the Reserve

Fix a background class BC. Call the vocabulary Υ0 of BC the background vo-
cabulary, function names in Υ0 the background function names, and members of
BC background structures.

Definition 6.1 Let A be an algorithm, deterministic or nondeterministic. BC
is the background of A if the following conditions are satisfied.

• The vocabulary Υ of A includes the background vocabulary Υ0, and every
background function name is static in Υ .

• For every state X of A, the Υ0-reduct of X (obtained by “forgetting” the basic
functions with names in Υ − Υ0) is a background structure. ✷

Fix a (deterministic or nondeterministic) algorithm A with background BC, and
let Υ be the vocabulary of A. The basic functions of A with names in Υ0 will be
called the background basic functions of A; the other basic functions of A will be
called the foreground basic functions of A.

Definition 6.2 Let X be a state of A. An element x ∈ Base(X) is exposed if
x belongs to the range of a foreground function or else x occurs in a tuple that
belongs to the domain of a foreground function. ✷

Recall the property BC3′ of background classes: for every background structure
X, every subset of Base(X) has an envelope in X.

Definition 6.3 The active part of a state X of the algorithm A is the envelope
of the set of exposed elements; we denote it by Active(X). The reserve of X is
the set of atoms of X that do not belong to the active part.

Lemma 6.4 Every permutation of the reserve of X gives rise to a unique au-
tomorphism of X that is the identity on the active part of X.

Proof Let π be a permutation of the reserve of X. Set π(a) ⇀↽ a for all atoms
a in the active part of X; the extended permutation will be also called π. By
Lemma 4.13, there is a unique automorphism θ of the Υ0-reduct ofX that extends
π. By definition of active part, any such automorphism that is the identity on
the active part is necessarily an automorphism of the full Υ -structure X. ✷

We remark for future reference that any isomorphism X ∼= Y between states of
A maps Active(X) isomorphically onto Active(Y).

12 A. Blass and Y. Gurevich

7 Inessential Nondeterminism

The symmetry preservation Lemma 3.1 inspires the following definition.

Definition 7.1 Suppose that A is a nondeterministic algorithm with back-
ground BC. A is essentially deterministic (or inessentially nondeterministic)
if the following holds for all states X of A. If (X,X ′) and (X,X ′′) belong to τA
then there is an isomorphism from X ′ onto X ′′ that coincides with the identity
on Active(X).

Corollary 7.2 Suppose that A is an inessentially nondeterministic algorithm
with background BC. Let (X,X ′) ∈ τA, (Y, Y ′) ∈ τA, ζ be an isomorphism from
X onto Y , and ζ0 be the restriction of ζ to Active(X). Then ζ0 extends to an
isomorphism from X ′ onto Y ′.

Proof By Postulate 4 (Nondeterministic Abstract State), ζ is an isomorphism
from X ′ to some state Y ′′ with (Y, Y ′′) ∈ τA. Since A is inessentially nondeter-
ministic, there is an isomorphism θ : Y ′′ ∼= Y that coincides with the identity on
Active(Y), which equals ζ(Active(X)) by the remark at the end of the last sec-
tion. Then θ◦ζ is an isomorphism from X ′ to Y ′ and agrees with ζ on Active(X),
i.e., it extends ζ0. ✷

Part 3
Nondeterministic Choice Problem
for Gandy Machines

8 Gandy Machines

Following Gandy [1980], fix an infinite countable set U of atoms. Recall that
HF(U) is the collection of hereditarily finite sets over U (see Part 1). Let G be
the structure

(U ∪HF(U),∈, U)

Every permutation π of U naturally extends to an automorphism of G as follows:
if x ∈ HF(U) then πx ⇀↽ {πy : y ∈ x}. It is easy to see that every automorphism
of G is obtained this way.

A subset S of HF(U) is structural if it is closed under automorphisms of G.
In other words, S is structural if and only if, for every x ∈ S and for every
permutation π of U , we have πx ∈ S. The following definition plays an important
role in this part.

Background, Reserve, and Gandy Machines 13

Definition 8.1 Let S be a structural subset of HF(U). A function F : S →
HF(U) is structural if, for every x ∈ S and for every permutation π of U ,
there is a permutation ρ of U that pointwise fixes Sup({πx}) and such that
ρπFx = Fπx.

Gandy defined only structural functions over HF(U) but used structural func-
tions over arbitrary structural subsets of HF(U). The following lemma clarifies
the issue of structural functions over HF(U) vs. structural functions over struc-
tural subsets of HF(U).

Lemma 8.2

1. A structural function F over a structural set S extends to a structural function
over HF(U).

2. Suppose that F is a structural function over HF(U) and let S be a structural
subset of HF(U). Then the restriction F |S of F to S is a structural function
over S.

Proof
1. Set F (x) ⇀↽ ∅ for all x ∈ HF(U)− S. We show that the extended function F
is structural over HF(U). Let x ∈ HF(U) and π be an arbitrary permutation of
U . We need to prove the existence of an appropriate permutation ρ. If x ∈ S,
then the existence of an appropriate ρ follows from the structurality of F over S.
Suppose that x /∈ S. By the structurality of S, πx /∈ S. Then ∅ = Fx = Fπx =
πFx. The desired ρ is the identity permutation of U .

2. Let x ∈ S and π be an arbitrary permutation of U . Since F is structural
over HF(U), there is a permutation ρ of U that pointwise fixes Sup({πx}) and
such that ρπFx = Fπx. If S contains x then it contains πx as well because S is
structural. It follows that ρπ(F |S)x = (F |S)πx for all x ∈ S. ✷

Now we are ready to recall the notion of Gandy machine at the level of detail
appropriate for this paper.

Definition 8.3 A Gandy machine M is a pair (S, F)

– S is a structural subset of HF(U), and
– F is a structural function from S into S, and
– some additional constraints are satisfied.

Intuitively, S is the set of states of M and F is the one-step transition function.
The additional constraints are not important for our purposes in this paper.

14 A. Blass and Y. Gurevich

9 The Nondeterministic Choice Problem

We start with an example Gandy machine M0 = (S0, F 0). S0 is the collection of
finite subsets of U . Obviously, S0 is structural. If x ∈ S0, then F (x) ⇀↽ x ∪ {a}
where a is an atom in U−x. We check that F 0 is structural as well. Suppose that
x = {a1, . . . , an} ∈ S0 where a1, . . . , an are distinct. Then F 0x = {a1, . . . , an, b}
for some atom b /∈ x so that a1, . . . , an, b are all distinct. Let π be a permutation
of U . Then

πx = {πa1, . . . , πan}
πF 0x = {πa1, . . . , πan, πb} where πb /∈ πx
F 0πx = {πa1, . . . , πan, c} for some c /∈ πx

The desired ρ transposes πb and c and leaves other atoms intact.

Thus, M0 satisfies the part of the definition of Gandy machine that we gave
explicitly; the reader familiar with [Gandy 1980] is invited to check that the
“additional constraints” that we alluded to are also satisfied.

Now consider an arbitrary Gandy machine M = (S, F) and let x ∈ S. Think
about x as the current state of M , so that Fx is the next state of M . It is possible
that Sup({Fx}) contains atoms that are not in Sup({x}); that certainly happens
in the case of our example machine M0. The choice of such new atoms should
not matter. That is why Gandy requires that F is structural. Two questions
arise.

1. Is the structurality of F a correct requirement? That is, does it capture the
idea that the choice of new elements is irrelevant?

2. Is there a better solution of this nondeterministic choice problem?

We believe that the answer to the second question is positive. To this end we
will propose a nondeterministic formalization of Gandy machines. The answer
to the first question is positive as well if one sticks to deterministic machines;
we will show that the structurality requirement is equivalent to the intuitively
expected requirement that the nondeterministic versions of Gandy machines are
essentially deterministic in the sense of Section 7.

10 Nondeterministic (Specifications for) Gandy Machines

Let S be a structural subset of HF(U) and F : S → S be any unary operation
over S. Think about M = (S, F) as a machine, like a Gandy machine. Of course,
we are primarily interested in the case when M is a Gandy machine, but for
technical reasons we consider a more general case. We define a nondeterministic
algorithm A, or AM , that may serve as a nondeterministic specification for M .

Background, Reserve, and Gandy Machines 15

Definition 10.1 The nondeterministic specification of M = (S, F) is the algo-
rithm A defined as follows.

All states of A have the same base set, namely the set U ∪HF(U) extended with
three additional elements (interpreting) true, false, undef. A has only three
non-logic basic functions. Two of them are static: the unary relation Atomic and
the containment relation x ∈ y. The third basic function is a nullary dynamic
function Core that gives the current state of M . For brevity, let Core(X) be the
value of Core at state X and let Sup(X) ⇀↽ Sup({Core(X)}).
The one-step transition relation τA consists of pairs (X,Y) of states of A such
that Core(Y) = F (Core(X)) or, more generally, there is a permutation π of U
that pointwise fixes Sup(X) and such that Core(Y) = πF (Core(X))).

To explain this definition, consider the example M0 from the preceding sec-
tion. Abbreviate AM0 to A0. Abbreviate τA0 to τ0. In this situation, Sup(X) =
Core(X) for all states X of S. Fix a particular state X of A0. What are the
states Y such that (X,Y) ∈ τ0? It is easy to see that these are exactly the state
Y such that Sup(Y) consists of the atoms in Sup(X) plus one additional atom
a. Any atom in U − Sup(X) will do. No atom in U − Sup(X) has preferential
treatment or is discriminated against.

Remark 10.2 Gandy does not specify initial states of his machines. Accord-
ingly we ignore initial states as well.

It is easy to see that A is a nondeterministic algorithm with background SB
described in Subsection 5.1. The only exposed element of a state X of A is
Core(X). Accordingly the active part Active(X) of X is Sup(X)∪HF(Sup(X))
plus the elements true, false, undef. Hence Reserve(X) = U − Sup(X).

We saw that every permutation π of U extends to an automorphism of the
structure G = (U ∪ HF(U),∈, U). However, π is not necessarily an automor-
phism of X because it can move Core(X). It is an automorphism of X if and
only if π(Core(X)) = Core(X). Identify a permutation π of Reserve(X) with
the permutation of U which pointwise fixes Sup(X) and coincides with π on
Reserve(X).

Corollary 10.3 Let (X,Y) be states of A. Then (X,Y) ∈ τA if and only if there
is an permutation π of Reserve(X) such that Core(Y) = πF (Core(X)).

11 Essential Determinism and Structurality

Let S be a structural subset of HF(U) and F be any unary operation over S.
Further let A be the nondeterministic specification for (S, F). Abbreviate τA to
τ .

16 A. Blass and Y. Gurevich

Theorem 11.1 The following are equivalent.

1. A is essentially deterministic.
2. F is structural over S.

Proof First we assume 1 and prove 2. Let x ∈ S and let π be any permutation
of U . We construct the desired ρ.

Let X be the state of A with Core(X) = x and let πX be the state of A with
Core(πX) = πx. Since S is structural, it contains πx and thus πX is a legitimate
state of A.

View π as an isomorphism from X to πX. Since A is essentially determinis-
tic, there is an isomorphism η from τ(X) to τ(πX) which coincides with π
on Active(X) and in particular on Sup({x}). The desired ρz ⇀↽ ηπ−1z for all
z ∈ HF(U).

If πa ∈ Sup({πx}) then ρ(πa) = ηπ−1πa = ηa = πa. Thus ρ is the identity on
Sup({πx}).
Since η is an isomorphism from τX onto τ(πX), we have ηCore(τX)
= Core(τπX), that is ηFx = Fπx. Therefore ρπFx = ηπ−1πFx = ηFx = Fπx.

Second we assume 2 and prove 1. Suppose that (X,Y) and (X,Z) belong to τ .
We need to prove that there is an isomorphism from Y onto Z that pointwise
fixes Active(X).

Without loss of generality Core(Y) = F (Core(X)). Indeed, suppose that 2 is
proved in this special case. Now consider the general case, and let X ′ be the
state of A with Core(X ′) = F (Core(X)). By the special case of 2, there is an
isomorphism ζ from X ′ onto Y that pointwise fixes Active(X). Similarly, there
is an isomorphism η from X ′ onto Z that pointwise fixes Active(X). Then η◦ζ−1
is an automorphism from Y onto Z that pointwise fixes Active(X).

Let x ⇀↽ Core(X), y ⇀↽ Core(Y) and z ⇀↽ Core(Z). We have y = Fx. Since
(X,Z) ∈ τ , there exists a permutation π of U that pointwise fixes Sup({x}) and
such that z = πFx. Since F is structural, there exists a permutation ρ of U
that pointwise fixes Sup({πx}) and such that ρπFx = Fπx. Since π pointwise
fixes Sup({x}), we have πx = x so that ρ pointwise fixes Sup({x}) (and there-
fore pointwise fixes Active(X)) and ρz = ρπFx = Fπx = Fx = y. Then ρ−1

pointwise fixes Active(X) and takes y to z. ✷

References

BGS 1999 Andreas Blass, Yuri Gurevich and Saharon Shelah, “Choiceless
Polynomial Time”, Annals of Pure and Applied Logic 100 (1999), 141–187.

Enderton 1972 Herbert B. Enderton, “A Mathematical Introduction to
Logic,” Academic Press.

Background, Reserve, and Gandy Machines 17

Gandy 1980 Robin Gandy, “Church’s thesis and principles for mechanisms”
in: “The Kleene Symposium” (ed. J. Barwise et al.), North-Holland, 1980,
123–148.

Gurevich 1991 “Evolving Algebras: An Attempt to Discover Semantics”,
Bulletin of European Assoc. for Theor. Computer Science, no. 43, Feb. 1991,
264–284. A slightly revised version appeared in G. Rozenberg and A. Sa-
lomaa, editors, “Current Trends in Theoretical Computer Science”, World
Scientific, 1993, 266–292.

Gurevich 1995 Yuri Gurevich, “Evolving Algebra 1993: Lipari Guide”, in
“Specification and Validation Methods”, Ed. E. Boerger, Oxford University
Press, 1995, 9–36.

Gurevich 2000 Yuri Gurevich, “Sequential Abstract State Machines Cap-
ture Sequential Algorithms”, ACM Transactions on Computational Logic 1,
to appear.

Choiceless Polynomial Time Computation
and the Zero-One Law

Andreas Blass1,� and Yuri Gurevich2

1 Mathematics Dept., University of Michigan, Ann Arbor, MI 48109–1109, USA
ablass@umich.edu

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
gurevich@microsoft.com

1 Introduction

This paper is a sequel to [2], a commentary on [7], and an abridged version of
a planned paper that will contain complete proofs of all the results presented
here.

The BGS model of computation was defined in [2] with the intention of model-
ing computation with arbitrary finite relational structures as inputs, with essen-
tially arbitrary data structures, with parallelism, but without arbitrary choices.
In the absence of any resource bounds, the lack of arbitrary choices makes no
difference, because an algorithm could take advantage of parallelism to produce
all possible linear orderings of its input and then use each of these orderings
to make whatever choices are needed. But if we require the total computation
time (summed over all parallel subprocesses) to be polynomially bounded, then
there isn’t time to construct all the linear orderings, and so the inability to make
arbitrary choices really matters.

In fact, it was shown that choiceless polynomial time C̃PTime, the complex-
ity class defined by BGS programs subject to a polynomial time bound, does
not contain the parity problem: Given a set, determine whether its cardinality
is even. Several similar results were proved, all depending on symmetry consid-
erations, i.e., on automorphisms of the input structure.

Subsequently, Shelah [7] proved a zero-one law for C̃PTime properties of
graphs. We shall state this law and discuss its proof later in this paper. For now,
let us just mention a crucial difference from the earlier results in [2]: Almost
all finite graphs have no non-trivial automorphisms, so symmetry considerations
cannot be applied to them. Shelah’s proof therefore depends on a more subtle
concept of partial symmetry, which we explain in Section 8 below.

Finding the proof in (an early version of) [7] difficult to follow, we worked
out a presentation of the argument for the main case, which we hope will be
helpful for others interested in Shelah’s ideas. We also added some related results,
indicating the need for certain aspects of the proof and clarifying some of the
concepts involved in it. Unfortunately, this material is not yet fully written up.
� Preparation of this paper was partially supported by a grant from Microsoft Corpo-
ration.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 18–40, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Choiceless Polynomial Time Computation and the Zero-One Law 19

The part already written, however, exceeds the space available to us in the
present volume. We therefore present here an abridged version of that paper
and promise to make the complete version available soon.

For simplicity, we shall often deal only with input structures that are undi-
rected, loopless graphs, i.e., sets equipped with a symmetric, irreflexive binary
relation of adjacency. We also restrict our attention to the uniform probability
model. That is, we define the probability of a property (assumed isomorphism-
invariant) of n-vertex graphs by considering all graphs with vertex set {1, 2, . . ., n}
to be equally probable. The asymptotic probability of a property of graphs is de-
fined as the limit, as n→∞, of its probability among n-vertex graphs. In general,
a zero-one law says that properties have asymptotic probability 0 or 1, but, as
we shall see, some care is needed in formulating the zero-one law for C̃PTime.

All the results discussed in this paper can be routinely extended to other con-
texts, such as directed graphs, or sets with several relations, including relations
of more than two arguments. It is also routine to replace the uniform probability
measure by one where all potential edges have probability p, a constant other
than 1

2 . We do not discuss these generalizations further, because they complicate
the notation without contributing any new ideas.

2 The Zero-One Law

We start with a very brief description of the BGS model of computation, just
adequate to formulate the zero-one law. In Section 3, we shall give more details
about the model, in preparation for a description of its proof.

The BGS model, introduced in [2], is a version of the abstract state machine
(ASM) paradigm [6]. The input to a computation is a finite relational structure
I. A state of the computation is a structure whose domain is HF(I), which
consists of the domain of I together with all hereditarily finite sets over it; the
structure has the relations of I, some set-theoretical apparatus (for example
the membership relation ∈), and some dynamic functions. The computation
proceeds in stages, always modifying the dynamic functions in accordance with
the program of the computation. The dynamic functions are initially constant
with value ∅ and they change at only finitely many arguments at each step. So,
although HF(I) is infinite, only a finite part of it is involved in the computation at
any stage. The computation ends when and if a specific dynamic 0-ary function
Halt acquires the value true, and the result of the computation is then the value
of another dynamic 0-ary function Output.

This model was used to define choiceless polynomial time C̃PTime by requir-
ing a computation to take only polynomially many (relative to the size of the
input structure I) steps and to have only polynomially many active elements.
(Roughly speaking, an element of HF(I) is active if it participates in the up-
dating of some dynamic function at some stage.) Also, Output was restricted to
have Boolean values, so the result of a computation could only be true, or false,
or undecided. (The “undecided” situation arises if the computation exhausts the
allowed number of steps or the allowed number of active elements without Halt

20 A. Blass and Y. Gurevich

becoming true.) We shall use the name polynomial time BGS program to refer
to a BGS program, with Boolean Output, together with polynomial bounds on
the number of steps and the number of active elements.

Two classes K0 and K1 of graphs are C̃PTime-separable if there is a polyno-
mial time BGS program Π such that, for all input structures from K0 (resp. K1),
Π halts with output false (resp. true) without exceeding the polynomial
bounds. It doesn’t matter what Π does when the input is in neither K0 nor
K1.

Theorem 1 (Shelah’s Zero-One Law) If K0 and K1 are C̃PTime-separable
classes of undirected graphs, then at least one of K0 and K1 has asymptotic
probability zero.

An equivalent formulation of this is that, for any given polynomial time
BGS program, either almost all graphs produce output true or undecided or else
almost all graphs produce output false or undecided. It is tempting to assert the
stronger claim that either almost all graphs produce true, or almost all produce
false, or almost all produce undecided. Unfortunately, this stronger claim is false;
a counterexample will be given after we review the definition of BGS programs
in Section 3.

The theorem was, however, strengthened considerably in another direction
in [7]. It turns out that the number of steps in a halting computation is almost
independent of the input.

Theorem 2 Let a BGS program Π with Boolean output and a polynomial bound
for the number of active elements be given. There exist a number m, an output
value v, and a class C of undirected graphs, such that C has asymptotic probability
one and such that, for each input I ∈ C, one of the two following alternatives
holds. Either Π on input I halts after exactly m steps with output value v and
without exceeding the given bound on active elements, or Π on input I exceeds
the bound on active elements by step m.

Notice that this theorem does not assume a polynomial bound on the num-
ber of steps. It is part of the conclusion that the number of steps is not only
polynomially bounded but constant as long as the input is in C and the number
of active elements obeys its bound.

Intuitively, bounding the number of active elements, without bounding the
number of computation steps, amounts to a restriction on space, rather than
time. Thus, Theorem 2 can be viewed as a zero-one law for choiceless polynomial
space computation.

The class C in the theorem actually has a fairly simple description; it consists
of the graphs that have at least n1 nodes and satisfy the strong extension axioms
to be defined in Section 7 below for up to n2 variables. The parameters n1
and n2 in this definition can be easily computed when the program Π and the
polynomial bound on the number of active elements are specified.

Choiceless Polynomial Time Computation and the Zero-One Law 21

3 BGS Programs

In this section, we review the syntax and semantics of BGS programs, as well
as the concept of active elements. These are the ingredients used in defining
C̃PTime in [2].

We identify the truth values false and true with the sets 0 = ∅ and 1 = {0},
respectively. Thus, relations can be regarded as functions taking values in {0, 1}.

Definition 3 Our function symbols are

– the logical symbols, namely = and the connectives ¬, ∧, ∨, →, ↔, true,
and false,

– the set-theoretic function symbols ∈, ∅, Atoms, ⋃, TheUnique, and Pair,
– the input predicate symbol A, and
– finitely many dynamic function symbols.

The intended interpretation of
⋃
x, where x is a family of sets and atoms,

is the union of the sets in x (ignoring the atoms). If x is a set with exactly
one member then TheUnique(x) is that member. Pair(x, y) means {x, y}. The
input predicate A denotes the adjacency relation of the input graph. The in-
tended meanings (and arities) of the other symbols should be clear. We adopt
the convention that if a function is applied to an inappropriate argument (like⋃
applied to an atom or A applied to sets) then the value is ∅.
The function symbols ∈, A, and the logical symbols are called predicates

because their intended values are only true and false.
In addition to function symbols, we use a countably infinite supply of vari-

ables and we use certain symbols introduced in the following definitions of terms
and rules.

Definition 4 Terms and Boolean terms are defined recursively as follows.

– Every variable is a term.
– If f is a j-ary function symbol and t1, . . . , tj are terms, then f(t1, . . . , tj) is
a term. It is Boolean if f is a predicate.

– If v is a variable, t(v) a term, r a term in which v is not free, and ϕ(v) a
Boolean term, then

{t(v) : v ∈ r : ϕ(v)}
is a term.

The construction {t(v) : v ∈ r : ϕ(v)} binds the variable v.

In connection with {t(v) : v ∈ r : ϕ(v)}, we remark that, by exhibiting the
variable v in t(v) and ϕ(v), we do not mean to imply that v must actually occur
there, nor do we mean that other variables cannot occur there. We are merely
indicating the places where v could occur free. The “two-colon” notation {t(v) :
v ∈ r : ϕ(v)} is intended to be synonymous with the more familiar “one-colon”
notation {t(v) : v ∈ r∧ϕ(v)}. By separating the v ∈ r part from ϕ(v), we indicate

22 A. Blass and Y. Gurevich

the computational intention that the set should be built by running through all
members of r, testing for each one whether it satisfies ϕ, and collecting the
appropriate values of t. Thus {t(v) : v ∈ r : v ∈ r′} and {t(v) : v ∈ r′ : v ∈ r} are
the same set, but produced in different ways. (Such “implementation details”
have no bearing on the results but provide useful intuitive background for some
of our definitions.)

Definition 5 Rules are defined recursively as follows.

– Skip is a rule.
– If f is a dynamic j-ary function symbol and t0, t1, . . . , tj are terms, then

f(t1, . . . , tj) := t0

is a rule, called an update rule.
– If ϕ is a Boolean term and R0 and R1 are rules, then

if ϕ then R0 else R1 endif

is a rule, called a conditional rule.
– If v is a variable, r is a term in which v is not free, and R(v) is a rule, then

do forall v ∈ r, R(v) enddo
is a rule, called a parallel combination.

The construct do forall v ∈ r, R(v) enddo binds the variable v.

Convention 6 When the “else” part is Skip, we use if ϕ then R to abbrevi-
ate if ϕ then R else Skip endif. We use do in parallel R0, R1enddo as an
abbreviation for

do forall v ∈ Pair(true, false)
if v =true then R0 else R1
endif

enddo

The do in parallel construct applied to more than two rules means an
iteration of the binary do in parallel .

Definition 7 A program is a rule with no free variables.

Convention 8 By renaming bound variables if necessary, we assume that no
variable occurs both bound and free, and no variable is bound twice, in any term
or rule.

Throughout much of this paper, the context of our discussion will include a
fixed program Π. In such situations, we adopt the following convention.

Choiceless Polynomial Time Computation and the Zero-One Law 23

Convention 9 When we refer to a term or rule within Π, we mean a specific
occurrence of the term or rule in Π.

Since a program Π has no free variables, every variable v occurring in it is
bound exactly once, either by a term {t : v ∈ r : ϕ} or by a rule do forall v ∈
r, R enddo.

Definition 10 If v is bound by {t : v ∈ r : ϕ}, then the scope of v consists of
the exhibited occurrence of v as well as t and ϕ. If v is bound by do forall v ∈
r, R enddo, then the scope of v consists of its exhibited occurrence and R. In
both cases, the range of v is r. Notice that the range of v is not in the scope of
v.

We shall need to know that the semantics of terms and rules can be defined
by first-order formulas using only primitive set-theoretic notions (∈ and Atoms),
the adjacency relation of the input graph, and the dynamic functions. More
precisely, consider any particular state of one of our ASM’s. It is a structure H+

with underlying set HF (I) and with interpretations for all the function symbols
listed in Definition 3. Let H be the structure

H = 〈HF (I),∈, I, A〉
that is like H except that among the non-logical symbols only ∈, Atoms, and A
are interpreted. (In the usual terminology of mathematical logic, H is a reduct
of H+.) Let HD be the intermediate structure in which the dynamic function
symbols are also interpreted (by the same functions as in H+). We shall need
to know that all essential aspects of the execution of Π in the state H+, i.e.,
the computation leading from H+ to its sequel, can be defined in the structure
HD. (It will turn out that, for every state H+ that actually arises during the
computation of a BGS machine, the dynamic functions will be definable in H,
and so we could use H instead of HD here. See the proof of Proposition 11
below.)

The longer version of this paper will contain these HD-definitions in full; here
we give only some typical examples. To avoid having to introduce new symbols
for a multitude of set-theoretic formulas, we adopt the notational convention
that �ϕ� means the set-theoretic formalization of the (informal) statement ϕ.

We first define �y ∈ t� and �y = t� for all terms t; here y is a variable not
free in t. Here are some typical clauses from the definition.

– If f is a dynamic function symbol, then �y = f(t1, . . . , tj)� is

∃z1 . . .∃zj
(

j∧
i=1

�zi = ti� ∧ y = f(z1, . . . , zj)
)
.

– �y ∈ Pair(t1, t2)� is �y = t1� ∨ �y = t2�.
– �y ∈ {t(v) : v ∈ r : ϕ(v)}� is

∃v (�v ∈ r� ∧ �true = ϕ(v)� ∧ �y = t(v)�).

24 A. Blass and Y. Gurevich

Next, we define in HD the semantics of rules. For each rule R and each dy-
namic function symbol f , say of arity j, we first define a preliminary formula,
�R wants to set f at x1, . . . , xj to y�, which ignores possible conflicts between
updates. This is a formula with free variables x1, . . . , xj , y and any variables
z1, . . . , zk free in the ruleR. It holds in stateHDof elements a1, . . . , aj , b, c1 . . . , ck
if and only if ((f, a1, . . . , aj), b) is in the update set of rule R(c1, . . . , ck) in
state H+, as defined in [6]. (We use the symbol f in our name for the formula
�R wants to set f at x1, . . . , xj to y�, but f need not occur in the formula itself.)
Typical clauses in the construction of �R wants to set f at x1, . . . , xj to y� in-
clude:

– �f(t1, . . . , tj) := t0 wants to set f at x1, . . . , xj to y� is
j∧
i=1

�xi = ti� ∧ �y = t0�.

– �do forall v ∈ r, R enddo wants to set f at x1, . . . , xj to y� is
∃v (�v ∈ r� ∧ �R wants to set f at x1, . . . , xj to y�).

A rule may want to set f at x1, . . . , xj to several values. We adopt the
standard ASM convention that if the programΠ contains such a conflict, then all
the dynamic functions remain unchanged. The formal definitions are as follows.

– �Π clashes� is
∨
f

∃x1 . . . ∃xj∃y∃z

(Π wants to set f at x1, . . . , xj to y) ∧
(Π wants to set f at x1, . . . , xj to z) ∧ y �= z.

Of course, the arity j depends on f .
– �Π sets f at x1, . . . , xj to y� is

�Π wants to set f at x1, . . . , xj to y� ∧ ¬�Π clashes�.
Finally, we define the dynamic functions for the sequel state, that is, for the

state obtained from H+ by executing Π once.
For a j-ary dynamic function f , we define

�y = f(x1, . . . , xj) in the sequel�
to be

�Π sets f at x1, . . . , xj to y� ∨
(�y = f(x1, . . . , xj)� ∧ ¬∃y′ �Π sets f at x1, . . . , xj to y′�

The preceding definitions provide most of the proof of the following result.

Choiceless Polynomial Time Computation and the Zero-One Law 25

Proposition 11 For any BGS program Π, there exists a number B with the fol-
lowing property. For each natural number m and each dynamic function symbol
f , there is a first-order formula �y = f(x1 . . . , xj) at step m� in the vocabulary
{∈,Atoms, A} such that, for any input structure (I, A), the tuples that satisfy
�y = f(x1 . . . , xj) at step m� in H = 〈HF (I),∈, I, A〉 constitute the graph of f
in the mth state of the run of Π on (I, A). Furthermore, the number of variables
occurring in �y = f(x1 . . . , xj) at step m� is at most B.

It will be important that the bound B depends only on Π, not on m. To
avoid possible confusion, we emphasize that variables can be re-used in these
formulas; thus the same variable may be bound many times and may occur free
as well.
Proof. We construct the required formulas by induction on m, starting with
�y = f(x1 . . . , xj) at step 0�, which can be taken to be �y = ∅� because all
dynamic functions are initialized to be constant with value ∅.

For the induction step from m to m + 1, we begin with the formula �y =
f(x1, . . . , xj) in the sequel� as constructed above. Then, for each dynamic func-
tion symbol g, we replace each occurrence of a subformula �t0 = g(t1, . . . , tk)�
with �t0 = g(t1, . . . , tk) at step m�.

As for the bound B, it can be taken to be the maximum number of variables
in any of the formulas �y = f(x1, . . . , xj) in the sequel� as f ranges over all the
dynamic function symbols. We omit the verification of this; it is a fairly standard
application of the idea of re-using variables. �

Remark 12 For the purpose of proving Theorem 2, it is important that the
number of variables in the formulas �y = f(x1, . . . , xj) at step m� be bounded
independently of m, but it is not crucial that the formulas be finite. Formulas of
the infinitary language L∞,ω would serve as well. An alternate approach to ob-
taining such formulas is to express �y = f(x1, . . . , xj) at step z� (with a variable
z for the number of steps, numbers being viewed as von Neumann ordinals) in
first-order logic with the least-fixed-point operator, and then to use the known
translation from this logic into the infinitary, finite-variable logic Lω∞,ω (see [5]).
This is the approach used in [2]. Then, to get the corresponding formulas for
specific m in place of z, one only has to check that each natural number m can
be defined with a fixed number of variables, independent of m. In fact, each
natural number can be defined with just three variables.

We shall need a slight generalization of the notions, defined in [2], of “critical”
and “active” elements of a state of a BGS computation. Instead of considering
only states, we consider pebbled states consisting of a state together with an
assignment of values to finitely many variables. (Pebbled states are the contexts
in which it makes sense to evaluate a term or rule.) When the relevant variables
and their ordering are understood, we think of a pebbled state as a state plus
a tuple of elements, (H, a1, . . . , aj), where ai is the value assigned to the ith

variable. For brevity, we sometimes use vector notation a for (a1, . . . , aj).

26 A. Blass and Y. Gurevich

Definition 13 The critical elements of a pebbled state (H,a) are

– all the atoms and the set I of atoms,
– the Boolean values true and false,
– all values of dynamic functions,
– all components of locations where dynamic functions have values other than
∅, and

– all components of a.

An element is active if it is in the transitive closure of some critical element.

For ordinary (unpebbled) states, this definition differs from that in [2] only
in that the set I of atoms is critical and therefore also active.

We are now in a position to give the example, promised in Section 2, of a
BGS program Π together with polynomial bounds on the number of steps and
the number of active elements, such that not all of the following three classes
of graphs have asymptotic probability 0 or 1: the graphs on which Π halts with
output true (within the prescribed bounds on steps and active elements), the
analogous class for false, and the class of graphs on which Π fails to halt within
the prescribed bounds. The required Π can be taken to be

do forall x ∈ Atoms
do forall y ∈ Atoms

do in parallel
if A(x, y) then f(Pair(x, y)) := true,
Output := true,
Halt := true

enddo
enddo enddo

This programΠ only executes once before halting, so we can take the polyno-
mial bound on the number of steps to be 2 and ignore this bound. The number of
active elements is n+3+ e where n and e are the numbers of vertices and edges
in the input graph. (The active elements are the n atoms, the e two-element
sets corresponding to edges, the two boolean values, and the set I of atoms.)
In a large random graph, the expected value of e is n(n − 1)/4, i.e., half the
number of possible edges, but small fluctuations about this value are probable.
Indeed, the asymptotic probability that e ≤ n(n− 1)/4 is 1/2. So, if we impose
a bound of n + 3 + n(n − 1)/4 on the number of active elements, then with
asymptotic probability 1/2 our program will halt with output true, and with
asymptotic probability 1/2 it will fail to halt because it cannot execute its single
computation step without activating too many elements.

4 Outline of Proof of Zero-One Law

We already know, from Proposition 11, that whether a BGS program halts at a
particular step with a particular output can be defined by a first-order sentence

Choiceless Polynomial Time Computation and the Zero-One Law 27

over the structure H = 〈HF (I),∈, I, A〉, with a number of variables that does
not depend on the number of steps. A natural approach to proving Theorem 2
would therefore be to use Ehrenfeucht-Fräıssé games and produce winning strate-
gies for the duplicator, to show that such sentences have the same truth value
for almost all input graphs (I, A). Unfortunately, that isn’t true; for example,
the parity of |I| can be defined by a first-order statement over H.

As in [2], this approach can be modified by defining a subclass S of HF (I)
for which the duplicator has the necessary winning strategies, and then showing
that the definitions given in Proposition 11 remain correct when interpreted in
S instead of HF (I). S consists of those elements of HF (I) that have suitable
symmetry properties. In [2], symmetry meant invariance under enough auto-
morphisms of the input structure. But almost all graphs have no non-trivial
automorphisms, so a subtler approach to symmetry is needed. Shelah introduces
a suitable class of partial automorphisms (for any given program Π and any
given polynomial bound on the number of active elements) and shows that it
leads to an appropriate notion of symmetry. Here “appropriate” means that the
symmetry requirements are restrictive enough to provide winning strategies for
the duplicator yet are lenient enough to include all the sets actually involved in
a computation of Π, limited by the given bound on active elements.

The hardest part of the proof is the leniency just mentioned: The computation
involves only symmetric sets. This will be proved by a double induction, first on
the stages of the computation and second, within each stage, on the subterms
and subrules ofΠ. That inner induction proceeds along a rather unusual ordering
of the subterms and subrules, which we call the computational ordering.

In this double induction, it is necessary to strengthen the induction hypothe-
sis, to say not only that every set x involved in the computation is symmetric but
also that all sets x′ obtained from x by applying suitable partial automorphisms
are also involved in the computation. The assumed bound on the number of ac-
tive elements will imply a polynomial bound on the number of involved elements.
(Not all involved elements are active, but there is a close conection between the
two.) That means that the number of x′’s is limited, which in turn implies, via
a highly non-trivial combinatorial lemma, that x is symmetric.

The traditional extension axioms, as in [5], are satisfied by almost all graphs
and are adequate to produce the duplicator’s strategies that we need, but they
are not adequate to imply the combinatorial lemma needed in the symmetry
proof. For this purpose, we need what we call strong extension axioms, saying
that every possible type over a finite set is not only realized but realized by a
large number of points.

In the next few sections, we shall assemble the tools for the proof that have
been mentioned here. After thus describing the proof in somewhat more detail,
we shall add some sections about related issues.

28 A. Blass and Y. Gurevich

5 Tasks and Their Computational Order

To compute the value of a term or the update set of a rule, one needs a structure
(the state of the computation) and values for the variables free in the term or
rule. In most of our discussion, there will be a fixed structure under consider-
ation but many choices of values for variables. It will therefore be convenient
to push the structures into the background, often neglecting even to mention
them, and to work with pairs whose first component is a term or rule and whose
second component is an assignment of values to some variables (including all the
variables free in the first component). We shall call such pairs “tasks” because
we regard them as things to be evaluated in the course of a computation.

The official definition of tasks will differ in two respects from this informal
description. First, we shall always have a particular program Π under consid-
eration, and we deal only with terms and rules occurring in Π. Recall in this
connection our Convention 9, by which we are really dealing with occurrences
of terms and rules. Second, it will be convenient to include in our tasks not
only the obviously necessary values for free variables but also values for certain
additional variables, defined as follows.

Definition 14 A variable v is pseudo-free in a term t or rule R if t or R lies in
the scope of v.

Because Π, being a program, has no free variables, all the free variables in a
term or rule must also be pseudo-free in it. But there may be additional pseudo-
free variables. From a syntactic point of view, v is pseudo-free in t or R if one
could introduce v as a free variable in t or R without violating the requirement
that Π have no free variables. From a computational point of view, the pseudo-
free variables of t or R are those variables to which specific values have been
assigned whenever one is about to evaluate t or R in the natural algorithm for
executing Π.

Definition 15 A term-task (relative to a program Π and a state H) is a pair
(t,a) where t is a term in Π and a is an assignment of values in H to all the
pseudo-free variables of t. Rule-tasks are defined similarly except that the first
component is a rule in Π. Term-tasks and rule-tasks are collectively called tasks.

Although the second component a of a task is officially a function assigning
values to the pseudo-free variables of the first component, we sometimes view it
as simply a tuple of values. This makes good sense provided we imagine a fixed
order for the pseudo-free variables. We also sometimes write a� for the restriction
of the function a to an appropriate subset of its domain; it will always be clear
from the context what the appropriate subset is.

We write Val(t,a) for the value of the term t in a structure (assumed fixed
throughout the discussion) when the free variables are assigned values according
to a.

Definition 16 The computational order ≺ is the smallest transitive relation on
tasks satisfying the following conditions.

Choiceless Polynomial Time Computation and the Zero-One Law 29

– (ti,a) ≺ (f(t1, . . . , tj),a) for 1 ≤ i ≤ j.
– (r,a) ≺ ({s : v ∈ r : ϕ},a) and, for each b ∈ Val(r,a), all three of (v,a, b),
(s,a, b) and (ϕ,a, b) are ≺ ({s : v ∈ r : ϕ},a).

– (ti,a) ≺ (f(t1, . . . , tj) := t0) for 0 ≤ i ≤ j.
– All of (ϕ,a), (R0,a), and (R1,a) are ≺ (if ϕ then R0 else R1 endif,a).
– (r,a) ≺ (do forall v ∈ r, R enddo,a) and, for each b ∈ Val(r,a), both
(v,a, b) and (R,a, b) are ≺ (do forall v ∈ r, R enddo,a).

– If r is the range of a variable v pseudo-free in t or R, then (r,a�) ≺ (t,a) or
(r,a�) ≺ (R,a), respectively.
Except for the last clause, the definition assigns as the predecessors of a task

simply the subterms or subrules of its first component, equipped with suitable
values for the variables. The last clause, however, is quite different. Here the
first component r of the lower clause may well be much larger than the first
component t or R of the upper clause.

Intuitively, if one task precedes another in this computational ordering, then
in the natural calculation involved in the execution of Π the former task would
be carried out before the latter. In the range clause, the idea is that, before
attempting to evaluate t or R, we would have assigned a value to v, and before
that we would have evaluated the range in order to know what the possible
values for v are.

This intuition strongly suggests that the computational order should be well-
founded. In fact it is, but the proof is not trivial and will only be sketched here.
To treat term-tasks and rule-tasks simultaneously, we use X,Y, . . . to stand for
either terms t or rules R.

Proposition 17 There is a rank function ρ, mapping terms and rules to natural
numbers, such that if (X,a) ≺ (Y, b) then ρ(X) < ρ(Y).

Proof. Let V be the number of variables occurring in Π, and let D be the
maximum depth of nesting of terms and rules occurring in Π.

For each variable v in Π, let τ(v) be the number of symbols in the term or
rule that binds v. Notice that, if x is bound in the range of y then τ(x) < τ(y).

Call a variable relevant to a term or rule X if it is either pseudo-free in X
or bound in X. In other words, the scope of v either includes or is included in
X. Define σ(X) to be the sum of V τ(v) over all variables relevant to X. As one
goes downward in the computational order, using any clause in its definition
except the range clause, the set of relevant variables either remains the same or
shrinks, so the value of σ remains the same or decreases. Furthermore, when σ
stays the same, the depth of nesting inside the term or rule decreases. As one
goes downward using the range clause, the variable v explicitly mentioned in the
clause loses its relevance, but other variables, bound in r, may become relevant.
All of the latter have τ values strictly smaller than that of v, and there are fewer
than V of them, so σ still decreases.

Therefore, if we define

ρ(X) = (D + 1)σ(X) + depth(X)

30 A. Blass and Y. Gurevich

where depth(X) means the depth of nesting of terms and rules in X, then ρ(X)
decreases at every downward step in the computational ordering. �

This proposition immediately implies that the computational order is a strict
partial order; it has no cycles. Since finite partial orders are well-founded, it is
legitimate to do proofs by induction with respect to ≺. Such proofs can also
be regarded as ordinary mathematical induction on the rank ρ. Furthermore,
induction on ρ is somewhat more powerful than induction with respect to ≺
because ρ-induction allows us, when proving a statement for some task, to assume
the same statement not only for all computationally earlier tasks (X,a) but also
for all tasks (X, b) having the same first components as these. This is because ρ
depends only on the first component.

The following lemma is useful technically, and it also serves to clarify the
role of the range clause in the definition of the computational ordering. The
definition of this ordering ≺ ensures that, if one task T precedes another T ′ then
there is a chain

T ′ = T0 � T1 � · · · � Tn = T
joining them, in which each two consecutive terms are related as in one of the
clauses in Definition 16.

Lemma 18 If T ′ � T then there is a chain as above, in which the range clause
is used, if at all, only at the first step, from T0 to T1.

We omit the proof, which is an induction on the length n of the chain.

Corollary 19 If a task T precedes a task T ′ with no pseudo-free variables in
its first component (and thus with empty second component), then this can be
established without the range clause.

Proof. The chain from T ′ down to T obtained in the lemma must not use the
range clause at all, for the range clause is not applicable at the first step in the
absence of pseudo-free variables in T ′. �

The important case of the corollary is when (the first component of) T ′ is
the whole program Π.

6 Involved and Active Elements

Throughout this section, we assume that we are dealing with a fixed program
Π and a fixed state arising during its execution on some input (I, A). As before,
we write H for the structure 〈HF (I),∈, I, A〉. The state under consideration
is an expansion of H, interpreting the dynamic function symbols as well as
the other static function symbols. We write H+ for this state. Notice that, by
Proposition 11, the interpretations of the additional function symbols of H+ are
all definable in H. The definitions of the dynamic function symbols depend on
the stage of the computation; the others do not.

Choiceless Polynomial Time Computation and the Zero-One Law 31

The following definition is intended to capture the intuitive notion of an el-
ement of HF (I) being “looked at” during the execution of a task T . It doesn’t
quite fulfill this intention, for it includes too many elements, pretending for ex-
ample that execution of an if . . . then . . . else . . . includes execution of both
the consitituent rules regardless of the truth value of the guard. Nevertheless,
it serves our purposes because (1) it includes all the elements that are really
needed (see Lemma 22 below) and (2) it doesn’t include too many additional
elements (see Lemma 23 below).

Definition 20 An element c ∈ HF (I) is involved in a task (X,a) (with respect
to a program Π and a state H+) if either it is active in (H+,a) or it is the value
in H+ of some term-task ≺ (X,a).

The next three lemmas give the key properties of this notion of “involved.”

Lemma 21 Any object that is not active in a state H+ but is active in its sequel
with respect to Π must be involved in the task Π with respect to state H+.

Lemma 22 The set-theoretic definitions at the end of Section 3, in particular
Proposition 11, remain correct if the quantifiers are interpreted to range only
over elements involved in Π rather than over all of HF (I).

This is proved by inspecting all those definitions, including the ones that
we did not explicitly exhibit, seeing which values of the quantified variables are
essential, and checking that these values are all involved in Π.

Lemma 23 For any state H+ and any task (X,a), the number of elements
involved in (X,a) is bounded by a polynomial function of the number of active
elements in (H+,a). The polynomial depends only on the term or rule X.

This is proved by induction onX. We are interested in the lemma primarily in
the case that the task (X,a) is the entire programΠ (with the empty assignment,
as Π has no pseudo-free variables). A C̃PTime program comes with a polynomial
bound on the number of active elements during its run; the lemma allows us to
deduce a (possibly larger) polynomial bound on the number of involved elements.
This will be crucial in showing that the computation takes place entirely in the
world of symmetric sets.

7 Strong Extension Axioms

Let τ(x0, x1, . . . , xk) be a quantifier-free formula of the form
(∧
1≤i<j≤k

xi �= xj
)→ (∧

1≤i≤k
(x0 �= xi) ∧ ±(x0Axi)

)
,

so that, for a given k, there are exactly 2k different formulas of that form. The
extension axiom EA(τ) is the axiom ∀x1 . . . xk∃x0τ(x0, . . . , xk). A graph G sat-
isfies the strong extension axiom SEA(τ), if for all distinct vertices x1, . . . , xk,

32 A. Blass and Y. Gurevich

there are at least 1
2n/2

k vertices x0 in G satisfying τ(x0, x1, . . . , xk). The exten-
sion axiom EAk is the conjunction of all 2k extension axioms EA(τ) with k + 1
variables; the strong extension axiom SEAk is the conjunction of all 2k strong
extension axioms SEA(τ) for all τ with k + 1 variables.

Thus, EAk says that every possible configuration for a vertex x0, relative to
k given vertices x1, . . . , xk, actually occurs. SEAk says that every such configu-
ration occurs fairly often.

Why 1
2n/2

k? In a random graph with n vertices, the probability that an
arbitrary vertex a0, different from a1, . . . , ak, satisfies τ(a0, a1, . . . , ak) is 1/2k,
so the expected number of vertices a0 satisfying τ(a0, a1, . . . , ak) is (n− k)/2k.
So with high probability, there are at least 1

2n/2
k vertices a0 in G satisfying

τ(a0, a1, . . . , ak). The factor 1
2 could be replaced with any positive constant

c < 1; that gives a strong extension axiom SEAck.

Lemma 24 For each k, the asymptotic probability of SEAk is 1.

The proof uses Chernoff’s inequality from probability theory.

8 Supports

In this section, we describe the notion of symmetry with respect to partial au-
tomorphisms that will, as explained in Section 4, apply to all objects involved
in a computation and lead to winning strategies for the duplicator in certain
Ehrenfeucht-Fräıssé games. Two numerical parameters will be involved in this
notion of symmetry, namely the size of the partial automorphisms and the num-
ber of atoms a symmetric object can depend on. The appropriate values for these
parameters will depend on the BGS program and the polynomial bound on the
number of active elements.

For the purposes of this section, let q ≥ 1 and k ≥ 4 be fixed integers. When
this material is applied in the proof of Theorem 2, q will be the degree of a
polynomial bounding the number of involved elements (obtainable from Π and
the bound on active elements, via Lemma 23) and k will be 2B + 4, where B is
as in Proposition 11.

We assume that the input graph (I, A) satisfies the extension axioms for up
to 3kq variables. (We don’t need the strong extension axioms yet.)

For brevity we adopt the conventions that

– w, x, y, z (possibly with subscripts, superscripts, or accents) stand for mem-
bers of HF (I),

– a, b, c (possibly with subscripts, superscripts, or accents) stand for sets of
≤ q atoms, and we call such sets possible supports, and

– α, β, γ, δ, ζ (possibly with subscripts or superscripts) stand for partial auto-
morphisms of the graph (I, A) whose domains have

The inverse α−1 of a motion and the composite α ◦β of two motions are defined
in the obvious way. In particular, the domain of α ◦ β is β−1(Dom(α)).

Choiceless Polynomial Time Computation and the Zero-One Law 33

The extension axioms imply that, if α is a motion and s is a set of atoms
with |Dom(α)| + |s| ≤ kq, then α can be extended to a motion whose domain
includes s. (In fact, the extension axioms imply considerably more, as they go
up to 3kq variables, not just the kq needed for the preceding statement.)

We next define, by simultaneous recursion on the rank of x, the three concepts
“a supports x,” “x is supported,” and “α̂(x),” where the last of these is defined
if and only if Dom(α) includes some a that supports x.

Definition 25 If x is an atom, then

– a supports x if and only if x ∈ a,
– x is supported (always), and
– α̂(x) = α(x).

If, on the other hand, x is a set, then

– a supports x if and only if every y ∈ x is supported and, for every y of
lower rank than x and every motion α, if α pointwise fixes a and if Dom(α)
includes some set supporting y, then

y ∈ x ⇐⇒ α̂(y) ∈ x,
– x is supported if and only if some a supports x, and
– if a supports x and a ⊆ Dom(α), then α̂(x) is the set of all β̂(y) where y ∈ x,
β � a = α � a, and Dom(β) includes some support of y.

The definition of α̂(x) when x is a set seems to depend on the choice of a
particular support a of x. The first part of the following lemma gets rid of that
apparent dependence; the rest of the lemma gives useful technical information
about supports and about the application of motions to supported sets.

Lemma 26 1. α̂ is well-defined. Specifically, if a1 and a2 both support x and
are both included in Dom(α), then α̂1(x) and α̂2(x), defined as above using
a1 and a2 respectively, are equal.

2. If a supports x and a ⊆ Dom(α) ∩ Dom(β) and α � a = β � a, then α̂(x) =
β̂(x).

3. If α̂(x) is defined then it has the same rank as x.
4. If α is an identity map, then so is α̂, i.e., α̂(x) = x whenever α̂(x) is defined.
5. α̂ is a partial automorphism of the structure (HF (I),∈, I, A). In other words,
α̂(I) = I and, whenever x and x′ have supports included in Dom(α),

x′ = x ⇐⇒ α̂(x′) = α̂(x)
x′ ∈ x ⇐⇒ α̂(x′) ∈ α̂(x)
x′Ax ⇐⇒ α̂(x′)Aα̂(x).

6. If a supports x and a ⊆ Dom(α) then α[a] supports α̂(x).
7. If α̂(x) is defined and a ⊆ Dom(α) and α[a] supports α̂(x), then a supports
x.

34 A. Blass and Y. Gurevich

8. β̂ ◦ α = β̂ ◦ α̂ in the following sense: If β̂ ◦ α(x) is defined then so is β̂(α̂(x))
and they are equal.

All eight parts of the lemma are proved together, by induction on the maxi-
mum of the ranks of x and x′. We omit the tedious proof.

Definition 27 S is the collection of supported objects in HF (I). We also write
S for the structure (S, I,∈, A).

By the definition of supports, S is a transitive set containing all the atoms; by
(5) of Lemma 26, it also contains I. Furthermore, by (5) and (6) of that lemma,
each α̂ is a partial automorphism of S. In fact, as the following lemma shows, the
α̂’s are much better than just partial automorphisms, because they fit together
well. Recall that Lk∞,ω is the part of the infinitary first-order language L∞,ω
(allowing infinite conjunctions and disjunctions) consisting of formulas with at
most k variables (free or bound, but the same variable can be re-used). Recall
also that k ≥ 4 is fixed throughout this section.

Lemma 28 Let ϕ be a formula of Lk∞,ω with j ≤ k free variables. Let α be a
motion, and let x1, . . . , xj be elements of S with supports included in Dom(α).
Then

S |= ϕ(x1, . . . , xj) ⇐⇒ S |= ϕ(α̂(x1), . . . , α̂(xj)).

Proof. We give a strategy for the duplicator in the Ehrenfeucht-Fräıssé game
for Lk∞,ω. At any stage of the game, let y and z be the positions of the pebbles
on the two boards; so initially, yi = xi and zi = α̂(xi). The duplicator’s strategy
is to arrange that there is always a motion β whose β̂ sends each yi to the cor-
responding zi. There is such a β initially, namely α, and as long as he maintains
such a β the duplicator cannot lose, by (5) of Lemma 26. So we need only check
that, if such a β exists and then the spoiler moves, the duplicator can move so
that again a (possibly new) β does the job. Without loss of generality, suppose
the spoiler moves the first pebble on the left board from its position y1 to a new
y′1 ∈ S. Restrict the old β to the union of supports of the yi for i �= 1. There
are strictly fewer than k of these supports, hence at most (k − 1)q points in the
domain of the restricted β. So we can extend this motion to a new β having in its
domain some support of the new y′1. The resulting β̂(y

′
1) is where the duplicator

should move the pebble from z1. The resulting board position and the new β
satisfy the specification of the duplicator’s strategy (thanks to (2) of Lemma 26).
So we have shown that the duplicator can carry out the indicated strategy. �

We shall need variants of these results, dealing with two graphs and the
universes of hereditarily finite sets built over them. Specifically, suppose (I1, A)
and (I2, A) are graphs satisfying the extension axioms for up to 3kq variables.
(We’ve simplified notation slightly by using the same name A for the adjacency
relations in both graphs Ii.) For i, j ∈ {1, 2}, we define an i, j-motion to be
a partial isomorphism of size at most kq from Ii to Ij . Thus 1,1-motions and
2,2-motions are motions in the earlier sense for I1 and I2, respectively.

Choiceless Polynomial Time Computation and the Zero-One Law 35

If α is a 1,2-motion, then we define α̂(x) for all x ∈ HF (I1) having supports
included in Dom(α). We do this in exact analogy with the earlier definition: If
x is an atom then α̂(x) = α(x). If x is a set with a support a ⊆ Dom(α), then
α̂(x) is the set of all β̂(y) where y ∈ x, β is a 1,2-motion extending α � a, and
Dom(β) includes some support of y.

Similarly, we define α̂(x) when α is a 2,1-motion and x ∈ HF (I2) has a sup-
port ⊆ Dom(α). These definitions together with the definitions already available
from Section 8 for 1,1- and 2,2-motions allow us to refer to α̂(x) ∈ HF (Ij)
whenever α is an i, j-motion and x ∈ HF (Ii) has a support included in Dom(α).

We can now repeat the earlier arguments in this slightly more general context.
No conceptual changes or additions are needed, only a little bookkeeping to keep
track of the four different sorts of motions. We exhibit for future reference the
1,2-analog of Lemma 28. Let Si be the collection of supported objects in HF (Ii);
as before, we also write Si for the structure (Si,∈, Ii, A).
Lemma 29 Let ϕ be a formula of Lk∞,ω with j ≤ k free variables. Let α be a 1,2-
motion, and let x1, . . . , xj be elements of S1 with supports included in Dom(α).
Then

S1 |= ϕ(x1, . . . , xj) ⇐⇒ S2 |= ϕ(α̂(x1), . . . , α̂(xj)).

9 Combinatorics

In this section, we describe (without proof) the main combinatorial lemma
needed in the proof of the zero-one law. The parameters q and k are fixed as be-
fore, and the graph (I, A) of atoms is now assumed to satisfy the strong extension
axioms for up to 3kq variables.

By a polymer we mean a sequence of at most kq atoms. (The reason for
the terminology is that, in [2], we used “molecule” for a one-to-one listing of a
support; here that would be a sequence of length q. A polymer is essentially the
concatenation of up to k molecules. It gives the supports for up to k objects.)
The configuration of a polymer consists of the following information: which com-
ponents are equal and which are adjacent in the graph of atoms. If the polymer
has length l, then its configuration could be viewed as the combination of an
equivalence relation on {1, 2, . . . , l} (telling which components are equal) and an
irreflexive symmetric relation on the quotient set (telling which components are
adjacent). By the joint configuration of two (or more) polymers, we mean the
equality and adjacency information about all components of both (or all) of the
polymers. It could be viewed as the configuration of the concatenation of the
polymers, except for the technicality that the concatenation may be too long to
count as a polymer.

We shall be concerned with equivalence relations of the following sort.

Definition 30 A configuration-determined equivalence (cde for short) is an
equivalence relation E with the following two properties.

– Its domain consists of all polymers of one specified configuration.

36 A. Blass and Y. Gurevich

– Whether two polymers ξ and η of this configuration are related by E depends
only on their joint configuration.

When dealing with polymers ξ of a specified configuration (e.g., those in the
domain of a cde), we can simplify their presentation by omitting any repetitions
of components in ξ. Because of the tight correspondence between the polymers
ξ of a known configuration and these compressed versions, we can confine our
attention to the compressed versions; that is, we can assume that we deal only
with polymers that are one-to-one sequences.

Theorem 31 Assume that |Atoms| ≥ kq23kq+1. Let E be a configuration-de-
termined equivalence with fewer than

1
(q + 1)!

(|Atoms|
23kq+1

)q+1

equivalence classes. Let l be the common length of the polymers in the domain of
E. There exists a set u ⊆ {1, 2, . . . , l} of size at most q, and there exists a group
G of permutations of u such that, for any ξ and η in the domain of E,

ξEη ⇐⇒ (∃σ ∈ G) (∀i ∈ u) ξi = ησ(i).

Notice that, although l can be as large as kq, the theorem requires u to be
relatively small, of size at most q.

The conclusion of the theorem completely describes E in terms of u and G.
It says that the E-equivalence class of ξ consists of those polymers (of the right
configuration) obtainable from ξ by

– permuting the components indexed by u, using a permutation from G, and
– changing the other components completely arbitrarily.

In particular, the equivalence class of ξ depends only on the ξi for i ∈ u.
The hypothesis of the theorem involves a complicated bound on the number of

equivalence classes. Most of the complication disappears if one remembers that q
and k are fixed, so the bound is, up to a constant factor, just |Atoms|q+1. When
we apply the theorem, the cde’s of interest will be such that the equivalence
classes correspond to elements involved in the computation, so their number is
bounded by a polynomial in |Atoms| of degree at most q. So the bound will
automatically be satisfied once the number of atoms is large enough.

Because of space and time limitations, we omit Shelah’s proof of this combi-
natorial theorem.

10 Putting the Proof Together

Consider a BGS program Π and a polynomial bound on the number of active
elements. According to Lemma 23, we obtain a polynomial bound on the number
of elements involved in Π at any stage of the computation. Let q be the degree

Choiceless Polynomial Time Computation and the Zero-One Law 37

of this polynomial. Also, let k = 2B + 4 where B is the bound from Proposi-
tion 11 on the number of variables in the set-theoretic formulas describing the
computation of Π. Whenever we refer to supports, motions, etc., we take these
concepts to refer to the particular q and k just introduced.

In the following theorem, to say that a formula is absolute for S means
that the formula’s meaning does not change if the quantifiers are interpreted as
ranging over the class S of supported objects rather than over all of HF (I).

Theorem 32 Assume that all active elements in state H+ are supported. Then
the following are true for every term-task (t,a) ≺ Π, provided the input graph
(I, A) satisfies the strong extension axioms up to 3kq variables and is large
enough.

1. If (t,a) ≺ (X,a′) and if α is a motion whose domain includes supports of
all the elements of a, then (t, α̂(a)) ≺ (X, α̂(a′)).

2. All elements of a and of Val(t,a) are supported.
3. The formula defining x ∈ Val(t,y) is absolute for S when y is instantiated

to a.
4. Val(t,a) is supported. Furthermore, given supports for all components of a,

their union includes a support for Val(t,a).
5. The formula defining x = Val(t,y) is absolute for S when y is instantiated

to a.

All five parts of the theorem are proved in a simultaneous induction on (t,a)
with respect to the rank function ρ from Proposition 17 the computational order.
The proof is too long to give here, but we describe a few points in it that explain
why much of the work in previous sections is needed.

The computational order, and specifically the range clause in its definition,
are crucial in the proof of (1). Consider, for example, a situation where a = (c, b)
and (t, c, b) ≺ (Y, c) where b is the value assigned to a variable v bound by Y and
thus pseudo-free in the subterm t. So b ∈ Val(r, c), where r is the range of v. To
show that (t, α̂(c), α̂(b)) ≺ (Y, α̂(c)), we want to know that α̂(b) ∈ Val(r, α̂(c)).
Fortunately, the range clause makes (r, c) a computational predecessor of (t, c, b),
so we can apply induction hypotheses (2) and (3) to it. Thus, the fact that
b ∈ Val(r, c) can be expressed as a set-theoretic statement true in S. And this
statement will retain its truth value when we apply α̂, by Lemma 28.

The combinatorial Theorem 31 is used in the hardest case in the proof of
(4), namely where t is {s : w ∈ r : ϕ}. Choose supports for all the ai and let ξ0
be a polymer in which all those supports are listed. For any other polymer ξ of
the same configuration as ξ0, let α be the motion sending ξ0 to ξ. Write t(ξ) for
Val(t, α̂(a)). In particular, t(ξ0) is the object Val(t,a) that we hope to prove to
be supported.

Define an equivalence relation E on the set of polymers of the same config-
uration as ξ0 by

ξEξ′ ⇐⇒ t(ξ) = t(ξ′).

One can verify, using the induction hypotheses and Lemma 28, that this E is
configuration-determined. The number of equivalence classes of E is the number

38 A. Blass and Y. Gurevich

of different elements of the form t(ξ) = Val(t, α̂(a). It follows from part (1) that
the number of such elements is bounded by a constant times |I|q. That’s smaller
than the bound required in the Dichotomy Theorem, a polynomial of degree
q + 1, provided |I| is large enough. So applying the combinatorial Theorem 31,
we find that t(ξ) depends only on the restriction of ξ to a certain set u of size
at most q. Then one can show that the range of ξ0 � u supports Val(t,a).

Corollary 33 Assume that all active elements in state H+ are supported. Then
so are all objects involved in Π with respect to H+.

This is immediate from part (4) of the theorem and the definition of “in-
volved.” By Lemma 21, it implies that every active element of the sequel is
supported, and so the theorem and its corollary are applicable to the sequel. Pro-
ceeding inductively and then invoking Lemma 22, we find that the set-theoretic
formulas describing the computation are all absolute for S as long as the poly-
nomial bound on the number of active elements is obeyed. But then, thanks to
Lemma 29, the truth values of these formulas and therefore the behavior of the
computation are the same for all input graphs that satisfy the necessary strong
extension axioms and are sufficiently large. By virtue of Lemma 24, the class of
such graphs has asymptotic probability 1, so Theorem 2 is proved.

11 Extension and Strong Extension

The zero-one law for first-order logic is based on the extension axioms: for every
first-order sentence ϕ (of relational vocabulary), there exists k such that EAk
implies ϕ or EAk implies ¬ϕ. The same holds for fixed-point logic FO+LFP
and for the infinitary logic Lω∞,ω [5]. However, extension axioms are too weak
to support the zero-one law for C̃PTime. We give an example of a single poly-
nomial time BGS program that separates structures satisfying arbitrarily many
extension axioms. So strong extension axioms are really needed for the C̃PTime
zero-one law.

Example 34 For simplicity, we consider graphs equipped with a unary relation,
(I, A,R). We informally describe a BGS program computing the maximal size
of a clique included in R.

– In mode Initial, initialize i, p to 0, initialize C to {∅}, and go to mode Com-
pute. Intuitively, i is a counter, p is the parity of i and C is the collection of
all subsets of R of size i.

– In mode Compute, increase i by one, flip p, update C as follows

C := {x ∪ {y} : x ∈ C ∧ y ∈ R}

and go to mode Decide.
– In mode Decide, check if C contains a clique. If yes then go to mode Compute;
otherwise output 1− p and halt.

Choiceless Polynomial Time Computation and the Zero-One Law 39

Consider running this program on the input having vertex set {1, 2, . . . , n}, a
random adjacency relation A, and R interpreted as {1, 2, . . . , r} for some r < n.
It follows from results in [4, Section XI.1] that there are values of r of magnitude
roughly logn·log log n for which the clique number of (R,A � R) is very probably
even and there are other nearby values of r for which this clique number is very
probably odd. Also, because r is so much smaller than n (and the cliques smaller
yet) the computation of Π will very probably activate fewer than n sets. So
we can impose a polynomial bound slightly larger than 2n and be reasonably
certain that the computation will halt. Finally, by choosing r and therefore n
large enough, one can ensure (again with very high probability) that the graphs
under consideration satisfy any specified extension axiom EAk.

Since the strong extension axioms go beyond the ordinary extension axioms,
one might hope that they imply some of the classical properties of almost all
graphs, like rigidity and hamiltonicity, that are known [3] not to follow from
extension axioms.

This is not the case for rigidity. The non-rigid graphs constructed in [3] —
random modulo an imposed symmetry — can be shown to also satisfy strong
extension axioms.

For Hamiltonicity, the situation is less clear. We can show, again using the
construction from [3], that the axioms SEAck for c <

1
2 do not imply Hamiltonic-

ity. For c ≥ 1
2 , these examples no longer work, but we do not know whether

others are available.

12 The Almost Sure Theory Is Undecidable

In the case of first-order logic, the almost sure theory (that is the set of almost
surely true sentences) is decidable. The same holds if we add the least fixed point
operator to first-order logic [1]. But it fails for C̃PTime.

Proposition 35 The class of almost surely accepting polynomially bounded pro-
grams and the class of almost surely rejecting polynomially bounded programs are
recursively inseparable.

Proof. Consider Turing machines with two halting states h1 and h2. For i =
1, 2, let Hi be the collection of Turing machines that halt in state hi on the
empty input tape. It is well-known that H1 and H2 are recursively inseparable.
Associate to each Turing machine T a polynomial time BGS program as follows.
The program Π ignores its input graph and simulates T on empty input tape
(working exclusively with pure sets). Π outputs true (resp. false) if T halts in
state h1 (resp. h2). The polynomial bounds on steps and activated elements are
both the identity function, i.e., the number of atoms. Then if T ∈ H1 (resp. T ∈
H2) our polynomial time BGS program will accept (resp. reject) all sufficiently
large inputs. �

40 A. Blass and Y. Gurevich

References

1. Andreas Blass, Yuri Gurevich, and Dexter Kozen, A zero-one law for logic with a
fixed-point operator, Information and Control 67 (1985) 70–90.

2. Andreas Blass, Yuri Gurevich, and Saharon Shelah, Choiceless polynomial time,
Ann. Pure Applied Logic 100 (1999) 141–187.

3. Andreas Blass and Frank Harary, Properties of almost all graphs and complexes,
J. Graph Theory 3 (1979) 225–240.

4. Béla Bollobás, Random graphs, Academic Press, 1985.
5. Heinz-Dieter Ebbinghaus and Jörg Flum, Finite Model Theory, Springer-Verlag
(1995).

6. Yuri Gurevich, Evolving algebras 1993: Lipari guide, in Specification and Validation
Methods, ed. E. Börger, Oxford University Press (1995) pp. 9–36. See also the May
1997 draft of the ASM guide, Tech Report CSE-TR-336-97, EECS Dept., Univ. of
Michigan, 1997. Found at http : //www.eecs.umich.edu/gasm/.

7. Saharon Shelah, Choiceless polynomial time logic: inability to express [paper num-
ber 634], these proceedings.

Composition and Submachine Concepts
for Sequential ASMs

Egon Börger1 and Joachim Schmid2

1 Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it (Visiting Microsoft Research, Redmond)

2 Siemens AG, Corporate Technology, D-81730 Munich, Germany
joachim.schmid@mchp.siemens.de

Abstract. We define three composition and structuring concepts which
reflect frequently used refinements of ASMs and integrate standard struc-
turing constructs into the global state based parallel ASM view of compu-
tations. First we provide an operator which combines the atomic update
view of ASMs with sequential machine execution and naturally incor-
porates classical iteration constructs into ASMs. For structuring large
machines we define their parameterization, leading to a notion of possi-
bly recursive submachine calls which sticks to the bare logical minimum
needed for sequential ASMs, namely consistency of simultaneous ma-
chine operations. For encapsulation and state hiding we provide ASMs
with local state, return values and error handling.
Some of these structuring constructs have been implemented in ASM-
Gofer. We provide also a proof-theoretic definition which supports the
use of common structured proof principles for proving properties for
complex machines in terms of properties of their components.

1 Introduction

It has often been observed that Gurevich’s definition of Abstract State Machines
(ASMs) [13] uses only conditional assignments and supports none of the classical
control or data structures. On the one side this leaves the freedom – necessary
for high-level system design and analysis – to introduce during the modeling
process any control or data structure whatsoever which may turn out to be
suitable for the application under study. On the other hand it forces the designer
to specify standard structures over and over again when they are needed, at the
latest when it comes to implement the specification. In this respect ASMs are
similar to Abrial’s Abstract Machines [1] which are expressed by non-executable
pseudo-code without sequencing or loop (Abstract Machine Notation, AMN). In
particular there is no notion of submachine and no calling mechanism. For both
Gurevich’s ASMs and Abrial’s Abstract Machines, various notions of refinement
have been used to introduce the classical control and data structures. See for
example the definition in [15] of recursion as a distributed ASM computation
(where calling a recursive procedure is modeled by creating a new instance of
multiple agents executing the program for the procedure body) and the definition

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 41–60, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

42 E. Börger and J. Schmid

in [1, 12.5] of recursive AMN calls of an operation as calls to the operation of
importing the implementing machine.

Operations of B-Machines [1] and of ASMs come in the form of atomic ac-
tions. The semantics of ASMs provided in [13] is defined in terms of a function
next from states (structures) to states which reflects one step of machine execu-
tion. We extend this definition to a function describing, as one step, the result
of executing an a priori unlimited number n of basic machine steps. Since n
could go to ∞, this naturally leads to consider also non halting computations.
We adapt this definition to the view of simultaneous atomic updates in a global
state, which is characteristic for the semantics of ASMs, and avoid prescribing
any specific syntactic form of encapsulation or state hiding. This allows us to
integrate the classical control constructs for sequentialization and iteration into
the global state based ASM view of computations. Moreover this can be done in
a compositional way, supporting the corresponding well known structured proof
principles for proving properties for complex machines in terms of properties of
their components. We illustrate this by providing structured ASMs for comput-
ing arbitrary computable functions, in a way which combines the advantages of
functional and of imperative programming. The atomicity of the ASM iteration
constructor we define below turned out to be the key for a rigorous definition
of the semantics of event triggered exiting from compound actions of UML ac-
tivity and state machine diagrams, where the intended instantaneous effect of
exiting has to be combined with the request to exit nested diagrams sequentially
following the subdiagram order, see [5,6].

For structuring large ASMs extensive use has been made of macros as nota-
tional shorthands. We enhance this use here by defining the semantics of named
parameterized ASM rules which include also recursive ASMs. Aiming at a foun-
dation which supports the practitioners’ procedural understanding and use of
submachine calls, we follow the spirit of the basic ASM concept [13] where do-
main theoretic complications – arising when explaining what it means to iterate
the execution of a machine “until . . . ” – have been avoided, namely by defining
only the one-step computation relation and by relegating fixpoint (“termina-
tion”) concerns to the metatheory. Therefore we define the semantics of subma-
chine calls only for the case that the possible chain of nested calls of that machine
is finite. We are thus led to a notion of calling submachines which mimics the
standard imperative calling mechanism and can be used for a definition of re-
cursion in terms of sequential (not distributed) ASMs. This definition suffices to
justify the submachines used in [8] for a hierarchical decomposition of the Java
Virtual Machine into loading, verifying and executing machines for the five prin-
cipal language layers (imperative core, static classes, object oriented features,
exception handling and concurrency).

The third kind of structuring mechanism for ASMs we consider in this paper
is of syntactical nature, dealing essentially with name spaces. Parnas’ [17] infor-
mation hiding principle is strongly supported by the ASM concept of external
functions which provides also a powerful interface mechanism (see [4]). A more
syntax oriented form of information hiding can be naturally incorporated into

Composition and Submachine Concepts for Sequential ASMs 43

ASMs through the notion of local machine state, of machines with return values
and of error handling machines which we introduce in Section 5.

Some of these concepts have been implemented in ASMGofer [18], allowing
us to define executable versions of the machines for Java and the JVM in [8].

2 Standard ASMs

We start from the definition of basic sequential (i.e. non distributed) ASMs in
[13] and survey in this section our notation.

Basic ASMs are built up from function updates and skip by parallel com-
position and constructs for if then else, let and forall. We consider the choose-
construct as a special notation for using choice functions, a special class of ex-
ternal functions. Therefore we do not list it as an independent construct in the
syntactical definition of ASMs. It appears however in the appendix because the
non-deterministic selection of the choose-value is directly related to the non-
deterministic application of the corresponding deduction rule.

The interpretation of an ASM in a given state A depends on the given en-
vironment Env , i.e. the interpretation ζ ∈ Env of its free variables. We use the
standard interpretation [[t]]Aζ of terms t in state A under variable interpretation
ζ, but we often suppress mentioning the underlying interpretation of variables.
The semantics of standard ASMs is defined in [13] by assigning to each rule R,
given a state A and a variable interpretation ζ, an update set [[R]]Aζ which – if
consistent – is fired in state A and produces the next state nextR(A, ζ).

An update set is a set of updates, i.e. a set of pairs (loc, val) where loc is
a location and val is an element in the domain of A to which the location is
intended to be updated. A location is n-ary function name f with a sequence
of length n of elements in the domain of A, denoted by f 〈a1, . . . , an〉. If u is an
update set then Locs(u) denotes the set of locations occurring in elements of u
(Locs(u) = {loc | ∃val : (loc, val) ∈ u}). An update set u is called inconsistent
if u contains at least two pairs (loc, v1) and (loc, v2) with v1 	= v2 (i.e. |u| >
|Locs(u)|), otherwise it is called consistent .

For a consistent update set u and a state A, the state fireA(u), resulting from
firing u in A, is defined as state A′ which coincides with A except f A′

(a) = val
for each (f 〈a〉, val) ∈ u. Firing an inconsistent update set is not allowed, i.e.
fireA(u) is not defined for inconsistent u. This definition yields the following
(partial) next state function nextR which describes one application of R in a
state with a given environment function ζ ∈ Env . We often write also next(R)
instead of nextR.

nextR : State(Σ)× Env → State(Σ)
nextR(A, ζ) = fireA([[R]]Aζ)

The following definitions describe the meaning of standard ASMs. We use R and
S for rules, x for variables, s and t for expressions, p for predicates (boolean
expressions), and u, v for semantical values and update sets. We write f A for

44 E. Börger and J. Schmid

the interpretation of the function f in state A and ζ ′ = ζ x
u is the variable

environment which coincides with ζ except for x where ζ ′(x) = u.

[[x]]Aζ = ζ(x)
[[f (t1, . . . , tn)]]Aζ = f A([[t1]]Aζ , . . . , [[tn]]

A
ζ)

[[skip]]Aζ = ∅
[[f (t1, . . . , tn) := s]]Aζ = {(f 〈[[t1]]Aζ , . . . , [[tn]]Aζ 〉, [[s]]Aζ)}
[[{R1, . . . ,Rn}]]Aζ = [[R1]]Aζ ∪ · · · ∪ [[Rn]]Aζ

[[if t then R else S]]Aζ =

{
[[R]]Aζ , if [[t]]Aζ = trueA

[[S]]Aζ , otherwise
[[let x = t in R]]Aζ = [[R]]Aζ x

v
where v = [[t]]Aζ

[[forall x with p do R]]Aζ =
⋃

v∈V
[[R]]Aζ x

v
where V = {v | [[p]]Aζ x

v
= trueA}

Remark: Usually the parallel composition {R1, . . . ,Rn} of rules Ri is denoted
by displaying the Ri vertically one above the other.

For a standard ASM R, the update set [[R]]Aζ is defined for any state A and for
any variable environment ζ, but nextR(A, ζ) is undefined if [[R]]Aζ is inconsistent.

3 Sequential Composition and Iteration

The basic composition of ASMs is parallel composition, and this is so for a fun-
damental reason explained in [14]. It is for practical purposes that in this section
we incorporate into ASMs their sequential composition and their iteration, but
in a way which fits the basic paradigm of parallel execution of all the rules of a
given ASM. The idea is to treat the sequential execution P seq Q of two rules
P and Q as an “atomic” action, in the same way as executing a function update
f (t1, . . . , tn) := s, and similarly for the iteration iterate(R) of rule R, i.e. the re-
peated application of sequential composition of R with itself, as long as possible.
The notion of repetition yields a definition of the traditional while (cond) R
construct which is similar to its proof theoretic counterpart in [1, 9.2.1]. Whereas
Abrial explicitly excludes sequencing and loop from the specification of abstract
machines [1, pg. 373], we take a more pragmatic approach and define them in
such a way that they can be used coherently in two ways, depending on what
is needed, namely to provide black-box descriptions of abstract submachines or
glass-box views of their implementation (refinement).

3.1 Sequence Constructor

If one wants to specify executing one standard ASM after another, this has to be
explicitly programmed. Consider for example the function pop back in the Stan-
dard Template Library for C++ (abstracting from concrete data structures).
The function deletes the last element in a list. Assume further that we have
already defined rules move last and delete where move last sets the list pointer

Composition and Submachine Concepts for Sequential ASMs 45

to the last element and delete removes the current element. One may be tempted
to program pop back as follows to first execute move last and then delete:

pop back ≡
if mode = Move then
move last
mode := Delete

if mode = Delete
delete
mode := Move

This definition has the drawback that the user of pop back must know that
the action to be completed needs two steps, which really is an implementa-
tion feature. Moreover the dynamic function mode, which is used to program
the sequential ordering, is supposed to be initialized by Move. Such an explicit
programming of execution order quickly becomes a stumbling block for large
specifications, in particular the initialization is not easily guaranteed without
introducing an explicit initialization mechanism.

Another complication arises when sequentialized rules are used to refine ab-
stract machines. In the machine on the left side of the picture below, assume
that the simultaneous execution of the two rules R and S in state 1 leads to
state 2. The machine on the right side is supposed to refine the machine on the
left side with rules R and S refined into the sequence of rules R1R2R3 and S1S2
respectively. There is no obvious general scheme to interleave the Ri -rules and
the Sj -rules, using a mode function as above. What should happen if rule R2
modifies some locations which are read by S2? In such cases R and S could not
be refined independently of each other.

R1

3R

1S
S 2

R2

R

S

1 2 1 2

Therefore we introduce a sequence constructor yielding a rule P seq Q which
can be inserted into another ASM but whose semantical effect is nevertheless
the sequential execution of the two rules P and Q . If the new rule P seq Q has
to share the same status as any other ASM rule together with which it may be
executed in parallel, one can define the execution of P seq Q only as an atomic
action. Obviously this is only a way to “view” the sequential machine from
outside; its refined view reveals its internal structure and behavior, constituted
by the non atomic execution, namely in two steps, of first P and then Q .

46 E. Börger and J. Schmid

Syntactically the sequential composition P seq Q of two rules P and Q is
defined to be a rule. The semantics is defined as first executing P , obtaining an
intermediate state, followed by executing Q in the intermediate state. This is
formalized by the following definition of the update set of P seq Q in state A.

Semantics: Let P and Q be rules. We define

[[P seq Q]]A = [[P]]A ⊕ [[Q]]A
′

where A′ = nextP (A) is the state obtained by firing the update set of P in
state A, if this is defined; otherwise A′ can be chosen arbitrarily. The operator
⊕ denotes the merging for update sets.

The merging of two update sets u and v by the operator ⊕ reflects that
an update in v overwrites an update in u if it is for the same location, since
through a destructive assignment s := t the previous value of s is lost. We
merge an update set v with u (i.e. u ⊕ v) only if u is consistent, otherwise we
stick to u because then we want both fireA(u) and fireA(u ⊕ v) to be undefined.

u ⊕ v =

{
{(loc, val) | (loc, val) ∈ u ∧ loc 	∈ Locs(v)} ∪ v , consistent(u)
u, otherwise

Proposition 1. (Persistence of inconsistency)

If [[P]]A is not consistent, then [[P seq Q]]A = [[P]]A

The next proposition shows that the above definition of the seq constructor cap-
tures the intended classical meaning of sequential composition of machines, if we
look at them as state transforming functions1. Indeed we could have defined seq
via the composition of algebra transforming functions, similarly to its axiomati-
cally defined counterpart in Abrial’s AMN [1] where seq comes as concatenation
of generalized substitutions.

Proposition 2. (Compositionality of seq)

next(P seq Q) = next(Q) ◦ next(P)
This characterization illustrates that seq has the expected semiring properties
on update sets.

Proposition 3. The ASM constructor seq has a left and a right neutral element
and is associative, i.e. for rules P , Q , and R the following holds:

[[skip seq R]]A = [[R seq skip]]A = [[R]]A

[[P seq (Q seq R)]]A = [[(P seq Q) seq R]]A

1 We assume that f (x) is undefined if x is undefined, for every function f (f is strict).

Composition and Submachine Concepts for Sequential ASMs 47

3.2 Iteration Constructor

Once a sequence operator is defined, one can apply it repeatedly to define the
iteration of a rule. This provides a natural way to define for ASMs an itera-
tion construct which encapsulates a computation with a finite but a priori not
explicitly known number of iterated steps into an atomic action (one-step com-
putation). As a by-product we obtain the classical loop and while constructs, cf.
[1, 9.2].

The intention of rule iteration is to execute the given rule again and again –
as long as needed and as long as possible. We define

Rn =

{
skip, n = 0
Rn−1 seq R, n >

Denote by An the state obtained by firing the update set of the rule Rn in state
A, if defined (i.e. An = nextRn (A)).

There are two natural stop situations for iterated ASM rule application,
namely when the update set becomes empty (the case of successful termination)
and when it becomes inconsistent (the case of failure, given the persistence of
inconsistency as formulated in Proposition 1).2 Both cases provide a fixpoint
lim

n→∞[[R
n]]A for the sequence ([[Rn]]A)n>0 which becomes constant if a number

n is found where the update set of R, in the state obtained by firing Rn−1, is
empty or inconsistent.

Proposition 4. (Fixpoint Condition)

∀m ≥ n > 0 the following holds:
if [[R]]An−1 is not consistent or if it is empty, then [[Rm]]A = [[Rn]]A

Therefore we extend the syntax of ASM rules by iterate(R) to denote the iter-
ation of rule R and define its semantics as follows.

Semantics: Let R be a rule. We define

[[iterate(R)]]A = lim
n→∞[[R

n]]A, if ∃n ≥ 0 : [[R]]An = ∅ ∨ ¬consistent([[R]]An)

The sequence ([[Rn]]A)n>0 eventually becomes constant only upon termination or
failure. Otherwise the computation diverges and the update set for the iteration
is undefined. An example for a machine R which naturally produces a diverging
(though in other contexts useful) computation is iterate(a := a + 1), see [16,
Exl. 2, pg. 350].

2 We do not include here the case of an update set whose firing does not change the
given state, although including this case would provide an alternative stop criterion
which is also viable for implementations of ASMs.

48 E. Börger and J. Schmid

Example 1. (Usage of iterate for starting the Java class initialization process)

The ASM model for Java in [9] includes the initialization of classes which in Java
is done implicitly at the first use of a class. Since the Java specification requires
that the superclass of a class c is initialized before c, the starting of the class
initialization is iterated until an initialized class c′ is encountered (i.e. satisfying
initialized(c′), as eventually will happen towards the top of the class hierarchy).
We define the initialization of class class as follows:

initialize ≡
c := class seq iterate(if ¬initialized(c) then

createInitFrame(c)
if ¬initialized(superClass(c)) then
c := superClass(c))

The finiteness of the acyclic class hierarchy in Java guarantees that this rule
yields a well defined update set. The rule abstracts from the standard sequential
implementation (where obviously the class initialization is started in a number
of steps depending on how many super classes the given class has which are not
yet initialized) and offers an atomic operation to push all initialization methods
in the right order onto the frame stack.

The macro to create new initialization frames can be defined as follows. The
current computation state, consisting of method , program, program position pos
and localVars, is pushed onto the frames stack and is updated for starting the
initialization method of the given class at position 0 with empty local variables
set.

createInitFrame(c) ≡
classState(c) := InProgress
frames := frames · (method , program, pos, localVars)
method := c/<clinit>
program := body(c/<clinit>)
pos := 0
localVars := ∅

While and Until. The iteration yields a natural definition of classical loop and
while constructs. A while loop repeats the execution of the while body as long as
a certain condition holds.

while (cond)R = iterate(if cond then R)

This while loop, if started in state A, terminates if eventually [[R]]An becomes
empty or the condition cond becomes false in An (with consistent and non
empty previous update sets [[R]]Ai and previous states Ai satisfying cond). If the
iteration of R reaches an inconsistent update set (failure) or yields an infinite
sequence of consistent non empty update sets, then the state resulting from
executing the while loop starting in A is not defined (divergence of the while

Composition and Submachine Concepts for Sequential ASMs 49

loop). Note that the function next(while (cond)R) is undefined in these two
cases on A.

A while loop may satisfy more than one of the above conditions, like while
(false) skip. The following examples illustrate the typical four cases:

• (success) while (cond) skip
• (success) while (false) R
• (failure) while (true) a := 1

a := 2
• (divergence) while (true) a := a

Example 2. (Usage of while)

The following iterative ASM defines a while loop to compute the factorial func-
tion for given argument x and stores the result in a location fac. It uses multi-
plication as given (static) function. We will generalize this example in the next
section to an ASM analogue to the Böhm-Jacopini theorem on structured pro-
gramming [3].

compute fac ≡ (fac := 1) seq (while (x > 0) fac := x ∗ fac
x := x − 1)

Remark: As usual one can define the until loop in terms of while and seq as
first executing the body once and then behaving like a while loop:

do R until (cond) = R seq (while (¬cond)R).
The sequencing and iteration concepts above apply in particular to the Mealy-
ASMs defined in [4] for which they provide the sequencing and the feedback
operators. The fundamental parallel composition of ASMs provides the concept
of parallel composition of Mealy automata for free. These three constructs allow
one to apply to Mealy-ASMs the decomposition theory which has been developed
for finite state machines in [10].

3.3 Böhm-Jacopini ASMs

The sequential and iterative composition of ASMs yields a class of machines
which are known from [3] to be appropriate for the computation of partial re-
cursive functions. We illustrate in this section how these Böhm-Jacopini-ASMs
naturally combine the advantages of the Gödel-Herbrand style functional defi-
nition of computable functions and of the Turing style imperative description of
their computation.

Let us call Böhm-Jacopini-ASM any ASM which can be defined, using the
sequencing and the iterator constructs, from basic ASMs whose functions are
restricted as defined below to input, output, controlled functions and some simple
static functions. For each Böhm-Jacopini-ASM M we allow only one external
function, a 0-ary function for which we write inM . The purpose of this function

50 E. Börger and J. Schmid

is to contain the number sequence which is given as input for the computation of
the machine. Similarly we write outM for the unique (0-ary) function which will
be used to receive the output of M . Adhering to the usual practice one may also
require that the M -output function appears only on the left hand side of M -
updates, so that it does not influence theM -computation and is not influenced by
the environment of M . As static functions we admit only the initial functions of
recursion theory, i.e. the following functions from Cartesian products of natural
numbers into the set N of natural numbers: +1, all the projection functions U n

i ,
all the constant functions C n

i and the characteristic function of the predicate
	= 0.

Following the standard definition we call a number theoretic function f :
Nn → N computable by an ASM M if for every n-tuple x ∈ Nn of arguments
on which f is defined, the machine started with input x terminates with output
f (x). By “M started with input x” we mean that M is started in the state where
all the dynamic functions different from inM are completely undefined and where
inM = x . Assuming the external function inM not to change its value during an
M -computation, it is natural to say that M terminates in a state with output
y , if in this state outM gets updated for the first time, namely to y .

Proposition 5. (Structured Programming Theorem)

Every partial recursive function can be computed by a Böhm-Jacopini-
ASM.

Proof. We define by induction for each partial recursive function f a machine
F computing it. Each initial function f of recursion theory is computed by the
following machine F consisting of only one function update which reflects the
defining equation of f .

F ≡ outF := f (inF)

For the inductive step it suffices to construct, for any partial recursive definition
of a function f from its constituent functions fi , a machine F which mimics the
standard evaluation procedure underlying that definition. We define the following
macros for using a machine F for given arguments in, possibly including to assign
its output to a location out :

F (in) ≡ inF := in seq F
out := F (in) ≡ F (in) seq out := outF

We start with the case of function composition. If functions g , h1, . . . , hm are
computed by Böhm-Jacopini-ASMs G ,H1, . . . ,Hm , then their composition f de-
fined by f (x) = g(h1(x), . . . , hm(x)) is computed by the following machine3 F :

F ≡ {H1(inF), . . . ,Hm(inF)} seq outF := G(outH1 , . . . , outHm)
3 For reasons of simplicity but without loss of generality we assume that the subma-
chines have pairwise disjoint signatures.

Composition and Submachine Concepts for Sequential ASMs 51

Unfolding this structured program reflects the order one has to follow for eval-
uating the subterms in the defining equation for f , an order which is implicitly
assumed in the equational (functional) definition. First the input is passed to
the constituent functions hi to compute their values, whereby the input func-
tions of Hi become controlled functions of F . The parallel composition of the
submachines Hi(inF) reflects that any order is allowed here. Then the sequence
of outHi is passed as input to the constituent function g . Finally g ’s value on
this input is computed and assigned as output to outF .

Similarly let a function f be defined from g , h by primitive recursion:

f (x , 0) = g(x), f (x , y + 1) = h(x , y , f (x , y))

and let Böhm-Jacopini-ASMs G ,H be given which compute g , h. Then the fol-
lowing machine F computes f , composed as sequence of three submachines. The
start submachine of F evaluates the first defining equation for f by initializ-
ing the recursor rec to 0 and the intermediate value ival to g(x). The while
submachine evaluates the second defining equation for f for increased values
of the recursor as long as the input value y has not been reached. The output
submachine provides the final value of ival as output.

F ≡ let (x , y) = inF in
{ival := G(x), rec := 0} seq
(while (rec < y) {ival := H (x , rec, ival), rec := rec + 1}) seq
outF := ival

If f is defined from g by the µ-operator, i.e. f (x) = µy(g(x , y) = 0), and if
a Böhm-Jacopini-ASM G computing g is given, then the following machine F
computes f . The start submachine computes g(x , rec) for the initial recursor
value 0, the iterating machine computes g(x , rec) for increased values of the
recursor until 0 shows up as computed value of g , in which case the reached
recursor value is set as output.

F ≡ {G(inF , 0), rec := 0} seq
(while (outG 	= 0) {G(inF , rec + 1), rec := rec + 1}) seq
outF := rec

Remark. The construction of Böhm-Jacopini-ASMs illustrates, through the ide-
alized example of computing recursive functions, how ASMs allow to pragmat-
ically reconcile the often discussed conceptual dichotomy between functional
and imperative programming. In the context of discussing the “functional pro-
gramming language” Gödel used to exhibit undecidable propositions in Principia
Mathematica, as opposed to the “imperative programming language” developed
by Turing and used in his proof of the unsolvability of the Entscheidungsproblem
(see [7]), Martin Davis [12] states:

“The programming languages that are mainly in use in the software
industry (like C and FORTRAN) are usually described as being imper-
ative. This is because the successive lines of programs written in these

52 E. Börger and J. Schmid

languages can be thought of as commands to be executed by the com-
puter . . . In the so-called functional programming languages (like LISP)
the lines of a program are definitions of operations. Rather than telling
the computer what to do, they define what it is that the computer is to
provide.”

The equations which appear in the Gödel-Herbrand type equational definition of
partial recursive functions “define what it is that the computer is to provide” only
within the environment for evaluation of subterms. The corresponding Böhm-
Jacopini-ASMs constructed above make this context explicit, exhibiting how to
evaluate the subterms when using the equations (updates), as much as needed
to make the functional shorthand work correctly. We show in the next section
how this use of shorthands for calling submachines, which appear here only in
the limited context of structured WHILE programs, can be generalized as to
make it practical without loss of rigor.

4 Parameterized Machines

For structuring large ASMs extensive use has been made of macros which, se-
mantically speaking, are mere notational shorthands, to be substituted by the
body of their definition. We enhance this use here by introducing named param-
eterized ASM rules which in contrast to macros also support recursive ASMs.

We provide a foundation which justifies the application of named parameter-
ized ASMs in a way which supports the practitioners’ procedural understanding.
Instead of guaranteeing within the theory, typically through a fixpoint operator,
that under certain conditions iterated calls of recursive rules yield as “result” a
first-class mathematical “object” (namely the fixpoint), we take inspiration from
the way Kleene proved his recursion theorem [16, Section 66] and leave it to the
programmer to guarantee that a possibly infinite chain of recursive procedure
calls is indeed well founded with respect to some partial order.

We want to allow a named parameterized rule to be used in the same way
as all other rules. For example, if f is a function with arity 1 and R is a named
rule expecting two parameters, then R(f (1), 2) should be a legitimate rule, too.
In particular we want to allow rules as parameters, like in the following example
where the given dynamic function stdout is updated to ”hello world”:

rule R(output) =
output("hello world")

rule output to stdout(msg)
stdout := msg

R(output to stdout)

Therefore we extend the inductive syntactic definition for rules by the following
new clause, called a rule application with actual parameters a1, . . . , an :

R(a1, . . . , an)

Composition and Submachine Concepts for Sequential ASMs 53

and coming with a rule definition of the following form:

rule R(x1, . . . , xn) = body

where body is a rule. R is called the rule name, x1, . . . , xn are the formal pa-
rameters of the rule definition. They bind the free occurrences of the variables
x1, . . . , xn in body .

The basic intuition the practice of computing provides for the interpretation
of a named rule is to define its semantics as the interpretation of the rule body
with the formal parameters replaced by the actual arguments. In other words
we unfold nested calls of a recursive rule R into a sequence R1,R2, . . . of rule
incarnations where each Ri may trigger one more execution of the rule body,
relegating the interpretation of possibly yet another call of R to the next in-
carnation Ri+1. This may produce an infinite sequence, namely if there is no
ordering of the procedure calls with respect to which the sequence will decrease
and reach a basis for the recursion. In this case the semantics of the call of R is
undefined. If however a basis for the recursion does exist, say Rn , it yields a well
defined value for the semantics of R through the chain of successive calls of Ri ;
namely for each 0 ≤ i < n with R = R0, Ri inherits its semantics from Ri+1.

Semantics: Let R be a named rule declared by rule R(x1, . . . , xn) = body , let
A be a state.

If [[body [a1/x1, . . . , an/xn]]]A is defined, then
[[R(a1, . . . , an)]]A = [[body [a1/x1, . . . , an/xn]]]A

For the rule definition rule R(x) = R(x) this interpretation yields no value for
any [[R(a)]]A, see [16, Example 1, page 350]. In the following example the update
set for R(x) is defined for all x ≤ 10, with the empty set as update set, and is
not defined for any x > 10.

rule R(x) = if x < 10 then R(x + 1)
if x = 10 then skip
if x > 10 then R(x + 1)

Example 3. (Defining while by a named rule)

Named rules allow us to define the while loop recursively instead of iteratively:

rule while(cond ,R) =
if cond then
R seq while(cond ,R)

This recursively defined while operator behaves differently from the iteratively
defined while of the preceding section in that it leads to termination only if the
condition cond will become eventually false, and not in the case that eventually
the update set of R becomes empty. For example the semantics of the recursively
defined while(true, skip) is not defined.

54 E. Börger and J. Schmid

Example 4. (Starting Java class initialization)

We can define the Java class initialization of Example 1 also in terms of a recur-
sive named rule, avoiding the local input variable to which the actual parameter
is assigned at the beginning.

rule initialize(c) =
if initialized(superClass(c)) then
createInitFrame(c)

else
createInitFrame(c) seq initialize(superClass(c))

Remark: Iterated execution of (sub)machines R, started in state A, unavoidably
leads to possibly undefined update sets [[R]]A. As a consequence [[R]]A = [[S]]A

denotes that either both sides of the equation are undefined or both are defined
and indeed have the same value. In the definitions above we adhered to an
algorithmic definition of [[R]]A, namely by computing its value from the computed
values [[S]]A of the submachines S of R. In the appendix we give a deduction
calculus for proving statements [[R]]A = u meaning that [[R]]A is defined and has
value u.

5 Further Concepts

In this section we enrich named rules with a notion of local state, show how
parameterized ASMs can be used as machines with return value, and introduce
error handling for ASMs which is an abstraction of exception handling as found
in modern programming languages.

5.1 Local State

Basic ASMs come with a notion of state in which all the dynamic functions are
global. The use of only locally visible parts of the state, like variables declared
in a class, can naturally be incorporated into named ASMs. It suffices to extend
the definition of named rules by allowing some dynamic functions to be declared
as local, meaning that each call of the rule works with its own incarnation of
local dynamic functions f which are to be initialized upon rule invocation by an
initialization rule Init(f). Syntactically we allow definitions of named rules of
the following form:

rule name(x1, . . . , xn) =
local f1[Init1]
...
local fk [Initk]
body

where body and Initi are rules. The formal parameters x1, . . . , xn bind the free
occurrences of the corresponding variables in body and Initi . The functions

Composition and Submachine Concepts for Sequential ASMs 55

f1, . . . , fk are treated as local functions whose scope is the rule where they are
introduced. They are not part of the signature of the ASM. Initi is a rule used
for the initialization of fi . We write local f := t for local f [f := t].

For the semantic interpretation of a call of a rule with local dynamic func-
tions, the updates to the local functions are collected together with all other
function updates made through executing the body. This includes the updates
required by the initialization rules. The restriction of the scope of the local
functions to the rule definition is obtained by then removing from the update
set u, which is available after the execution of the body of the call, the set
Updates(f1, . . . , fk) of updates concerning the local functions f1, . . . , fk . This leads
to the following definition.

Semantics: Let R be a rule declaration with local functions as given above.
If the right side of the equation is defined, we set:

[[R(a1, . . . , an)]]A =
[[({Init1, . . . , Initk} seq body)[a1/x1, . . . , an/xn]]]A \Updates(f1, . . . , fk)

We assume that there are no name clashes for local functions between different
incarnations of the same rule (i.e. each rule incarnation has its own set of local
dynamic functions).

Example 5. (Usage of local dynamic functions)

The use of local dynamic functions is illustrated by the following rule computing
a function f defined by a primitive recursion from functions g and h which are
used here as static functions. The rule mimics the corresponding Böhm-Jacopini
machine in Proposition 5.

rule F (x , y) =
local ival := g(x)
local rec := 0
(while (rec < y) {ival := h(x , rec, ival), rec := rec + 1}) seq
out := ival

5.2 ASMs with Return Value

In the preceding example, for outputting purposes the value resulting from the
computation is stored in a global dynamic function out . This formulation violates
good information hiding principles. To store the return value of a rule R in a
location which is determined by the rule caller and is independent of R, we use
the following notation for a new rule:

l ← R(a1, . . . , an)

where R is a named rule with n parameters in which a 0-ary (say reserved)
function result does occur with the intended role to store the return value. Let

56 E. Börger and J. Schmid

rule R(x1, . . . , xn) = body be the declaration for R, then the semantic of l ←
R(a1, . . . , an) is defined as the semantics of Rl(a1, . . . , an) where Rl is defined
like R with result replaced by l :

rule Rl(x1, . . . , xn) = body [l/result]

In the definition of the rule R by body , the function name result plays the role of
a placeholder for a location, denoting the interface which is offered for communi-
cating results from any rule execution to its caller. One can apply simultaneously
two rules l ← R(a1, . . . , an) and l ′ ← R(a ′1, . . . , a

′
n) with different return values

for l and l ′.

Remark: When using l ← R(a1, . . . , an) with a term l of form f (t1, . . . , tn), a
good encapsulation discipline will take care that R does not modify the values
of ti , because they contribute to determine the location where the caller expects
to find the return value.

Example 6. (Using return values)

Using this notation the above Example 5 becomes f (x , y)← F (x , y) where more-
over one can replace the use of the auxiliary static functions g , h by calls to sub-
machines G ,H computing them, namely ival ← G(x) and ival ← H (x , rec, ival).

Example 7. (Recursive machine computing the factorial function, using mul-
tiplication as static function.)

rule Fac(n) =
local x := 1
if n = 1 then
result := 1

else
(x ← Fac(n − 1)) seq result := n ∗ x

5.3 Error Handling

Programming languages like C++ or Java support exceptions to separate error
handling from “normal” execution of code. Producing an inconsistent update set
is an abstract form of throwing an exception. We therefore introduce a notion
of catching an inconsistent update set and of executing error code.

The semantics of try R catch f (t1, . . . , tn)S is the update set of R if either
this update set is consistent (“normal” execution) or it is inconsistent but the
location loc determined by f (t1, . . . , tn) is not updated inconsistently. Otherwise
it is the update set of S .

Since the rule enclosed by the try block is executed either completely or not
at all, there is no need for any finally clause to remove trash.

Composition and Submachine Concepts for Sequential ASMs 57

Semantics: Let R and S be rules, f a dynamic function with arguments
t1, . . . , tn . We define

[[try R catch f (t1, . . . , tn)S]]A ={
v , ∃ v1 	= v2 : (loc, v1) ∈ u ∧ (loc, v2) ∈ u
u, otherwise

where u = [[R]]A and v = [[S]]A are the update sets of R and S respectively, and
loc is the location f 〈[[t1]]A, . . . , [[tn]]A〉.

6 Related Work

The sequence operator defined by Zamulin in [19] differs from our concept for
rules leading to inconsistent update sets where it is not associative, due to Za-
mulin’s definition of the merge operator for update sets. For consistent update
sets Zamulin’s loop constructor coincides with our while definition in Example
2.

In Anlauff’s XASM [2], calling an ASM is the iteration of a rule until a
certain condition holds. [2] provides no formal definition of this concept, but
for consistent update sets the XASM implementation seems to behave like our
definition of iterate.

Named rules with parameters appear in the ASM Workbench [11] and in
XASM [2], but with parameters restricted to terms. The ASM Workbench does
not allow recursive rules. Recursive ASMs have also been proposed by Gurevich
and Spielmann [15]. Their aim was to justify recursive ASMs within distributed
ASMs [13]. If R is a rule executed by agent a and has two recursive calls to R,
then a creates two new agents a1 and a2 which execute the two corresponding
recursive calls. The agent a waits for termination of his slaves a1 and a2 and then
combines the result of both computations. This is different from our definition
where executing a recursive call needs only one step, from the caller’s view, so
that the justification remains within purely sequential ASMs without invoking
concepts from distributed computing. Through our definition the distinction
between suspension and reactivation tasks in the iterative implementation of
recursion becomes a matter of choosing the black-box or the glass-box view for
the recursion. The updates of a recursive call are collected and handed over to
the calling machine as a whole to determine the state following in the black-box
view the calling state. Only the glass-box view provides a refined inspection of
how this collection is computed.

Acknowledgments. For critical comments on earlier versions of this paper4

we thank Giuseppe Del Castillo, Martin Davis, Jim Huggins, Alexander Knapp,
Peter Päppinghaus, Robert Stärk, Margus Vianes, and Alexandre Zamulin.
4 Presented to the IFIP Working Group 1.3 on Foundations of System Specification,
Bonas (France) 13.-15.9.1999, and to the International ASM’2000 Workshop, Ascona
(Switzerland) 20.-24.3.2000

58 E. Börger and J. Schmid

A Deduction Rules for Computing Update Sets

The following rules provide a calculus for computing the semantics of standard
ASMs and for the constructs introduced in this paper.

We use R, Ri , and S for rules, f for functions, x for variables, s and t for
expressions, p for predicates (boolean expressions), and u and v for semantical
values and update sets.

Standard ASMs

∀ i : [[ti]]Aζ = vi
[[f (t1, . . . , tn)]]Aζ = f A(v1, . . . , vn) [[x]]Aζ = ζ(x)

variable(x)

[[skip]]Aζ = ∅
[[t]]Aζ = trueA, [[R]]Aζ = u

[[if t then R else S]]Aζ = u

∀ i : [[ti]]Aζ = vi , [[s]]Aζ = u

[[f (t1, . . . , tn) := s]]Aζ = {(f 〈v1, . . . , vn〉, u)}
[[t]]Aζ = falseA, [[S]]Aζ = u

[[if t then R else S]]Aζ = u

∀ i : [[Ri]]Aζ = ui
[[{R1, . . . ,Rn}]]Aζ = u1 ∪ . . . ∪ un

[[t]]Aζ = v , [[R]]Aζ x
v
= u

[[let x = t in R]]Aζ = u

V = {v1, . . . , vn}, ∀ i : [[R]]Aζ x
vi
= ui

[[forall x with p do R]]Aζ = u1 ∪ . . . ∪ un
V = {v | [[p]]Aζ x

v
= trueA}

[[p]]Aζ x
v
= trueA, [[R]]Aζ x

v
= u

[[choose x with p do R]]Aζ = u

[[choose x with p do R]]Aζ = ∅ 	 ∃ v : [[p]]Aζ x
v
= trueA

Sequential Composition

[[R]]Aζ = u, [[S]]fireA(u)
ζ = v

[[R seq S]]Aζ = u ⊕ v consistent(u)
[[R]]Aζ = u

[[R seq S]]Aζ = u
inconsistent(u)

Iteration

[[Rn]]Aζ = u

[[iterate(R)]]Aζ = u
n ≥ 0, inconsistent(u)

[[Rn]]Aζ = u, [[R]]fireA(u)
ζ = ∅

[[iterate(R)]]Aζ = u
n ≥ 0, consistent(u)

Composition and Submachine Concepts for Sequential ASMs 59

Parameterized Rules with Local State
Let R be a named rule as in Section 5.1.

[[({Init1, . . . , Initk} seq body)[a1/x1, . . . , an/xn]]]Aζ = u

[[R(a1, . . . , an)]]Aζ = u \Updates(f1, . . . , fk)

Error Handling

[[R]]Aζ = u

[[try R catch f (t1, . . . , tn)S]]Aζ = u
	 ∃ v1 	= v2 : (loc, v1) ∈ u ∧ (loc, v2) ∈ u
where loc = f 〈[[t1]]Aζ , . . . , [[tn]]Aζ 〉

[[R]]Aζ = u, [[S]]Aζ = v

[[try R catch f (t1, . . . , tn)S]]Aζ = v
∃ v1 	= v2 : (loc, v1) ∈ u ∧ (loc, v2) ∈ u
where loc = f 〈[[t1]]Aζ , . . . , [[tn]]Aζ 〉

Remark: The second rule for choose reflects the decision in [13] that an ASM
does nothing when there is no choice. Obviously also other decisions could be
formalized in this manner, e.g. yielding instead of the empty set an update set
which contains an error report.

Remark: The rule for forall is formulated as finitary rule, i.e. it can be applied
only for quantifying over finite sets. The set theoretic formulation in Section 2
is more general and can be formalized by an infinitary rule. It would be quite
interesting to study different classes of ASMs, corresponding to different finitary
or infinitary versions of the forall construct.

References

1. J. R. Abrial. The B-Book. Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. M. Anlauff. XASM – An extensible, component-based Abstract State Machines
language. In Y. Gurevich, M. Odersky, and L. Thiele, editors, Proc. ASM 2000,
Lecture Notes in Computer Science. Springer-Verlag, 2000. to appear.

3. C. Böhm and G. Jacopini. Flow diagrams, Turing Machines, and languages with
only two formation rules. Communications of the ACM, 9(5):366–371, 1966.

4. E. Börger. High level system design and analysis using Abstract State Machines.
In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, Current Trends
in Applied Formal Methods (FM-Trends 98), number 1641 in Lecture Notes in
Computer Science, pages 1–43. Springer-Verlag, 1999.

5. E. Börger, A. Cavarra, and E. Riccobene. An ASM semantics for UML Activity
Diagrams. In T. Rust, editor, Proc. AMAST 2000, Lecture Notes in Computer
Science. Springer-Verlag, 2000.

6. E. Börger, A. Cavarra, and E. Riccobene. A simple formal model for UML State
Machines. In Y. Gurevich, M. Odersky, and L. Thiele, editors, Proc. ASM 2000,
Lecture Notes in Computer Science. Springer-Verlag, 2000. to appear.

7. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspec-
tives in Mathematical Logic. Springer-Verlag, 1997.

60 E. Börger and J. Schmid

8. E. Börger, J. Schmid, W. Schulte, and R. Stärk. Java and the Java Virtual Ma-
chine. Lecture Notes in Computer Science. Springer-Verlag, 2000. to appear.

9. E. Börger and W. Schulte. Modular Design for the Java Virtual Machine Archi-
tecture. In E. Börger, editor, Architecture Design and Validation Methods, pages
297–357. Springer-Verlag, 2000.

10. A. Brüggemann, L. Priese, D. Rödding, and R. Schätz. Modular decomposition
of automata. In E. Börger, G. Hasenjäger, and D. Rödding, editors, Logic and
Machines: Decision Problems and Complexity, number 171 in Lecture Notes in
Computer Science, pages 198–236. Springer-Verlag, 1984.

11. G. D. Castillo. ASM-SL, a Specification Language based on Gurevich’s Abstract
State Machines, 1999.

12. M. Davis. The Universal Computer: The Road from Leibniz to Turing. W.W.
Norton, New York, 2000. to appear.

13. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specifi-
cation and Validation Methods, pages 9–36. Oxford University Press, 1995.

14. Y. Gurevich. Sequential Abstract State Machines capture sequential algorithms.
ACM Transactions on Computational Logic, 1(1), 2000.

15. Y. Gurevich and M. Spielmann. Recursive abstract state machines. Journal of
Universal Computer Science, 3(4):233–246, 1997.

16. S. C. Kleene. Introduction to Metamathematics. D. van Nostrand, Princeton, New
Jersey, 1952.

17. D. L. Parnas. Information distribution aspects of design methodology. In Infor-
mation Processing 71, pages 339–344. North Holland Publishing Company, 1972.

18. J. Schmid. Executing ASM specifications with AsmGofer. Web pages at: http://-
www.tydo.de/AsmGofer, 1999.

19. A. Zamulin. Object-oriented Abstract State Machines. In Proceedings of the 28th
Annual Conference of the German Society of Computer Science. Technical Report,
Magdeburg University, 1998.

Une tentative malheureuse de construire une
structure éliminant rapidement les quanteurs

Bruno Poizat

Institut Girard Desargues
Mathématiques, bâtiment 101

Université Claude Bernard (Lyon-1)
43, boulevard du 11 novembre 1918
69622 Villeurbanne cedex, France
poizat@desargues.univ-lyon1.fr

Introduction

Je cherche à construire une structure M éliminant rapidement les quanteurs: à
toute formule existentielle (∃y)φ(x,y), où φ est sans quanteurs, doit être as-
sociée une formule ψ(x), également libre de quanteurs, qui lui soit équivalente
dans M , la longueur de ψ étant polynomialement bornée en fonction de celle
de φ; autrement dit, pour une certaine constante c, |ψ| ≤ |φ|c. Tant qu’à faire,
j’aimerais aussi que ψ fût calculée par un algorithme polynomial à partir de φ.

Pourquoi je veux faire ça? Parce que si c’était vrai de la structure à deux
éléments M = {0, 1}, dans le langage réduit à l’égalité et aux deux constantes 0
et 1 (ou même à la seule relation x = 0!), eh bien on répondrait positivement à
deux questions ouvertes en complexité, NC1 = P et P = NP , version uniforme
ou non suivant que l’élimination serait algorithmique ou pas (que ça implique
P = NC1 vient de ce que j’écris les formules sous la forme usuelle, et non pas
comme des circuits booléens). La même chose se produirait si la structure était
finie, hormis le cas trivial d’une structure à un élément que nous excluons, ou
bien si son langage fini ne comportait que des relations et pas de fonctions (voir
[7]).

Donc, ce que je veux construire, c’est une structure ayant une propriété qui, si
elle était possédée par la structure à deux éléments, provoquerait un cataclysme
en Théorie de la Complexité! Comme vous le voyez, je m’exerce au passe-temps
favori des complexionistes, qui consiste à ne démontrer des théorèmes qu’après
les avoir transportés dans des contextes où ils n’ont plus aucune signification.
Il est en effet très improbable qu’une structure construite spécialement pour
répondre à cette question ait un quelconque enjeu algorithmique, si bien que
l’intérêt du problème ne réside que dans la plus ou moins grande difficulté de sa
solution.

Si on autorise un langage infini, il devient complètement trivial: prenons
un modèle M de la théorie des ensembles, par exemple celui des ensembles
héréditairement finis, formé des entiers naturels munis de l’appartenance d’Acker-
mann, dite aussi relation des bits, s’il est permis de s’exprimer ainsi (x ∈ y
s’il y a un 1 à la x◦ place du développement de y en base 2); la fonction qui

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 61–70, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

62 B. Poizat

à (x, y) associe le couple 〈x, y〉 = {{x}, {x, y}} permet de représenter le uple
(x1, . . . , xn) comme la ”liste” 〈x1, 〈x2, 〈· · · 〈xn, 0〉 · · ·〉〉〉; une fois identifiés à cer-
tains éléments de M les symboles servant à l’écriture des formules φ(x), toute
formule φ(a) à paramètres a dans M se représente ainsi par un élément “φ(a)”
de M , qu’en maths modernes, où tout est ensemble, on considère comme φ(a)
elle-même plutôt que comme un codage qui en respecte la taille. Nous con-
sidérons alors la structure dont l’univers est M , dans le langage comprenant
(outre l’égalité) la constante 0, la fonction binaire 〈x, y〉, et une suite infinie
de prédicat unaires V1, . . . , Vn, Vn+1, . . . construite par récurrence, Vn+1 étant
l’ensemble des formules φ(a) vérifiées par M qui ne font intervenir que les n
premiers prédicats V1, . . . , Vn: la formule φ(x), quel que soit son rang de quan-
tification, est équivalente dans M à Vn+1(“φ(x)”), laquelle est sans quanteurs,
et pratiquement de même longueur que φ! Il y a aussi une manière encore plus
débile d’éliminer, la “morleysation” d’une quelconque structure, qui associe à
chaque formule φ(x) un nouveau symbole relationnel Rφ(x) (voir [6] p. 89).

Si on veut que le problème présente quelque difficulté, et par conséquent
quelqu’intérêt, il est indispensable de se limiter à un langage fini. Il faut alors
se garder des structures M trop riches en pouvoir d’auto-expression, comme
l’appartenance entre ensembles, ou même l’arithmétique, qui permettent de
représenter les formules par des éléments de M et de les manipuler (ce que
ne permet pas la fonction de couple à elle seule; mais rien ne nous empêchait
d’ajouter ∈ à la structure ci-dessus), car un célèbre résultat de Tarski nous as-
sure qu’elles ne peuvent éliminer les quanteurs (l’ensemble des codes d’énoncés
Π1 vrais n’est pas Σ1; voir [6] ch. 7). D’autre part, au moins dans un premier
temps, on essaye seulement d’éliminer un bloc de quanteurs existentiels, et pas
un bloc de quanteurs alternant arbitrairement.

Nous conservons cet idée de prédicat de vérité, et nous cherchons à construire
M , structure de langage fini comportant un prédicat unaire V (x), ayant la pro-
priété qu’à toute formule existentielle (∃y)φ(x,y) soit associé un terme τφ(x),
de longueur modérée par rapport à celle de φ, de sorte que M satisfasse:

(∀x)(∃y)φ(x,y)↔ V (τφ(x)).

La difficulté vient bien sûr de ce que la formule (libre) φmentionne le prédicat
V . On voit bien là tout l’artifice de la construction : il ne s’agit pas d’élaborer
un algorithme pour vérifier quelque chose dans le monde réel; on se donne au
contraire l’algorithme a priori, et on construit une vérité qui s’y adapte! Ça
serait bien sûr beaucoup plus intéressant de montrer que certaines structures
“naturelles” éliminent rapidement, ou bien lentement; mais il faut s’attendre à
ce que les questions de ce genre soient plus ou moins équivalentes à des problèmes
de complexité standards [5,3], ayant la réputation d’être insolubles.

Et même cette réponse artificielle, je suis incapable de la donner entièrement.
Je vais seulement construire ici M satisfaisant:

(∀x)(∃y)φ(x,y)↔ V (τφ(x))

pour les formules existentielles où il ne reste qu’une seule variable libre x. Cela
vient de ce que j’ai besoin d’un contexte modèle théorique facilement mâıtrisable,

Une tentative malheureuse . . . 63

et que je n’ai pas trouvé mieux que de me limiter à des fonctions unaires, qui ne
permettent pas la formation de termes en plusieurs variables. Et c’est déjà assez
compliqué comme ça!

Nous examinerons en conclusion quelques propriétés algorithmiques de la
structure construite, et nous explorerons une voie qui pourrait mener à la décou-
verte d’une autre structure plus satisfaisante. Pour l’instant, place à la construc-
tion!

1 Deux successeurs

Nous adoptons un langage L comprenant trois symboles de fonctions unaires
s0, s1, p, et un prédicat unaire V . Les deux premières fonctions sont appelées
successeurs, et la troisième prédécesseur. Fixons-en dès à présent l’interprétation.

Le modèle de base S est l’algèbre libre, dans le langage de deux fonctions
unaires, engendrée par un élément r qu’on appellera sa racine; les éléments de S
s’écrivent sous la forme θ(r), où θ est un terme en s0, s1, θ = sε1 ◦ sε2 ◦ · · · ◦ sεm .
La longueur m du terme θ sera aussi appelée niveau de l’élément θ(r), la racine
r étant de niveau nul. Si θ(r) = θ′(r), c’est que les deux termes θ et θ′ sont
identiques. S a la forme d’un arbre binaire infini, composé de sa racine r, de ses
deux successeurs s0(r) et s1(r), puis des quatre successeurs d’iceux s0(s0(r)),
s0(s1(r)), s1(s0(r)) et s1(s1(r)), et ainsi de suite.

Le prédécesseur est l’inverse des successeurs, c’est-à-dire que p(s0(x)) = x,
p(s1(x)) = x, p(r) = r.

Nous appelons bloc B une copie de S muni d’un quelconque prédicat unaire
VB . Nous considérons la classe C des structures M , de langage L, formées de
la juxtaposition de blocs qui se répètent chacun une infinité de fois: si B figure
dans M , il s’y trouve aussi une infinité de blocs isomorphes à B.

Les structures de C éliminent les quanteurs: c’est très facile à voir par des
méthodes modèle-théoriques impliquant la compacité. Mais nous, étant dans
l’obligation de contrôler la taille des formules éliminantes, n’avons d’autre choix
que de procéder péniblement à cette élimination.

Si n est un entier, et x un élément d’un bloc, nous appelons triangle de
hauteur n et de racine x la formule caractérisant à l’isomorphie près le morceau
du bloc composé des éléments qui sont situés au plus n niveaux au-dessus de
x; c’est la conjonction des formules satisfaites par x, de la forme p(x) = x ou
p(x) = x, V (x) ou ¬V (x), et V (y) ou ¬V (y) pour chaque y = sε1◦sε2◦· · ·◦sεm(x),
m ≤ n. Le n-voisinage de x, c’est le triangle de racine pn(x) et de hauteur 2n.
Lemma 1 (Lemme d’élimination). Considérons M dans C, une formule ex-
istentielle (∃y)φ(x,y), et l’entier n valant quatre fois le nombre total d’occurren-
ces dans φ des symboles s0, s1 et p. Alors, pour déterminer si un élément x de
M satisfait cette formule, il suffit de connâıtre le n-voisinage de x, et de savoir
quels sont les n-triangles réalisés dans M .

Nous appelerons portée de la formule φ ce nombre n figurant dans l’énoncé
du lemme.

64 B. Poizat

Demonstration 1. Nous commençons par mettre φ sous forme disjonctive, ce
qui fait exploser sa taille, mais pas celles des constituants: φ s’écrit comme
une disjonction exponentielle de conjonctions où figurent exactement une fois,
sous forme positive ou négative, chacune des formules atomiques de φ: dans
chaque conjonction figure le même nombre ω de symboles de fonction que dans
φ. Comme le quanteur existentiel saute au-dessus de la disjonction, il suffit de
traiter chacune de ces conjonctions φi(x,y).

Les constituants de φi(x,y) sont de la forme V (θ(u)), ¬V (θ(v)), θ′(u) =
θ′′(v), θ′(u) = θ′′(v), où u et v désignent des variables, distinctes ou confondues,
prises dans le uple x�y, et où θ, θ′, θ′′ désignent des termes du langage L, en
s0, s1 et p.

Nous dirons qu’une variable v prise dans y est à distance 1 de x si il y a dans
φi une équation θ′(v) = θ′′(x); qu’elle est à distance 2 de x si elle n’en est pas
à distance 1, mais figure dans une équation θ′(v) = θ′′(u), où u est à distance 1
de x; et plus généralement, on dit qu’une variable v est voisine de x si elle est
reliée à cette dernière par une châıne d’équations figurant dans φi, sa distance à
x étant la longueur minimale d’une telle châıne.

Pour chaque voisine de x, nous faisons le choix d’une équation de φi qui la
relie à x, ou bien à une variable strictement plus proche de x. Nous notons E la
conjonction des équations choisies.

Pour éliminer, on procède ainsi: on écrit chaque équation θ′(v) = θ′′(u) de E,
dont v est la variable la plus lointaine, sous la forme v = θ(u); cela peut obliger
à distinguer un nombre exponentiel de cas, s’exprimant par des conditions sur
u, ce qui a pour influence d’enfler encore la disjonction, et d’ajouter quelques
conditions à chacune des conjonctions. Par exemple, si l’équation est p(v) = u, il
faut distinguer les trois cas u = p(u) = v, v = s0(u), v = s1(u). Ce qui importe,
c’est que la taille de E n’est pas affectée au cours du procès, et que dans les
conditions ajoutées les termes n’ont pas une longueur supérieure à ω.

Quand on a fini, le système E permet d’exprimer chaque voisine v de x comme
un terme en une variable plus proche; comme le nombre total de symboles de
fonction de E est majoré par ω, v se met par composition sous la forme v = η(x)
où le terme η est de longueur au plus ω. On substitue alors partout les variables
voisines de x par leur valeur, ce qui ne produit que des termes de longueur
majorée par 2ω.

Quand on a ainsi éliminé les voisines de x, chaque système ψ(x,y) obtenu
est formé de trois parties:

– une conjonction ψ0(x) de conditions portant sur des termes en x de longueur
inférieure à 2ω;

– une conjonction ψ1(x,y) d’inéquations θ′(x) = θ′′(y);
– une conjonction ψ2(y) de conditions portant sur des variables qui n’ont pas
été touchées par l’élimination, et qui étaient toutes présentes à l’origine: dans
ψ2, il n’y a pas plus de ω occurrences de fonctions.

De plus, l’hypothèse de répétition des blocs nous permet de jeter ψ1; en effet,
(∃y)ψ(x,y) équivaut à ψ0(x) ∧ (∃y)ψ2(y), puisque s’il existe des y dans M
satisfaisant ψ2, il en existe dont aucun élément ne soit dans le bloc de x.

Une tentative malheureuse . . . 65

On choisit alors une variable dans y par rapport à laquelle on applique le
même procédé. A la fin on obtient une décomposition de la formule originelle
en une monstrueuse disjonction de formules du type φ0(x) ∧ (∃y1)φ1(y1) ∧ · · · ∧
(∃ym)φm(ym); comme tous les termes qui y figurent ont leur longueur majorée
par 2ω, leur satisfaction ne dépend que de ce qui est indiqué dans l’énoncé du
lemme. Fin

Remarques

1. Ce n’est pas ici qu’il est essentiel que x soit un élément et non un uple;
l’élimination fonctionne aussi bien pour un uple.

2. Ehud Hrushovski m’a suggéré d’employer des fonctions-successeurs dans ce
contexte, et Farzad Didehvar a contribué à l’élimination.

2 Le prédicat de vérité

Nous choisissons maintenant le terme τφ. Les habitants de la ville de Sour,
au sud du Liban, ont inventé il y a quelques 45 siècles un système très pra-
tique de représentation graphique de la parole comportant seulement 22 signes,
qu’ils ont appelé alphabet, et qu’un citoyen américain a réduit bien plus tard à
deux symboles. Cela nous permet d’écrire une formule φ comme un mot binaire
(ε1, . . . , εm), εi = 0 ou 1. Nous demandons que la longueur de ce mot vaille au
moins 72, et soit aussi supérieure ou égale à 24n, où n = 4ω est l’entier qui a
été appelé portée de φ, et qui figure dans le lemme d’élimination. Vu la présence
des parenthèses, la traduction en Morse et la corrélation entre la portée et le
nombre de symboles de la formule, ça ne demande pas beaucoup de bourrage!

Par ailleurs, pour nous faciliter la vie, nous demandons aussi qu’il y ait un sig-
nal de début de formule: toute formule commence par 00, et on n’y trouve ensuite
plus jamais deux 0 consécutifs. J’aurais pu simplifier légèrement la présentation
en introduisant un troisième successeur, spécialisé dans le rôle de caractère de
début de formule: comme ce n’était pas décisif, j’en ai fait l’économie.

Cela étant convenu, à φ = (ε1, . . . , εm) nous associons tout simplement le
terme τφ = sεm ◦ · · · ◦ sε1 .

Nous dirons qu’un élément y d’une structure dans C est contraint s’il est
de la forme y = τφ(x), où φ est une formule, et qu’il est libre sinon. Si y est
contraint, il ne l’est que d’une seule manière: si τφ(x) = τψ(x′), alors φ = ψ,
et x = x′, puisque, pour trouver la formule qui contraint éventuellement y, on
en remonte les prédécesseurs jusqu’à ce qu’on trouve deux 0 consécutifs. Ce
n’est d’ailleurs pas là que le signal de début s’impose, puisque les parenthèses,
garantes de la non ambigüıté de lecture, interdisent à une formule d’être segment
final d’une autre. Son utilité véritable, c’est de forcer les formules qui passent
par y, à l’exception de celles qui concernent son prédécesseur (dans le cas où
y = s0(p(y))), de concerner toutes un même élément.

On voit la nécessité d’au moins deux successeurs, non seulement pour avoir
une longueur raisonnable pour le terme τφ, mais aussi pour la non ambigüıté de

66 B. Poizat

la lecture des formules: il est clair que des confusions du genre τφ(x) = τψ(x′)
handicaperaient lourdement la construction du prédicat de vérité.

Ce prédicat V est construit niveau par niveau à partir du bas. Pour ce qui
est des points libres du niveau en construction, on met toutes les possibilités
d’appartenance et de non appartenance à V , ce qui conduit à démultiplier ce qui
a déjà été construit en plusieurs blocs; c’est ainsi qu’au début, jusqu’au niveau
71, il n’y a que des points libres, si bien qu’on trouve au bas des divers blocs des
copies de tous les triangles de hauteur 71 possibles.

Par contre, quand il s’agit de placer dans V ou dans ¬V un point de la forme
τφ(x), où x est au moins 24n niveaux en dessous, nous devons faire un pari
sur l’avenir, c’est-à-dire anticiper de la satisfaction, ou de la non-satisfaction,
de la formule (∃y)φ(x,y) par l’élément x dans la structure en cours de con-
struction. Nous connaissons le n-voisinage de x, obtenu aux niveaux antérieurs,
mais l’information qui nous manque, c’est de savoir quel sont les n-triangles
qu’on trouvera dans la structure quand la construction en sera achevée. Nous
faisons comme si nous les avions tous déjà obtenus, plus précisément, nous
faisons l’hypothèse qu’il n’y aura pas d’autres n-triangles présents dans cette
structure que ceux qui y ont été obtenus en dessous du niveau 24n (pour n ≥ 1;
les formules de portée nulle ne posent pas de problèmes, car les quatre trian-
gles possibles de hauteur 0 sont tous obtenus aux niveaux 0 ou 1). D’après le
lemme d’élimination, cette hypothèse nous permet de définir une stratégie pour
déterminer la satisfaction de (∃y)φ(x,y): si c’est oui, on met τφ(x) dans V , et
sinon en dehors. Quand on a fini, on démultiplie tous les blocs de la structure
obtenue.

3 L’art de faire des hypothèses

C’est bien beau de faire des hypothèses, à condition qu’elles se vérifient. Pour
que la vérité devinée corresponde à la vérité vraie, nous devons montrer que le
modèleM obtenu satisfait à l’hypothèse qui a été faite lors de sa construction, à
savoir que tout triangle de hauteur n ≥ 1 qui s’y trouve y a une copie isomorphe
située toute entière en-dessous du niveau 24n. C’est une conséquence du lemme
suivant, puisque 6n+ n < 24n < 24(n+ 1).

Lemma 2 (Lemme de descente). Soit x dans M de niveau strictement supé-
rieur à 6n; alors ils existe x′ dans M , de niveau au plus 6n, tel que:

1. le triangle de racine x′, et montant jusqu’au niveau 24(n + 1) − 1, est iso-
morphe à celui de même hauteur et de racine x

2. le chemin obtenu en prenant les prédécesseurs de x′ passe par s1(r), et non
pas par s0(r), où r est la racine du bloc de x′; il est isomorphe au chemin
de longueur correspondante partant de x (c’est-à-dire que si s1(r) = ps(x′),
c’est le même terme qui exprime x′ en fonction de ps(x′) et x en fonction
de ps(x)).

Une tentative malheureuse . . . 67

Demonstration 2. Par induction sur n. Pour n ≤ 2, on peut remplir comme on
veut le triangle au-dessus de x′ = s1(r) tant qu’on reste en dessous du niveau
72, puisque tous les points y sont libres.

Soit donc n ≥ 3, et soit m la partie entière de n/3: 3m ≤ n < 3(m + 1).
Comme 1 ≤ m < n, l’hypothèse d’induction s’applique à m.

Soit donc x dans M , de niveau supérieur à 6n. Nous voulons choisir x′, de
niveau au plus 6n, tel que le triangle au-dessus de x′ se soit rempli lors de la
construction de M de la même façon que le triangle au-dessus de x, cela jusqu’à
ce qu’on atteigne le niveau 24(n + 1) − 1. Les points libres au-dessus de x′ ne
nous gêneront pas, puisque nous avons eu la possibilité de les remplir comme
on l’a voulu. Quant au points contraints, comme nous restons en dessous du
niveau 24(n + 1), ils correspondent à des formules φ de portée au plus n: par
la construction même de M , si deux points u et v de M ont des n-voisinages
isomorphes, et si le premier satisfait V (τφ(u)), l’autre aussi, et réciproquement.

Nous devons tenir compte des points contraints au-dessus de x; certains con-
cernent le prédécesseur de x, ou bien x lui-même, ou encore des éléments au-
dessus de x. Si on ne rencontre que ceux-là, il suffira que le n-voisinage de p(x′)
soit choisi isomorphe à celui de p(x), celui de x′ isomorphe à celui de x, et celui
d’un point v′, situé moins de n niveaux au-dessus de x′, isomorphe à celui du
point v correspondant situé au-dessus de x; en effet, comme les points situés plus
haut dans les triangles ont leur n-voisinage entièrement situé au-dessus de x et
x′, le triangle au-dessus de x′ se remplira ensuite de manière isomorphe à celui
au-dessus de x.

Mais il est aussi possible que x soit sur le trajet de formules beaucoup plus
longues, correspondant toutes à un unique élément u, le premier que l’on ren-
contre après un double 0 quand on chemine le long des prédécesseurs de x. Dans
ce cas, nous dirons que x a une queue – le chemin qui joint x à u – et il faudra
aussi nous soucier de reproduire le n-voisinage de u.

Nous distinguons deux cas :

1. x n’a pas de queue, ou bien a une queue de longueur strictement supérieure
à n + 6m. Dans ce cas on choisit y′ de niveau au plus 3m associé par la
m-ième étape du lemme à y = pn+1(x). Soit x′ l’élément correspondant à x.
Comme 12m + n + 1 + 2n < 24(m + 1), p(x) et p(x′) ont des n-voisinages
isomorphes, ainsi que x et x′, et aussi les points v et v′ situés moins de n
niveaux au-dessus; par ailleurs x′ n’a pas de queue (on la lui a coupée), de
sorte que les points éventuellement contraints par la longue queue de x sont
maintenant libres, et qu’on peut les mettre dans V ou dans ¬V ad libitum,
si bien qu’il y a une façon de faire qui donne le même triangle au-dessus de
x′ qu’au-dessus de x, tant qu’on reste en-dessous du niveau 24(n+ 1).

2. x a une queue de longueur inférieure ou égale à n + 6m. Dans ce cas-là,
nous devons reproduire les n-voisinages de x, de p(x), des points v, mais
aussi du point u qui est au bout de la queue, et pour cela il nous suffit de
reproduire grâce à l’hypothèse de récurrence le triangle de racine pn(u) et de
hauteur n+ 6m+ n+ 2n en-dessous du niveau 24(m+ 1): ça marche parce
que 12m+ 4n < 24(m+ 1).

68 B. Poizat

Nous avons recopié x en x′ à un niveau majoré par 6m+n+1 dans le premier
cas, 12m+2n dans le second. Il ne reste plus qu’à observer que 2n+12m ≤ 6n.
Fin

Remarque. Quand le lapin blanc est sorti du chapeau, on aime bien connâıtre
le truc. Cette démonstration dépend de trois paramètres A,B et C: on demande
que la longueur des formules soit au moins An; on cherche à reproduire les racines
des triangles de hauteur n en dessous du niveau Bn; pour le pas de récurrence,
on divise n par C, ce qui demande AC comme longueur minimum de formule.
On pose m = �n/C�, et on coupe les queues à n+Bm; le premier cas demande
que Bm + n + 1 + 2n < A(m + 1), le second que 2Bm + 4n < A(m + 1), et la
conclusion que 2Bm+ 2n ≤ Bn. Cela donne 2B + 2C ≤ A, 2B/C + 2 ≤ B, soit
encore, pour C ≥ 2, B ≥ 2C/C − 2, A ≥ 4C(C − 1)/C − 2; le minimum pour A
est atteint en C = 2 +

√
2, et vaut 12 + 8

√
2. J’ai choisi les paramètres C = 3,

B = 6, A = 24, valeur très proche du minimum; d’autres choix raisonnables sont
C = 4, B = 4, A = 24, ou C = 6, B = 3, A = 30. Les grandes valeurs de C – et
de A ! – font tendre au contraire B vers sa borne inférieure.

Conclusion

Si on ajoute au langage de M une constante r nommant une racine (p(r) = r),
on obtient une structure qui a un algorithme de décision rapide pour ses énoncés
existentiels, puisque (∃y)φ(r,y) est vrai si et seulement si V (τφ(r)) l’est: pour
voir si l’énoncé est vrai, on calcule τφ(r) et on teste s’il satisfait V ! C’est peut-être
pas bien convaincant comme exemple, puiqu’il s’agit d’un “algorithme” au sens
de la structureM , où, suivant les conventions de [1] ou [7], ou plus généralement
de la Complexité Algébrique, on considère par définition comme algorithmique
l’évaluation d’une formule (et même d’un circuit) libre de quanteurs. Je ne crois
pas beaucoup améliorer mon cas en faisant observer que le problème analogue
pour la structure {0, 1} est NP -complet.

Cependant, on pourra poser 0 = s0(r) et 1 = s1(r) pour respecter les conven-
tions de [7]; comme un énoncé n’est rien d’autre qu’un objet syntaxique, la pro-
priété décrite au paragraphe ci-dessus s’interprète ainsi: tout problème booléen
qui est NP au sens de M est P au sens de M ! Il est très facile de construire des
structures ou n’importe quel problème booléen est P grâce à l’intervention d’un
paramètre approprié (voir les “dictionnaires” de [4], mais dans le cas présent, il
n’est nul besoin d’ajouter des paramètres pour transformer un algorithme NP
en un algorithme P ayant même effet sur des données booléennes: je ne connais
pas de méthode de construction plus simple pour obtenir cette propriété.

On observe aussi que la formule V (τφ(x)) est horriblement séquentielle, alors
que j’ai annoncé dans l’introduction un contrepoint à NC1 = P ! Cela vient de ce
que, puisqu’il y a des fonctions, il n’est plus possible de paralléliser les formules,
si bien que la connection entre “formules écrites sous forme traditionnelle” et
“circuits de profondeur logarithmique” est perdue!

Je conjecture que notre modèle M n’élimine plus rapidement dès qu’il reste
deux variables libres: la candidate à une élimination difficile, c’est la formule

Une tentative malheureuse . . . 69

existentielle en les deux variables libres x et x′ qui exprime le fait qu’il existe
ε1, . . . , εn tels que soient vérifiées V (sε1 , . . . , sεn(x)) et ¬V (sε1 , . . . , sεn(x′)); elle
s’écrit:

(∃y1) · · · (∃yn)(∃z1) · · · (∃zn)
((y1 = s0(x) ∧ z1 = s0(x′)) ∨ (y1 = s1(x) ∧ z1 = s1(x′))) ∧ · · · ∧
((yi+1 = s0(yi) ∧ zi+1 = s0(zi)) ∨ (yi+1 = s1(yi) ∧ zi+1 = s1(zi))) ∧ · · · ∧
V (yn) ∧ ¬V (zn).
Il est probable qu’on ne puisse décider de la véracité de cette formule sans

faire dans les pires cas beaucoup de tests, c’est-à-dire, selon les mots de [3], qu’il
n’y ait pas d’arbres de décision de profondeur polynomiale pour les problèmes
NP au sens deM . Je pense donc queM satisfait P = NP , et même P = NBP .
Pour en avoir le coeur net, il faudrait examiner le problème suivant: soit B0 un
bloc deM dont tous les points libres sont hors de V ; si je perturbe sa construction
en mettant un certain point libre dans V , quels sont les points contraints qui
vont être touchés? Combien y en aura-t’il à un niveau donné?

Comme nous l’avons dit, la faiblesse de la méthode vient de ce qu’elle n’utilise
que des fonctions unaires. Pour éliminer rapidement les quanteurs sans restriction
sur x, la tentation est de coller un prédicat de vérité sur la fonction-couple de
la Théorie des Ensembles, qui n’est autre qu’une algèbre libre, à une infinité de
générateurs, dans le langage d’une fonction binaire (c’est un exemple d’algèbre de
Malcev). C’est cette méthode qui a donné facilement dans [7] p. 188 un exemple
de structure où P = NBP ; mais ça risque d’être beaucoup plus dur quand on
est en présence de quanteurs véritables, car si la théorie de l’algèbre de Malcev
elle-même est facilement contrôlable [2], elle devient sauvage quand on lui ajoute
un prédicat unaire arbitraire, puisque l’arité unaire n’est pas plus simple qu’une
autre en présence d’une bijection entre l’univers et son carré cartésien!

Ce dont nous avons profité, c’est que la théorie des modèles pour deux suc-
cesseurs est non seulement absolument triviale, mais qu’elle le reste si on intro-
duit des prédicats unaires à peu près arbitraires. C’est ça qui nous a permis de
prévoir le comportement final de l’objet que nous étions en train de constru-
ire. Dans cette nouvelle situation infiniment plus complexe, il nous faudrait une
classe de prédicats qui restent sous contrôle quand on les plaque sur la fonction-
couple, tout en laissant assez de liberté de choix pour pouvoir représenter la
vérité. Ça n’a pas l’air si simple, et je n’ai pas de candidat; d’un autre côté, je
ne vois aucune raison métaphysique qui interdise l’existence d’une telle struc-
ture, et je suis étonné de n’avoir jamais rencontré dans mes lectures de tentative
d’en fabriquer une: vu la célébrité des résultats de Gödel et de Tarski, affir-
mant l’impossibilité de définir les énoncés prouvables ou les énoncés vrais, il
est surprenant de constater que personne n’ait voulu, par la construction de
contre-exemples, en délimiter précisément le cadre de validité.

L’idéal, ça serait d’exhiber τφ(x) de longueur logarithmique, et de construire
V tel que (∃y)φ(x,y) équivaille à V (τφ(x)).

On pourrait aussi chercher à éliminer en suivant de tout autres principes, par
exemple en déterminant un y, s’il en existe, parmi ceux qui satisfont φ(x,y) (à ce
propos, la question 1 au bas de la p. 181 de [7] est complètement stupide, puisque

70 B. Poizat

dans un corps fini toute fonction est polynôme; comme le montre le lemme
d’élimination, on a également des fonctions de Skolem décrites par des termes
dans le langage de un ou plusieurs successeurs, augmenté du sélecteur et de la
fonction caractéristique de l’égalité; mais le problème est celui de la complexité
du uple de termes associé à la formule φ), ou bien en décrivant une bonne raison
expliquant si oui ou non il y a un y qui satisfait φ(x,y). Ce serait quelque chose
qui ressemblerait d’avantage à l’idée qu’on se fait d’un algorithme d’élimination
que la simple consultation d’un oracle miraculeux. Il est aussi possible que ce
que j’ai fait ici soit näıvement compliqué, et que certaines structures très simples
et bien connues éliminent de toute évidence et à une vitesse foudroyante; mais
j’en doute.

References

1. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computations.
Springer-Verlag (1998).

2. Bouscaren, E., Poizat, B.: Des belles paires aux beaux uples. Journal of Symbolic
Logic 53 (1988) 434–442.

3. Fournier, H., Koiran, P.: Lower bounds are not easier for the Reals. Prépublications
LIP-ENS Lyon, Number 1999-21 (1999).

4. Goode, J.B.: Accessible telephone directories. Journal of Symbolic Logic, 59 (1994)
92–105.

5. Koiran, P.: Transfer theorems via sign conditions. Prépublications LIP-ENS Lyon,
Number 2000-13 (2000).

6. Poizat, B.: Cours de Théorie des Modèles. Nur al-Mantiq wal-Maŕifah. Version
anglaise par Moses Klein, A Course in Model Theory, Springer-Verlag (2000).

7. Poizat, B.: Les petits cailloux. Nur al-Mantiq wal-Márifah. Aléas Editeur, 15 quai
Lassagne, 69001 Lyon, France.

Translating Theory into Practice —
Abstract State Machines within Microsoft

Wolfram Schulte

Microsoft Research
One Microsoft Way, Redmond, WA, 98052-6399, USA

Phone: +1 425 703 4641, schulte@microsoft.com
http://research.microsoft.com/users/schulte/

As researchers in rigorous methods we are interested in the challenge of build-
ing and maintaining software systems on a massive scale. Our methods must work
for real-world systems with hundreds or thousands of components that interact
in complex ways.
To this end, Microsoft Research has recently developed a new specification

language called ASML. It is based on Abstract State Machines and tailored to
inter-operate with Microsoft runtime environments and languages.
Specifications written in ASML are executable. They expose the same inter-

faces as the actual implementation, and are packaged as programs or libraries.
Accordingly, ASML can be integrated into Microsoft runtime environments and
inter-operate with other other languages. Developers can use them from within
Microsoft’s Visual Studio integrated development environment, and specifica-
tion writers can include ASML in other project-related documents, such as those
stored as Microsoft Word files or HTML. The compiler extracts the ASML source
from the text document to execute the model.
In this way ASML can be used to:

– Explore user scenarios interactively from within a test harness.
– Explore the proposed functionality in a live environment.
– Check the implementation against the specification.

In this abstract, I will only describe the last of these, namely, how to use
ASML as part of the development process to check that specifications and their
corresponding implementations agree.
When an implementation becomes available, it can be run in parallel with

its executable specification. This involves a new kind of runtime check: we test
the implementation’s externally visible behavior over time against the behav-
ior embodied in the ASML specification. This kind of runtime checking has
the advantage over other approaches in being able to detect errors without in-
strumenting the components being tested. Even with no access to component
internals, we can monitor the sequence of external component interactions, the
arguments passed and the values returned. If any of the assumptions of the de-
sign are inconsistent with the observed behavior, a runtime assertion failure will
occur, and the developer will receive contextual information about the run. Sim-
ilarly, if the specification is in error, it will cause false runtime assertion failures.
This provides a way of ensuring that specifications are always current.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, p. 71, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Choiceless Polynomial Time Logic:
Inability to Express

Saharon Shelah

Institute of Mathematics
The Hebrew University

Jerusalem, Israel

Rutgers University
Mathematics Department
New Brunswick, NJ USA

Dedicated to my friend Yuri Gurevich

Abstract. We prove for the logic
∼
CPT ime (the logic from the title) a sufficient

condition for two models to be equivalent for any set of sentences which is “small”
(certainly any finite set), parallel to the Ehrenfeucht Fräıssé games. This enables

us to show that sentences cannot express some properties in the logic
∼
CPT ime

and prove 0-1 laws for it.

Key words and phrases. Finite model theory; Computer Science; Polynomial time logic;
choiceless; games.

Partially supported by the United States-Israel Binational Science Foundation. Publication
634.

I would like to thank Alice Leonhardt for the beautiful typing.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 72-125, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Choiceless Polynomial Time Logic: Inability to Express 73

Annotated Content

§0 Introduction

§1 The Choiceless Polynomial Time Logic Presented
[We present this logic from a paper of Blass, Gurevich, Shelah [BGSh
533]; where the intention is to phrase a logic expressing exactly the prop-
erties which you can compute from a model in polynomial time without
making arbitrary choices (like ordering the model).]

§2 The General Systems of Partial Isomorphisms
[We define a criterion for showing that the logic cannot say too compli-
cated things on some models using a family of partial automorphisms
(not just real automorphisms) and prove that it works. This is a relative
of the Ehrenfeucht-Fräıssé games, and the more recent pebble games.]

§3 The Canonical Example
[We deal with random enough graphs and conclude that they satisfy the

0-1 law for the logic
∼
CPT ime thereby proving the logic cannot express

too strong properties.]

§4 Relating the Definitions in [BGSh 533] to the Ones Here
[We show that the definition in [BGSh 533] and the case ι = 7 here are
essentially the same (i.e. we can translate at the cost of only in small
increases in time and space).]

§5 Closing Comments
[We present a variant of the criterion (the existence of a simple k-system).
We then define a logic which naturally expresses it. We comment on
defining Nt[M] for ordinals.]

74 S. Shelah

§0 Introduction

We deal here with choiceless polynomial time logic, introduced under the name
∼
CPT ime in Blass Gurevich Shelah [BGSh 533]; actually we deal with several
versions. Knowledge of [BGSh 533], which is phrased with ASM (abstract state
machine), is not required except when we explain in §4 how the definitions here
and there fit. See there more on background, in particular, on ASM-s and
logic capturing P Time. The aim of this logic is to capture statements on a
(finite) model M computable in polynomial time and space without arbitrary
choices. So we are not allowed to choose a linear order onM , but if P is a unary
predicate from the vocabulary τM of M and PM has ≤ log2(‖M‖) elements
then we are allowed to “create” the family of all subsets of PM , and if e.g.
(|PM |)! ≤ ‖M‖ we can create the family permutations of PM . Note that a

statement of the form
∼
CPT ime captures what can be computed in polynomial

time without arbitrary choices” is a thesis not a theorem. For a given model M ,
we consider the elements ofM as urelements, and build inductively Nt = Nt[M],
with N0 =M,Nt+1 ⊆ Nt[M] ∪ P(Nt[M]) but the definition is uniform and the
size of Nt[M] should not be too large, with the major case being: it has a
polynomial bound.

So we should have a specific guide Υ telling us how to create Nt+1 from Nt,
hence we should actually write Nt[M,Υ]. In the simplest version (we called it
pure) essentially Υ = {ψ�(x, ȳ) : < m0} and Nt is a transitive finite set withM
the set of urelements, N0 =M,Nt+1 = Nt ∪ {{a : Nt |= ψ�(a, b̄)} : b̄ ∈ �g(ȳ)(Nt)
and < m0}; where each ψ� is a first order formula in the vocabulary of M
plus the membership relation ∈, (i.e. τM ∪ {∈},) and Nt has the relations of
M and the relation ∈� Nt. We stop when Nt = Nt+1, in the “nice” cases after
polynomial time and space, and then can ask “N |= χ”? getting yes or no.

We consider several versions of the definition of the logic; this should help
us to see “what is the true logic capturing polynomially computable statements
without making arbitrary choices”.

Our aim here is to deal with finite models and processes, but we dedicate a
separate place at the end to some remarks on infinitary ones and set theory. We
also comment in this section on classical model theoretic roots; both, of course,
can be ignored.

For a logic L it is important to develop methods to analyze what it can say.
Usual applications of such methods are to prove that:

(a) no sentence in L expresses some property (which another given logic can
express so we can prove that they are really different)

(b) certain pairs of models are equivalent

(c) zero-one laws.

For first order logic we use mostly elimination of quantifiers, E.F. (Ehrenfeucht-
Fräıssé) games (see [CK] or [Ho93] or Ebbinghaus and Flum [EbFl95]) and
others; we are most interested in relatives of E.F. games. In finite model theory
people have worked on the logic Lω,k (usually denoted by Lkω,ω) of first order

Choiceless Polynomial Time Logic: Inability to Express 75

formulas in which every subformula has ≤ k free variables, a relative of the Lλ,κ
logics (see e.g. [Di]). We can use even such formulas in L∞,ω but for equivalence
of finite models this does not matter. For L∞,κ the relatives of E.F. games are
called pebble games (see [EbFl95]).

The E.F. criterion (see Karp [Ka]) for the L∞,ω-equivalence of two models
M1,M2 of the same vocabulary τ is the existence of a non-empty family F of
partial one-to-one functions fromM1 toM2 such that for every f ∈ F, i ∈ {1, 2}
and a ∈ Mi there is g ∈ F extending f such that i = 1 ⇒ a ∈ Dom(g)
and i = 2 ⇒ a ∈ Rang(g) (a particular case is M = N ; there, of course,
M,N are equivalent but the question is when are (M,a), (M, b) equivalent).
Note that for finite models and even for countable models, this criterion implies
isomorphism. But if we restrict ourselves to first order sentences of quantifier
depth < k we can replace F by 〈F� : < k〉 and above we say that for every
f ∈ F�+1, j ∈ {1, 2}, a ∈ Mj there is g ∈ F� as there (this is the original E.F.
game). For L∞,k this does not work but without loss of generality, f ∈ F &
A ⊆ Dom(f) ⇒ f � A ∈ F, and above we restrict ourselves to f ∈ F with
|Dom(f)| < k. Now probably the simplest models are those with equality only:
so every permutation of the (universe of the) model is an automorphism. So

using this group it is proved in [BGSh 533] that
∼
CPT ime cannot say much on

such models, thus showing that the
∼
CPT ime does not capture P Time logic, in

fact odd/even is not captured.
But in our case suppose we are given F, a family of partial isomorphisms

from M1 to M2, we have to create such a family for Nt[M1,Υ], Nt[M2,Υ].

We answer here some questions of [BGSh 533]: get a 0-1 law, show that
∼
CPT ime

+ counting does not capture P Time.
Note that if PM is small enough then we can have e.g. Per(PM), the group

of permutations of PM , as a member of Nt = Nt[M,Υ] for t large enough: just
in N3t we may have the set of partial permutations of PM of cardinality < t.

We thank Yuri Gurevich and Andreas Blass for helpful comments.

Notation:
1) Natural numbers are denoted by i, j, k, ,m, n, r, s, t. We identify a natural
number t with {s : s < t} so 0 = ∅ and we may allow t = ∞ = the set of natural
numbers (ω for set theorists). Let [m] = {1, . . . ,m}.
2) Let τ denote a vocabulary, i.e. a set of predicates P (each predicate with
a given arity n(P)); we may also have function symbols, but then it is natural
to interpret them as partial functions, so better to treat them as relations and
avoid function symbols. We may attach to each predicate P ∈ τ a group gP
permutations of {0, . . . ,n(P)− 1} telling under what permutations of its argu-
ment places the predicate P is supposed to be preserved; if not specified gP is a
trivial group.
3) Let P,Q,R denote predicate symbols.
4) Formulas are denoted by ϕ,ψ, θ, χ; usually θ, χ are sentences.
5) Let L denote a logic and L(τ) denote the resulting language, the set of L-
formulas in the vocabulary τ .
6) Let M,N denote models and let τM = τ(M) denote the vocabulary of M

76 S. Shelah

and let PM denote the interpretation of the predicate P ∈ τM . So PM is a
relation on M with arity n(P) and if gP = gτP is not trivial and σ ∈ gP , 〈a� :
 < n(P)〉 ∈ n(P)M , then 〈a� : < n(P)〉 ∈ PM ⇔ 〈aσ(�) : < n(P)〉 ∈ PM .
Models are finite if not said otherwise.
7) Let |M | be the universe (= set of elements) of M and ‖M‖ the cardinality of
|M |, but abusing notation we may say “of M”.
8) Let t, s denote functions from the set of natural numbers to the set of natural
numbers ≥ 1 and let T denote a family of such functions. We may write t(M)
instead of t(‖M‖).
9) For a function f and a set A let f”(A) = {f(x) : x ∈ A and x ∈ Dom(f)}.
[Why do we not write f(A)? Because f may act both on A and on its elements;
this occurs for functions like G(f), defined and investigated is §2.]

0.1 Discussion: Would we really like to allow t(M) to depend not just on ‖M‖?
For the definition of the logic we have no problems, also for the criteria of equiva-
lence of M1,M2 (except saying ‖M1‖ = ‖M1‖ & t1 = t2 ⇒ t1(M1) = t2(M2)).
But this is crucial in proving a weak version of the 0-1 law, say for random
graphs, to overcome this we need to “compensate” with more assumptions.

§1 The Choiceless Polynomial Time Logic Presented

Here we present the logic. How does we “compute” when a model M satisfies a
“sentence” θ? Note that the computation should not take too long and use too
much “space” (in the “main” case: polynomial).

Informally, we start with a modelM with each element an atom=ure-element,
we successively define Nt[M] and N+

t [M], an expansion of Nt[M], t running on
the stages of the “computation”; to get Nt+1[M] from Nt[M] we add few families
of subsets of Nt, each family for some ψ consist of those defined by a formula
ψ(−, ā) for some ā from Nt[M], and we update few relations or functions, by
defining them from those of the previous stage. Those are Pt,� for < m1. We
may then check if a target condition holds, then we stop getting an answer:
the model satisfies θ or fails by checking if some sentence χ holds; the natural
target condition is when we stop to change. Note that each stage increases the
size of Nt[M] by at most a (fixed) power, however in ‖M‖ steps we may have
constructed a model of size 2‖M‖ but this is against our intentions. So we shall
have a function t in ‖M‖, normally polynomial, whose role is that when we have
wasted too much resources (e.g. ‖Nt[M]‖+ t) we should stop the computation
even if the target condition has not occurred, in this case we still have to decide
what to do.

This involves some parameters. First a logic L telling us which formulas are
allowable

(a) in the inductive step (the ψ�(−, ȳ)− s)
(b) in stating “the target condition” (we use standard ones: N+

t+1 = N
+
t or

P0 = P2 or c0 = c2) and the χ telling us if the answer is yes or no.

Choiceless Polynomial Time Logic: Inability to Express 77

Second, a family T of functions t (with domain the family of finite models) which
tell us when we should stop having arrived to the limit of allowable resources
(clearly the normal family T is {tk : k < ω} where tk(M) = ‖M‖k). So for Υ
which describes the induction step (essentially how to get Nt+1[M] from Nt[M]),
χ telling us the answer and t ∈ T we have a sentence θΥ,χ,t. We still have some
variants, getting a logic LT

ι [L
∗] for each ι ∈ {1, 2, 3, 4, 5, 6, 7, 11, 22}.

In the case ι = 1 we ignore t, so M |= θΥ,χ,t iff for some t < ∞ the target
condition N+

t = N+
t+1 holds, or let t = ∞ and for this t, χ is satisfied by N+

t .
This is a very smooth definition, but we have lost our main goal. We may restrict
ourselves to “good” sentences for which we always stop in “reasonable” time and
space.

In the case ι = 2, possibly we stop because of t before the target condition
holds; in this case we say “θΥ,χ,t is undefined for M”. The case ι = 3 is like
ι = 2 but we restrict ourselves to the so called “standard T”, where in Nt[M]
we have the natural numbers < t, so we can ignore the “time” as a resource as
always ‖Nt[M]‖ ≥ t. The case ι = 4, is like ι = 3 but instead stopping when
‖Nt[M]‖ is too large, we stop when at least one of the families of sets added to
Nt[M] to form Nt+1[M] is too large. For ι = 5, is like the case ι = 2, but an
additional reason for stopping is t > t(‖M‖). The case ι = 6 is as the case ι = 2
separating the bounds on “space” (that is ‖Nt[M]‖) and “time” (that is t), the
case ι = 7 is similar, not stopping for N+

t = N+
t+1. The cases ι = 11, ι = 22

are like ι = 1, ι = 2 respectively, but using Nt[M,Υ, t] (see Definition 1.1(c))
instead Nt[M,Υ] but for ι = 22 we separate t to two functions.

We treat as our main case ι = 3, see more 1.7.

More formally

1.1 Definition. 1) We are given a model M , with vocabulary τ = τ[0], τ finite
and ∈ not in τ , let τ+ = τ[1] = τ ∪{∈}. Considering the elements ofM as atoms
= urelements, we define Vt[M] by induction of t : V0[M] = (M, ∈� M) and
clearly with ∈� M being empty (as we consider the members of M as atoms =
“urelements”). Next Vt+1[M] is the model with universe Vt[M]∪{a : a ⊆ Vt[M]}
(by our assumption on “urelements” we have a ⊆ Vt[M] ⇒ a /∈ M) with the
predicates and individual constants and function symbols of τ interpreted as in
M (so function symbols in τ are always interpreted as partial functions) and
∈Vt+1[M] is ∈� Vt+1[M].
2)

(A) We say Υ = (ψ̄, ϕ̄, P̄) is an inductive scheme for the logic Lf.o. or
the language Lf.o.(τ) (where Lf.o. is first order logic) if: letting m0 =
g(ψ̄),m1 = g(ϕ̄) and τ[2] = τ[2][Υ] = τ[1] ∪ {Pk : k < m1} we have

(a) P̄ = 〈Pk : k < m1〉 is a sequence (with no repetitions) of predicates
and function symbols not in τ[1] (notationally we treat an n-place
function symbol as (n+1)-predicate); where Pk is anmΥ(Pk)-place
predicate. Let mΥ

1 be the function giving this information and
whether Pk is a predicate or a function symbol (so have domain
{0, . . . ,m1 − 1})

78 S. Shelah

(b) ψ̄ = 〈ψ� : < m0〉, ψ� = ψ�(x; ȳ�) is first order in the vocabulary
τ[2],

(c) ϕ̄ = 〈ϕk : k < m1〉, ϕk = ϕk(x̄k) is first order in the vocabulary τ2
with g(x̄) = m(Pk), moreover x̄ = 〈xi : i <m(Pk)〉.

(B) We say Υ is simple if
(d) each Pk is unary predicate and and each ϕk(x) appears among the

ψ�’s (with empty ȳ�) and for every hereditary model N∗ ⊆ V∞[M],
and a τ[2]–expansion N+ of N∗ we have {a : N+ |= ϕ�(a)} is a
member of N∗ or is ∅

(C) We may write mΥ
0 ,m

Υ
1 , ψ

Υ
� ,m

Υ,mΥ
1 , ϕ

Υ
� , ψ

Υ
� , P

Υ
� . We let

ΨΥ = {ψ�(x, ȳ�) : < mΥ
0 }.

(D) We say Υ is predicative if each Pk is a predicate; we may restrict ourselves
to this case for the general theorems. We say Υ is pure if m1 = 0

(E) Υ is monotonic if y ∈ x is ψ� for some < mΥ
0 (this will cause Nt below

to grow); no big loss if we restrict ourselves to such Υ. It is strongly
monotonic if in addition each ϕk(x̄) has the form Pk(x̄)∨ϕ′k(x̄) (this will
cause also each Pk to grow)

(F) Υ is i.c. if each Pk is (informally an individual constants scheme) a zero
place function symbol; in this case if Pk is well defined we may write it
as ck.

3) For M, τ = τ[0], τ[1], τ[2], and Υ = (ψ̄, ϕ̄, P̄) as above, we shall define by
induction on t a submodel Nt = Nt[M] of Vt[M] and P̄t = 〈Pt,k : k < m1〉
and N+

t [M] and Pt,� (for < m0) as follows; more exactly we are defining
Nt[M,Υ], Pt,k[M,Υ] for k < m1,Pt,k[M,Υ] for k < m0.

We let N+
t [M,Υ] = (Nt[M,Υ], Pt,0[M,Υ], . . . , Pt,m1−1[M,Υ]).

Case 1: t = 0: Nt[M] = V0[M] and Pt,k = ∅ (an mΥ(k)-place relation).

Case 2: t+ 1: Nt+1[M] is the submodel of Vt+1[M] with set of elements the
transitive closure of M ∪

⋃
�<m0

Pt,�[M] where we define Pt,k[M] and Pt+1,� by:

Pt,�[M] =
{
{a ∈ Nt[M] : N+

t [M] |= ψ�(a, b̄)} : b̄ ∈ (�g(ȳi))(Nt[M])
}

Pt,k = {ā ∈ m(k)(Nt[M]) : N+
t [M] |= ϕk[ā]}

but if Pk is a function symbol,

Pt,� = {āˆ〈b〉 ∈ Nt[M] : N+
t [M] |= ϕ�(ā, b) & (∃!y)ϕ�(ā, y)}

Choiceless Polynomial Time Logic: Inability to Express 79

(so if Υ is simple, then for t > 1, ψk(x, ȳ) ∈ Lf.o.(τ[2]) is actually ψ′k(x, ȳ, c̄t−1) ∈
Lf.o.(τ[1])).

Case 3: t = ∞
Nt =

⋃
s<t

Ns, Pt,k =
⋃
s<t

Ps,k.

3A) If in addition t ∈ T and Υ is monotonic (see part (2) clause (E)) we define
Nt[M,Υ, t], Pt,�[M,Υ, t] and Pt,�[M,Υ, t] as in part (3) except that the universe
of Nt+1[M,Υ, t] is the transitive closure of M ∪ ⋃{Pt,�[M,Υ, t] : < m0 and
Pt,�[M,Υ, t] has at most t(‖M‖) members}.
4) We say Υ is standard if some ψi guarantees that t ⊆ Nt[M] (so a natural
number s belongs to Nt[M] iff s < t; remember that we identify the natural
number t with the set {0, 1, . . . , t− 1}).
5) Let q.d.(ϕ) be the quantifier depth of the formula ϕ.
6) We may replace above first order logic by another logic L. We let Lf.o. denote
first order, Lcard is defined just like first order logic except that we demand that
Υ is standard and defining inductively what is a formula, we allow the formation
of formulas the form |{x : θ(x, ȳ)}| = s. We let Lcard,T (on T see below) be
defined just like Lf.o. but for each t ∈ T we allow the quantifier (Qtx)ϕ(x, ȳ)
with

N |= (Qtx)ϕ(x, ā) iff t(|ure(N)|) < |{b : N |= ϕ(b, ā]}|,
where ure(N) is the set of urelements of N .
6A) Lastly, let Lf.o.+na be like Lf.o. but we add one atomic formula |atoms| = x
being interpreted as: the number of atoms is x. So this can be expressed in
Lcard,T where T = {id}, id(n) = n.

1.2 Remark. Alternatively to Lcard: have a quantifier

(Qeqx1, x2)(ϕ2(x1, ȳ1), ϕ2(x2, ȳ2)),

which says that |{x : ϕ2(x, ȳ1)}| = |{x : ϕ2(x, ȳ2)}|.

In the definition below the reader can concentrate on ι = 3. The “t ≥ 2 & . . . ”
is not a serious matter.

1.3 Definition. Let T be a set of functions t : N → N∪{∞} and L∗ be a logic
(Lf.o. or Lf.o.+na or Lcard usually) and let τ be a vocabulary. If t is constantly
∞ we may write ∞.

We define for ι = 1, 2, 3, 4, 5, 6, 7, 11, 22 the logic LT
ι [L

∗] below. For all of
those logics the set of sentences for a vocabulary τ called LT

ι [L
∗](τ) is a subset

of Θ = Θτ = Θτ [L∗,T] = {θΥ,χ,t : Υ an inductive scheme for L∗(τ), χ ∈
L∗(τ) and t ∈ T}, (equal if not said otherwise). Also for most of those logics
we define the stopping time tι[M,Υ, t] or tι[M,Υ] (if t does not matter). The
satisfaction relation for LT

ι [L
∗](τ) is denoted by |=ι. Also we write θΥ,χ instead

θΥ,χ,t if t does not matter. (We may let Dom(t) be the set of relevant structures,
see 0.1).

80 S. Shelah

Case 1: ι = 1.
We let

tι[M,Υ] = Min{t : t ≥ 2 and N+
t [M,Υ] = N+

t+1[M,Υ]}.
(If there is no such t ∈ N we let it be ∞ (i.e., ω for set theorists) and we could
also have used “undefined”; note that t does not appear).
M |=ι θΥ,χ iff N+

t [M,Υ] |= χ for t = tι[M,Υ].

Case 2: ι = 2.
We let tι[M,Υ, t] = Min{t : ‖Nt+1[M,Υ]‖ + (t + 1) > t(‖M‖) or t ≥ 2 &
N+

t [M,Υ] = N+
t+1[M,Υ]} and

(a) if for t = tι[M,Υ, t] we have t ≥ 2 & N+
t [M,Υ] = N+

t+1[M,Υ] then
θΥ,χ,t is true or false in M iff N+

t [M,Υ] |= χ or N+
t [M,Υ] |= ¬χ re-

spectively and we write M |=ι θΥ,χ,t or M |=ι ¬θΥ,χ,t respectively, (so
¬θΥ,χ,t is equivalent to θΥ,¬χ,t).

(b) if tι[M,Υ, t] = t(‖M‖) + 1 we say “M |=ι θΥ,χ,t is undefined” and we
say “the truth value of θΥ,χ,t in M is undefined”.

Case 3: ι = 3.
As in Case 2 but we restrict ourselves to standard Υ, see Definition 1.1(4), and
let tι[M,Υ, t] = Min{t : ‖Nt+1[M,Υ]‖ > t(‖M‖) or t ≥ 2 & N+

t [M,Υ] =
N+

t+1[M,Υ]} and define |=ι as in Case 2.

Case 4: ι = 4.
As in Case 2 but we restrict ourselves to standard Υ and let:

tι[M,Υ, t] = Min{t :for some k < m0 the set Pt+1,k[M,Υ]

has > t(‖M‖) members or

t ≥ 2 & N+
t [M,Υ] = N+

t+1[M,Υ]}

(so it can be ∞; but by a choice of e.g. ϕ0 we can guarantee Pt,0 = {0, . . . , t−1}
so that this never happens) and define |=ι as in Case 2.

Case 5: ι = 5.
As in Case 2 but we restrict ourselves to standard Υ and tι[M,Υ, t] = Min{t :
t > t(‖M‖) or for some k < m0 the set Pt+1,k[M,Υ] has > t(‖M‖) members
or t > 2 & N+

t [M,Υ] = N+
t+1[M,Υ, t]}.

Case 6: ι = 6.
As in the case ι = 2 but

tι[M,Υ, t] = Min{t : t > ttm(‖M‖) or ‖Nt[M,Υ]‖ > tsp(‖M‖)
or N+

t [M,Υ] = N+
t+1[M,Υ]}

Choiceless Polynomial Time Logic: Inability to Express 81

where

ttm(n) = t(2n), tsp(n) = t(2n+ 1)

and, of course, tm, sp stand for time and space, respectively. So we may replace t
by two functions ttm, tsp and write sentences as θΥ,χ,t′,t′′ (similarly for ι = 7, 22).

Case 7: ι = 7.
We define tι[M,Υ, t] = Min{t : t > ttm(‖M‖) or ‖Nt[M,Υ]‖ > tsp(‖M‖) or

≥ 2 & N+
t [M,Υ] = N+

t+1[M,Υ]}
and let:

M |=ι θΥ,χ,t iff Nt[M,Υ] |= χ for t = tι[M,Υ].

(so unlike cases 2-6, the truth value is always defined)

Case 11: ι = 11.
As in the case ι = 1, but we use Nt[M,Υ, t], P̄t[M,Υ, t] (see Definition

1.1(3A)).

Case 22: ι = 22.
As in the case ι = 2, but we use Nt[M,Υ, twd], P̄t[M,Υ, twd] where twd ∈ T

is defined by twd(n) = t(2n) (wd for width) and define tι by

tι[M,Υ, t] = Min{t :Nt+1[M,Υ, twd] + (t+ 1) > tht(‖M‖) or
t ≥ 2 & N+

t [M,Υ, twd] = N+
t+1[M,Υ, t

wd]}

where (ht for height)

tht ∈ T is defined by tht(n) = t(2n+ 1).

We may write twd, tht instead of t.

1.4 Remark. Alternatively:

Case 10 + ι: For ι = 1, . . . , 7.
Like the case ι but we use Nt[M,Υ, t], P̄t[M,Υ, t] and let t10+ι = tι.

Case 20 + ι: ι = 1, . . . , 7.
As in the cases ι = 1, . . . , 7, but we use Nt[M,Υ, twd], P̄t[M,Υ, twd], where

twd ∈ T is defined by t(n) = t(2n) (wd for width) and we replace t by
tht, tht(n) = t(2n + 1), where for x = tm,sp we derive from tht the functions
tht,x20+ι = (tht)x.

82 S. Shelah

1.5 Definition. 1) In Definition 1.3 we say “θΥ,χ,t is ι-good” when: for every
finite model M one of the following occurs:

(a) ι = 1 and tι[M,Υ] <∞
(b) ι ∈ {2, 3, 4, 5, 6, 7} and in the definition of tι[M,Υ, t] always the last

possibility occurs and not any of the previous ones

(c) ι = 11 as in the case ι = 1 using Nt[M,Υ, t], P̄t[M,Υ, t]

(d) ι = 22, as for ι = 2 using Nt[M,Υ, t], P̄t[M,Υ, t].

2) Let LT
ι (L

∗)good be the logic LT
ι (L

∗) restricted to ι-good sentences.
3) If in θΥ,χ,t we omit χ we mean Pt,0 = the set of atoms.
4) We say that M |=ι θΥ,χ,t is in a good way if this case of part (1) holds

1.6 Remark. We can replace in cases ι = 2,3,4 clause (b), the statementN+
t [M,Υ]

= N+
t+1[M,Υ] by a sentence χ1.

1.7 Discussion: 0) Note that considering several versions should help to see how
canonical is our logic.
1) The most smooth variant for our purpose is ι = 4, and the most natural
choice is L∗ = Lcard or L∗ = Lcard,T, but we are not less interested in the
choice L∗ = Lf.o.,L∗ = Lf.o.+na. From considering the motivation the most
natural T is {nm : m < ω}, and ι = 3.
2) For e.g. ι = 1, 2, 3 some properties of M can be “incidentally” expressed by
the logic, as the stopping time gives us some information concerning cardinality.
For example let Y be a complicated set of natural numbers, e.g. non-recursive,
and let t∗ ∈ T be: t(‖M‖) is ‖M‖+ 10 if ‖M‖ ∈ Y and t(‖M‖) = ‖M‖+ 6 if
‖M‖ /∈ Y . We can easily find θ = θΥ,χ,t∗ , with Υ a standard induction scheme
such that it stops exactly for t = 8 and χ saying nothing (or if you like saying
that there are 8 natural numbers). Clearly for ι = 2, 3 we have M |=ι θΥ,χ,t∗

if ‖M‖ ∈ Y and “not M |=ι θΥ,χ,t∗” if ‖M‖ /∈ Y . Of course, more generally,
we could first compute some natural number from M and then compare it with
t(‖M‖). This suggests preferring the option |=ι undefined in clause (b) of case
2, Definition 1.3 rather than false.
3) If you like set theory, you can let t be any ordinal; but this is a side issue
here; see end of §5.

Implicit in 1.3 (and an alternative to 1.3) is (note: an (M,Υ)-candidate (N, P̄)
is what looks like a possible Nt[M,Υ] and a (Υ, t)-successor of it is what looks
like Nt+1[M,Υ]):

1.8 Definition. Let M,Υ as in Definition 1.3 be given.
1) We say (N, P̄) is an M -candidate or (M,Υ)-candidate if:

(a) N is a finite transitive submodel of
⋃
t

Vt[M] which includesM , expanded

by the relations of M (so it is a (τM)[1]-model)

Choiceless Polynomial Time Logic: Inability to Express 83

(b) P̄ = 〈Pk : k < m1〉, Pk an mΥ(k)-relation on N or a partial (mΥ(k) −
1)-place function on N when Pk is a predicate or a function symbol
respectively.

In fact here the only information from Υ used is mΥ
1 of Υ, so we may write

“(M,mΥ
1)-candidate”.

2) We say (N ′, P̄ ′) is the (Υ, t)-successor of (N, P̄) if (N ′, P̄ ′), (N, P̄) satisfies
what N+

t+1[M,Υ, t], N
+
t [M,Υ, t] satisfies in Definition 1.1(3A), so

|N ′| = is the transitive closure of M ∪
⋃

�<m1

A�[N,Υ, t],

where A� = A�[N,Υ, t] is P�[N,Υ] =
{{a : (N, c̄) |= ψ�(a, b̄)} : b̄ ∈ �g(ḡ�)N

}
if

this family has ≤ t(M) members or is equal to N and A� is empty otherwise.
2A) We say (N ′, P̄) is the Υ-successor of (N, P̄) if (N̄ ′, P̄ ′), (N, P̄) satisfies what
N+

t+1[M,Υ], N
+
t [M,Υ] satisfies in Definition 1.1(3); this means just that (N ′, P̄ ′)

is the (Υ,∞)-successor of (N, P̄).
2B) If Υ is pure (i.e. mΥ

1 = 0), actually only ψ̄Υ count and we may replace Υ
by ψ̄Υ.
2C) We say that (N, P̄) is a (M,Υ)+-candidate if it is an (M,Υ)-candidate and
the sets ∅, |M | (= set of atoms) belongs to N .
3) We define Nt = Nt[M,Υ, t] and P̄t = P̄t[M,Υ, t] by induction on t as follows:

for t = 0 it is M (i.e. with Pt,k = ∅),
for t+ 1, (Nt+1, P̄t+1) is the (Υ, t)–successor of (Nt, P̄t), see below 1.9,

for t = ∞ we take the union.

1.9 Claim. 1) If (N, P̄) is an (M,Υ)-candidate, it has exactly one (Υ, t)-
successor (and exactly one Υ-successor).
2) The pair (Nt[M,Υ,∞], P̄t[M,Υ,∞]) defined in Definition 1.8(3), is equal to
the pair (Nt[M,Υ], P̄t[M,Υ]) defined in Definition 1.1(3).
3) If Υ is monotonic, (N ′, P̄ ′) the Υ-successor of (N, P̄) where both are (M,Υ)+-
candidates, then N ⊆ N ′; if Υ is also standard then N ⊂ N ′.
4) If Υ is strongly monotonic (see Definition 1.1(2)(E)) and (N ′, P̄ ′) is the Υ-
successor of (N, P̄) both are (M,Υ)+-candidates, then N ⊆ N ′ and P� ⊆ P ′� for
 < mΥ

1 .

There are many obvious inclusions between the variants of logics by natural
translations. We mention the following claim which tells us that there is no real
harm if we restrict ourselves to pure Υ’s.

1.10 Claim. 1) Assume the Υ is an inductive scheme in Lf.o.(τ+), χ a sen-
tence in Lf.o.(τ+). Then we can find a pure inductive scheme Υ∗ in Lf.o.(τ+)
and r∗, r∗∗ and p∗ and sentences θ∗, χ∗1 and formulas ϕ∗(x), ϕ∗k(x̄k) for k <
mΥ

1 , g(x̄�) = mΥ(k) in Lf.o.(τ) such that:

84 S. Shelah

� for every τ -model and t we have, if t∗ = r∗∗ + r∗t then:
(a) the set Nt[M,Υ] is {a ∈ Nt∗ [M,Υ∗] : Nt∗ [M,Υ∗] |= ϕ∗[a]},
(b) Pt,k[M,Υ] = {ā ∈ m(Nt∗ [M,Υ∗]) : Nt∗ [M,Υ∗] |= ϕ∗k[ā]}, where

m = mΥ(k),
(c) Nt[M,Υ] |= χ iff Nt∗ [M,Υ∗] |= χ∗,
(d) N+

t [M,Υ] = N+
t+1[M,Υ] (i.e. it stops) iff Nt∗ [M,Υ∗] |= θ∗ iff

Nt∗ [M,Υ∗] = Nt∗+1[M,Υ∗],
(e) Nt∗ [M,Υ∗] has exactly p∗(‖Nt[M,Υ]‖) elements, and Nt∗+r[M,Υ∗]

has ≤ p∗(‖Nt[M,Υ]‖) when r < r∗ and p∗ an integer polynomial,
(f) if Υ is standard then so is Υ∗.

2) Similarly using a logic L∗ if it is closed under first order operations and
substitutions.

Remark. We can similarly deal with Nt[M,Υ, t], but then we have to deal with
some form of cardinality quantifiers, etc.

Proof. For simplicity we assume that Υ is standard. Now for every (M,mΥ
1)–

candidate (N, P̄) we shall define a M -candidate N∗ = N∗(N,P̄). We shall have
N+

r∗∗+r∗t[M,Υ
∗] is N∗

N+
t [M,Υ]

.
The set of natural numbers of N∗ is {s : s < r∗∗ + r∗t}. The universe of N∗

is the union of the following sets:

(a) N
(b) {{x, r∗t} : x ∈ N}

(used to define N),
let ax,k,m =: {x, r∗t+ 1+ k, r∗t+ 1+mΥ

1 +m} for x ∈ N, k < mΥ
1 ,m <

mΥ(k)
(used to help to code Pt,k)

(c) {{axm,k,m : m <mΥ(k)} ∪ {r∗t+ 1 + k, r∗t+ 1 +mΥ
1 + i} :

k < mΥ
1 , x0, . . . , xmΥ(k)−1 ∈ N and i ∈ {0, 1} and

i = 1 ⇔ 〈xm : m ∈ mΥ(k)〉 ∈ Pt,k}
(d) some more elements to take care of the

“ Nt∗ [M,Υ∗] has exactly p∗(‖Nt[M,Υ]‖) elements ”

(if we agree to Nt∗ [M,Υ∗] has exactly p(‖Nt[M,Υ∗], t‖) then this is not
necessary).

The rest should be clear. �1.10

We try to sort out some of the relations between these logics by checking when
two variants of a sentence say related things, for quite many ι1, ι2.

Choiceless Polynomial Time Logic: Inability to Express 85

1.11 Claim. Let ι1, ι2 ∈ {1, . . . , 7} and θ� = θΥ,χ,t�
∈ LT(L∗)(τ) for = 1, 2

and consider

(α) θ2 is ι2-good implies θ1 is ι1-good,
(β) for every (finite) τ -model M, (M |=ι2 θ2) ⇒ (M |=ι1 θ1),
(β)− if θ� is ι�-good for = 1, 2 then M |=ι2 θ2 ⇒M |=ι1 θ1.

In the following clauses we list cases which holds under various conditions.
(A)(α) + (β) if ι1 = ι2 and t1 < t2,
(B)(α) + (β) if ι1 = 2, ι2 = 3,Υ is standard and t1 ≥ 2t2,
(C)(α) + (β) if ι1 = 3, ι2 = 2,Υ is standard and t1 ≥ t2,
(D)(α) + (β) if ι1 = 4, ι2 = 3,Υ is standard and t1 ≥ t2,
(E)(α) + (β)− if ι1 = 3, ι2 = 4,Υ is standard and t1 is large enough,
(F)(α) + (β) if ι1 = 5, ι2 = 3,Υ is standard and t1 ≥ t2,
(G)(α)+(β) if ι1 = 3, ι2 = 5,Υ is standard and (∀n)[t1(n) ≥ n+mΥ

0 t2(n)t2(n)],
(H)(α) + (β)− if ι1 = 1, ι2 = 2,
(I)(α) + (β)− if ι1 = 2, ι2 = 1 and t1 is large enough,

(i.e. t1(n) > Max{tι2 [M,Υ, t2] :M a τ -model
with universe [n] and tι2 [M,Υ, t2] <∞}; note that
Max is taken on a finite set)

(J)(α) + (β) if ι1 = 6, ι2 = 2 and t1(2n) ≥ t2(n), t1(2n+ 1) ≥ t2(n),
(K)(α) + (β) if ι1 = 2, ι2 = 6 and t2 ≥ t1(2n) + t1(2n+ 1),
(L)(α) + (β) if ι1 = 7, ι2 = 6 and t1 ≥ t2

(note: after “good” stopping, nothing changes) t1 is large
enough

Proof. Straightforward.

1.12 Conclusion. 1) Assume that T satisfies

(∗) (∀s ∈ T)(∀m)(∃t ∈ T)(∀n)(t(n) ≥ n+m(s(n))2).

Then the logics LT
ι (L

∗)good for ι = 2, 3, 4, 5, 6 are weakly equivalent where
L1,L2 are weakly equivalent if L1 ≤wk L2 and L2 ≤wk L1; where L1 ≤wk L2

means that for every sentence θ1 ∈ L1 there is θ2 ∈ L2 such that for every M
we have1 M |= θ1 implies M |= θ2
2) If in addition T consists of integer polynomials and L∗ ∈ {Lf.o.+na,Lcard}
we can add ι = 7.

1.13 Remark. In part 1.12(2) we can replace the assumption on t demanding
only that:

1Note that if teh truth value of θ1 in M is undefined, then the implication is trivial.

86 S. Shelah

(∗) for every t ∈ T view t as (ttm, tsp) there is s ∈ T such that we can
“compute” ttm(n), tsp(n) is stm(n) time, ssp(n) space in the relevant
sense (using the given L∗, etc.).

1.14 Claim. The family of good sentences in the logic LT
ι (L

∗
f.o.), that is the

logic LT
ι (L

∗
f.o.)

good, is closed under the following: the Boolean operation, (∃x),
and substitution (that is, up to equivalence) when at least one of the following
holds

(∗)1 ι = 1
(∗)2 ι ∈ {2, 3, 5} and T satisfies (∗) of 1.12
(∗)3 ι = 11
(∗)4 ι = 22 and for each t ∈ T,T[twd] =: {sht : s ∈ T, swd = twd} satisfies

(∗) of 1.12.

Proof. Straight.

§2 The General Systems of Partial Isomorphisms

Though usually our aim is to compare two models M1,M2 we first concentrate
on one model M ; this, of course, gives shorter definitions.
Our aim is to have a family F of partial automorphisms as in Ehrenfeucht-Fräıssé
games (actually Karp), of the model M we analyze, not total automorphism
which is too restrictive. But this family has to be lifted to the Nt’s. Hence
their domains (and ranges) may and should sometimes contain an element of
high rank. It is natural to extend each f ∈ F to Gt(f), a partial automorphism
of Nt. So we should not lose anything when we get up on t. The solution is
I ⊆ {A : A ⊆ M} closed downward and F (could have used 〈F� : < m1〉),
a family of partial automorphisms of M . So every x ∈ Nt will have a support
A ∈ I and for f ∈ F, its action on A determines its action on x, (Gt(f)(x) in this
section notation). It is not unreasonable to demand that there is the smallest
support, still this demand is somewhat restrictive (or we have to add imaginary
elements as in [Sh:a] or [Sh:c], not a very appetizing choice here).
But how come we in stage t+1 succeed to add “all sets X = X�,b̄” definable by
ψ�(x, b̄) for some sequence b̄ ∈ �g(b̄)Nt? Let m be such that b̄ = 〈b1, . . . , bm〉.

The parameters b1, . . . , bm each has a support say A1, . . . , Am resp., all in
I; so when we have enough mappings in the family F, the new set has in

some sense the support A =
m⋃
�=1

A�, in the sense that suitable partial mappings

act as expected. So if y ∈ Nt has support B (BRy in this section notation),
f ∈ F, A ∪ B ⊆ Dom(f) and f � A = idA, then the mapping Gt(f) which f
induces in Nt will satisfy y ∈ X�,b̄ ⇔ (G(f))(y) ∈ Xi,b̄.
But we are not allowed to increase the family of possible supports and A though
a kind of support is probably too large: in general, I is not closed under unions.

Choiceless Polynomial Time Logic: Inability to Express 87

But, if we add X = X�,b̄ we have to add all “similar” X ′ = X�,b̄′ . Recall that
necessarily our strategy is to look for a support A′ ∈ I for X�,b̄. So we like to find
A′ ∈ I which is a support ofX, that is such that that if f ∈ F, A∪A′ ⊆ Dom(f),
then f � A induces a mapping of Xi,b̄ to some Xi,b̄′ , which when f � A′ =
idA′ , satisfies that Xi,b̄′ will be equal to Xi,b̄ thus justifying the statement
“A′ supports X.” How? We use our bound on the size of the computation.
So we need a dichotomy: either there is A′ ∈ I as above or the number of sets
Xi,b̄′ defined by ψi(x, b̄′) varying b̄′ is too large!!
On this dichotomy hangs the proof.
However, we do not like to state this as a condition on Nt but rather on M .
We do not “know” how ψ�(x, b̄′) will act but for any possible A′ this induces
an equivalence relation on the set of images of A′ (for this F has to be large
enough).

Actually, we can ignore the ψ�’s and develop set theory of elements demanding
each has a support in I through F. Now we break the proof to definition and
claims.

We consider several variants of the logic: the usual variant to make preserva-
tion clear, and the case with the cardinality quantifier. We use one F but we
could have used 〈F� : ≤ k′〉; in this case actually, for much of the treatment
only F0 would count. The relevant basic family of partial automorphisms is
defined in 2.1. Note that the case with cardinality logic, with a stronger as-
sumption is clearer, if you like to concentrate on it, ignore 2.1(4) and read in
Definition 2.3 only part (1), ignore 2.9 but read 2.10, ignore 2.17, 2.20 but read
2.18, ignore 2.22, 2.24 but read 2.23.

2.1 The Main Definition.
1) We say Y = (M, I,F) is a k-system if

(A) I is a non empty family of subsets of |M | (the universe of the model M)
closed under subsets and each singleton belongs to it
[hint: intended as the possible supports of elements Nt[M,Υ] and as first approxi-
mation to the possible supports of the partial automorphisms of M , where M is the
model of course; the intention is that M is a finite model]

Let I[m] =: {
m⋃
�=1

A� : A� ∈ I for = 1, . . . ,m}

(B) F is a non empty family of partial automorphisms of M such that f ∈
F & A ⊆ Dom(f) & A ∈ I ⇒ f”(A) ∈ I (recall f”(A) = {f(x) :
x ∈ A ∩ Dom(f)};F is closed under inverse (i.e. f ∈ F� ⇒ f−1 ∈ F�)
and composition and restriction (hence, together with (D) clearly B ∈
I[k] ⇒ idB ∈ F)

(C) if f ∈ F then Dom(f) is the union of ≤ k members of I
(D) if f ∈ F and A1, . . . , Ak−1, Ak ∈ I and ∈ {1, . . . , k − 1} ⇒ A� ⊆

Dom(f), then for some g ∈ F we have

f �
k−1⋃
�=1

A� ⊆ g

88 S. Shelah

Ak ⊆ Dom(g)

2) Assume Y is a k-system and B ∈ I[m],m ≤ k − 2 and A ∈ I
(α) let HY(B,A) = {g ∈ F : Dom(g) ⊇ B ∪A and idB ⊆ g}
(β) EY(B,A) is the family of equivalence relations E on HY(B,A) such

that:
(∗) if g1, g2, g3, g4 ∈ HY(B,A) and f ∈ F satisfies idB ⊆ f, g”1(A) ∪

g”2(A) ⊆ Dom(f) and g3 ⊇ f ◦(g1 � (B∪A)), g4 ⊇ f ◦(g2 � (B∪A)
then g1Eg2 ⇔ g3Eg4.

(this tells you in particular that only g � A matter for determining g/E)

3)
(α) Let HI,m = HY,m

be the family of functions h from [m] = {1, . . . ,m}
to SeqI = {ā : ā list with no repetitions some A ∈ I; we can look at ā
as a one-to-one function from [0, gā) onto A}; of course for f ∈ F and
ā, b̄ ∈ SeqI the meaning of f(ā) = b̄ is g(ā) = g(b̄) and f(ai) = bi for
i < g(ā). Let SeqI,A = {ā ∈ SeqI : Rang(ā) = A}. For m = 1 we may
identify h : [m] → SeqI with h(1) so HI,1 is identified with SeqI .

(β) for h ∈ HI,m and f ∈ F such that
⋃

i∈[m]

Rang(h(i)) ⊆ Dom(f) we define

h′ = f ∗h as the following function: Dom(h′) = [m] and h′(i) = f ◦(h(i))
(γ) let 2r + s ≤ k; for B ∈ I[s] and 1 ≤ m ≤ r let E0

I,B,m = E0
Y,B,m

be the
following 2-place relation on {h : h : [m] → SeqI}:
h1E

0
I,B,mh2 iff for some f ∈ F, idB ⊆ f and h2 = f ∗ h1.

If B = ∅ we may omit it; similarly m = 1
(δ) for 2m + s ≤ k and B ∈ I[s] let EI,m(B) = EY,m

(∅) be the family of
equivalence relations such that for some h∗ ∈ HI,m, E is an equivalence
relation on the set {h ∈ HI,m : hE0

I,mh
∗} which satisfies:

(∗) if h1, h2, h3, h4 ∈ HI,m, f ∈ F, idB ⊆ f , h2 = f ∗ h1, h4 = f ∗ h3
and

⋃{Rang(h1(i)) ∪ Rang(h1(i)) : i ∈ [m]} ⊆ Dom(f),
then h1Eh3 ≡ h2Eh4.
If B = ∅ we may omit it. If m = 1 we may omit it.

4) We say that a k-system Y = (M, I,F) is (t, r)-dichotomical2 when

� if 1 ≤ m ≤ r and E ∈ EI,m(∅), then (β)1 ∨ (β)2 where
(β)1 there is A ∈ I which satisfies:

if h1, h2 ∈ HI,m, f ∈ F, idA ⊆ f and h2 = f ∗ h1 then h1Eh2
(β)2 the number of E-equivalence classes is > t(‖M‖).

2Note that this is how from “there are not too many” we get “there is a support in I”

Choiceless Polynomial Time Logic: Inability to Express 89

If we omit r (and write t-dichotomical) we mean r = [k/2], k ≥ 3.

Note that in parts (3), (4) without loss of generalityh is one-to-one.

∗ ∗ ∗
2.2 Remark. 1) However, if we shall deal with L∗ = Lcard or L∗ = Lcard,T
we naturally have to require that f ∈ F preserve more. Whereas the (t, r)-
dichotomy is used to show that either we try to add too many sets to some
Nt[M,Υ] or we have support, the “counting (k, r)-system” assure us that the
lifting of f preserves the counting quantifier, and the medium (t, r)-dichotomy
will be used in the maximal successor, see 2.24.

2) It causes no harm real in 2.1(3)(γ), (δ) and similarly later, to restrict our-
selves to e.g. r + s ≤ k/100, k > 400.

2.3 Definition. 1) We say Y = (M, I,F) is a counting (or super) (k, r)-system
if:

Y is a k-system and

(∗)1 Assume that 0 ≤ m ≤ r and for = 1, 2 we have B� ∈ I[m] and
E� ∈ EY,1(B�). If f ∈ F, f maps B1 onto B2 and f maps E1 to E2 (see
2.4(1)), then |Dom(E1)/E1| = |Dom(E2)/E2|.

(This should be good for analyzing the model Nt[M,Υ, t]). If we omit r (write
counting k-system) we mean r = k − 2, k ≥ 3.
2) We say that the k-system Y = (M, I,F) is medium (t, k, r)-system if

(∗)2 Assume that 1 ≤ m ≤ r and for = 1, 2 we have B� ∈ I[m] and
E� ∈ EY,1(B�). If f ∈ F, f maps B1 onto B2 and f maps E1 to E2 (see
2.4), then |Dom(E1)/E1| = |Dom(E1)/E2| or both are > t(‖M‖).

3) We omit r if r = k − 2 ≥ 1 (see 2.8 below).

Note that 2.4 is closed to 2.8 and 2.7(2)-(4).

2.4 Observation. Let Y = (M, I,F) is a k-system.
1)

(α) if 2m + s ≤ k and B ∈ I[s], then E0
Y,B,m

is an equivalence relation
satisfying (∗) of Definition 2.1(3)(δ)

(β) the following two conditions on B ∈ I[s],m ≤ (k− s)/2, s ≤ k and G are
equivalent:
(i) G is an equivalence class of E0

I,B,m

(ii) G is the domain of some E ∈ EI,m(B)

(γ) if k∗ = 2m + s ≤ k and F∗ = {f � A : f ∈ F, A ∈ I[k∗]}, and
Y∗ = (M, I,F∗) then Y∗ is a k∗-system and for each B ∈ I[s] we have
EY,m

(B) = EY∗,m(B) and E0
Y,B,m

= E0
Y∗,B,m

.

90 S. Shelah

(δ) if B1, B2 ∈ I[k − 2], f ∈ F, f maps B1 onto B2 and g′1, g
′′
1 ∈ SeqI ,

Rang(g′1) ∪ Rang(g′2) ⊆ Dom(f), then g′2 =: f ◦ g′1 belongs to SeqI and
g′′2 = f ◦ g′′1 belongs to SeqI and g′1E

0
I,B1,1g

′′
1 ⇔ g′2E

0
I,B2,1g

′′
2

(ε) If B1 ∈ I[k − 2], A2 ∈ I, f ∈ F, B1 ⊆ Dom(f), B2 = f”(B1), then we
can define F eq

f,B1,B2
(E) ∈ EI,1(B2) for E ∈ EI,1(B1) (the image of E by

f) by: if f � B1 ⊆ g ∈ F, ā1, ā2 ∈ SeqI , g maps ā1 to ā∗1 and g maps ā2
to ā∗2 then ā1Eā2 ⇔ ā∗1F

eq
f,B1,B2

(E)ā∗2.

2) Let 2r + s ≤ k,
(δ), (ε), parallely to part (1) with m ≤ r, h� ∈ HI,m, B� ∈ I[s].

Proof. Straight, e.g.:
Part (1), Clause (α): We use: F contains idC wherever C ∈ I[k] (for reflexivity),
F closed under inverting (for symmetry) and is closed under composition (for
transitivity).

�2.4

2.5 Discussion 1) In the system Y = (M, I,F) we deal only with partial au-
tomorphisms of M , we need to lift them to the models Nt[M,Υ] or actually
N+

t [M,Υ] or N+
t [M,Υ, t] appearing in Definition 1.3; this motivates the follow-

ing definition 2.6. (We more generally define liftings to (M,Υ)-candidates).
2) Note that here probably it is more natural if in the definition of k-system Y,
we replace the relations “f ⊆ g”, “f = g � A”, “f ⊇ g � A” on F by abstract
ones (so F will be an index set). Also in Definition 2.6 we could demand more
properties which naturally holds (similarly in Definition 2.13, e.g. if you satisfy
the properties of “a set B is Z-support of x” you are one).

2.6 Definition. 1) Let Y = (M, I,F) be an k-system, M a τ -model, Υ is an
inductive scheme for L∗(τ+) and m1 = mΥ

1 .
We say that Z = (N, P̄ ,G,R) = (NZ, P̄Z, GZ, RZ) is a Υ-lifting or m1-lifting

of Y if

(a) (N, P̄) is an (M,m1)-candidate so N is a transitive submodel of set
theory i.e. of V∞[M] with M as its set of urelements and the relations
of M (see Definition 1.4(1))

(b) G is a function with domain F

(c) for f ∈ F

(α) G(f) is a function with domain ⊆ N, f ⊆ G(f), moreover f =
G(f) �M and

(β) G(f) is a partial automorphism of N

(d) if f ∈ F, g ∈ F, f ⊆ g then G(f) ⊆ G(g)
(e) R is a two-place relation written xRy such that

xRy ⇒ x ∈ I & y ∈ N
[we say: x is a Z-support of y]

Choiceless Polynomial Time Logic: Inability to Express 91

(f)

(α) if ARy and f ∈ F, A ⊆ Dom(f), then
y ∈ Dom(G(f)) and f � A = idA ⇒ G(f)(y) = y

(β) if f ∈ F and y ∈ Dom(G(f)) (hence y ∈ N) then some a Z-support
of y is included in Dom(f)

(g) (∀y ∈ N)(∃A ∈ I)ARy
[i.e. every element of N has a Z-support]

(h) if A ∈ I and A ⊆ Dom(f), y ∈ Dom(G(f)) then
ARy ⇔ f”(A)R(G(f)(y))

(i) for f ∈ F we have G(f−1) = (G(f))−1

(j) for f1, f2 ∈ F, f = f2 ◦ f1 we have3 G(f) ⊆ G(f2) ◦G(f1)
(k) if ā ∈ m1(�)(Dom(f)) and f ∈ F and f(ā) is well defined, then ā ∈ PZ

� ≡
f(ā) ∈ PZ

� ; moreover ∅Rc� if PZ
� is the individual constant c� = cZ� when

c� is well defined (see Definition 1.1(2)(F); this implies that G(f) is a
partial automorphism of (N, P̄)).

We may write m1 = mZ
1 , recall that m1(k) gives the arity of Pk and the infor-

mation is it a relation or (possibly partial) function.

2.7 Fact: Let Y = (M, I,F) be a k-system, and Z be an m1-lifting of Y.
1) The 0 − Υ-lifting (in Definition 2.12) exists and is a lifting (see Definition
2.6).
2) If f1, f2 ∈ F and A is a Z-support of y ∈ N then

f1 � A = f2 � A & A ⊆ Dom(f1) ⇒ f1(y) = f2(y).

3) From Z we can reconstruct Y,F,m1; and if I = {A : for some B,A ⊆
B and B is a Z-support of some y ∈ N} then we can reconstruct also I (so the
whole Y).

Proof. 1) Easy [compare with 2.4, 2.8].
2) Let y′ = G(f2)(y), let A1 = A,A2 = f”2(A1) hence as A is a Z-support of
y and A ⊆ Dom(f1) necessarily y′ is well defined and A2R

Zy′ (see Definition
2.6(1) clause (h)). We know that f−12 and f−12 ◦ f1 belongs to F (see Definition
2.6(1) clauses (i) and (j)). We also know that A2 ⊆ Dom(f−12) so as A2R

Zy′

(see above) we have y′ ∈ Dom(G(f−12)) (see Definition 2.6(1), clause (f)(α))
and (G(f−12))(y′) = y (by Definition 2.6(1), clause (i) as (G(f2))(y) = y′ by the
choice of y′).
Clearly A = A1 ⊆ Dom(f−12 ◦ f1) hence (see Definition 2.6(1), clause (f)(β))
we have y ∈ Dom(G(f−12 ◦ f)).

3So maybe x even has support A�, idA�
⊆ f� for � = 1, 2 but x has no support ⊆ Dom(f)

92 S. Shelah

But idA ⊆ f−12 ◦ f1, so as ARZy we have y = (G(f−12 ◦ f))(y). By Definition
2.6(1), clause (j) we have, as the left side is well defined:

(G(f−12 ◦ f1))(y) = ((G(f−12)) ◦ (G(f1)))(y)
and trivially

(G(f−12)) ◦ (G(f1)))(y) = (G(f−12))((G(f1))(y)).

By the last three equations y = (G(f−12 ◦ f1))(y) = (G(f−12))((G(f1))(y)), but
by the above we note y = (G(f−12))(y′). So, as G(f−12) is one-to-one (having an
inverse), we have (G(f1))(y) = y′, now as y′ was defined as (G(f2))(y) we are
done.
3) Straightforward. �2.7

Note that 2.8 is close to 2.4 and 2.12(2)-(4).

2.8 Definition/Claim. Let Y = (M, I,F) be a k-system and Z = (N, P̄ ,G,R)
be an m1-lifting of Y.
1) For B ⊆ N let EB = EY,Z

B be the following 2-place relation on N :

x1EBx2 iff for some f ∈ F we have idB ⊆ f and (G(f))(x1) = x2.

2) If B ∈ I[k − 2] so k ≥ 3 then

(α) EB is an equivalence relation on N
(β) if f ∈ F, B ⊆ Dom(f) then f maps EB to Ef”(B) which means:

f � B ⊆ g ∈ F &
∧
�<2

(G(g))(x�) = y� ⇒ [x1EBx2 ≡ y1Ef”(B)y2]

(γ) if B ⊆ Dom(f) then there is a one-to-one function F = Ff,B from N/EB

onto N/Ef”(B) such that:
(∗)1 for x1, x2 ∈ N we have: (∃g)(f � B ⊆ g ∈ F & G(g)(x1) = x2) ⇔

F (x1/EB) = x2/Ef”(B)

(δ) if x ∈ N and ARZx and ā ∈ SeqI,A then there is an equivalence relation
E ∈ EY,1(B) with domain {f(ā) : f extend idB and A ⊆ Dom(f)} such
that:
(∗)2 if f� ∈ F, idB ⊆ f� and A ⊆ Dom(f�) for = 1, 2 thenGZ(f1)(x) =

GZ(f2)(x) ⇔ f1(ā)Ef2(ā)
(∗)3 |x/EB | = |Dom(E)/E|

(ε) if f, F are as in clause (γ) and x1, x2 ∈ N then
(∗)4 if F (x1/EB) = x2/EB and Y is a counting k-system,

then |x1/EB | = |x2/EB |
(∗)5 if F (x1/EB) = x2/EB and Y is a medium (t, k)-system,

then |x1/EB | = |x2/EB | or both are > t(M).

Choiceless Polynomial Time Logic: Inability to Express 93

Proof of (2).

Clause (α):

Reflexivity:
For x ∈ N choose a Z-support A ∈ I, so we can find f ∈ F extending idB∪A
hence G(f) maps x to itself, hence xEBx.

Symmetry:
If f ∈ F witnesses xEBy then f−1 ∈ F witnesses yEBx.

Transitivity:
If x0EBx1, x1EBx2 let f1 witness x0EBx2 and let f2 witness x1EBx2, now let
A0 ⊆ Dom(f1) be a Z-support of x0, so A1 = f”1(A0) ⊆ Rang(f1) is a Z-
witness of x1, now let A∗1 ⊆ Dom(f2) be a Z-support of X1, so B ∪A∗1 ∈ I[k− 1]
hence without loss of generalityA1 ⊆ Dom(f2) hence A2 = f”2(A1) is a Z-
support of x2, so x1 ∈ Dom(G(f2 ◦ f1)) and G(f2 ◦ f1) ⊆ G(f1) ◦ G(f2) hence
G(f2 ◦ f1)(x1) = x2 as required.

Clause (β):
So assume f � B ⊆ g ∈ F and (G(g))(x�) = y�, for = 1, 2 and we should prove
x1EBx2 ≡ y1Ef”(B)y2. It suffices to prove x1EBx2 ⇒ y1Ef”(B)y2 (as applying
it to B′ = f”(B), f ′ = f−1, g′ = g−1, y1, y2, x1, x2 we get the other implication).
As x1EBx2 we can find a witness h, i.e., idB ⊆ h ∈ F and (G(h))(x1) = x2. Let
A1 ⊆ Dom(h) be a Z-support of x1 and let A2 = h”(A1), so A2 is a Z-support
of x2.

If B ∈ I[k − 4] without loss of generalityA1, A2 ⊆ Dom(g), and let A∗1 =
f”(A1), A∗2 = f”(A2), lastly let g∗ = g ◦ h ◦ g−1. Now (G(g∗))(y1) = y2,
idf”(B) ⊆ g∗ so g∗ witnesses y1Ef”(B)y2 as required.

But maybe B /∈ I[k−4], still B ∈ I[k−2]; now for = 1, 2, as (G(f))(x�) = y�
there is a Z-support C� of x� such that C� ⊆ Dom(g) and let C ′� = g”(C�). So
we can find, for = 1, 2 a function g1 ∈ F such that g � (B ∪ C1) ⊆ g1
and A1 ⊆ Dom(g2) and also there is h1 ∈ F such that h � (B ∪ A1) ⊆ h1 and
C1 ⊆ Dom(h1). So h1◦g−11 extends (g � B)−1 and C ′1 ⊆ Dom(g−11), (g−11)”(C ′1) =
C1 ⊆ Dom(h1) but C ′1 is a Z-support of y1. Hence (G(h◦g−11))(y1) is well defined
and equal to (G(h) ◦ G(g−11))(y1) = (G(h))((G(g−11))(y1)) = (G(h1))(x1) = x2.
Let g2 ∈ F be such that g � (B ∪A2) ⊆ g2 and (h1 ◦ g−11)”(C ′1) ⊆ Dom(g2) and
similarly we get g−12 ◦ h1 ◦ g−11 extends idg”(B) and (G(g−12 ◦ h1 ◦ g−11))(y1) = y2,
so we are done.
Clause (γ), (δ), (ε):
Should be clear. �2.8

Quite naturally for such a m1-lifting Z of Y the family {G(f) : f ∈ FY}
helps us to understand first order logic on (NZ, P̄Z).

94 S. Shelah

2.9 Claim. Assume Y = (M, I,F) is a k-system and Z = (N, P̄ ,G,R) is an
m1-lifting of Y.
Then

(∗) Assume ϕ(x̄) is first order and k ≥ quantifier depth(ϕ(x̄)) + g(x̄), or
just ϕ(x̄) ∈ L∞,k which means:
every subformula of ϕ(x̄), (e.g. ϕ itself) has ≤ k free variables.

If ā ∈ �g(x̄)N,A�Ra� and A� ⊆ Dom(f) (hence a� ∈ Dom(G(f))) for < g(x̄)
and f ∈ F then

(N, P̄) |= “ϕ[. . . , a�, . . .]�<�g(x̄)” ⇔ (N, P̄) |= “ϕ[. . . , G(f)(a�), . . .]�<�g(x̄)”

Proof. We prove this by induction on the quantifier depth of ϕ. Let m = g(x̄)
so x̄ = 〈x� : < m〉 and without loss of generalitym ≤ k.
Case 1: ϕ atomic.

As G(f) is a partial automorphism of N and even (N, P̄) this should be clear.

Case 2: ϕ = ¬ψ or ϕ = ψ1 ∧ ψ2 or ϕ = ϕ1 ∨ ϕ2.
Straight.

Case 3: ϕ = ϕ(x̄) = (∃y)ψ(y, x̄).
Without loss of generality y is not a dummy variable in ψ, that is has a free

occurrence. Let x̄ = 〈x0, . . . , xm−1〉 so m < k.
As G(f−1) = G(f)−1 it is enough to prove N |= “ϕ[a0, . . . , am−1]” ⇒ N |=

“ϕ[G(f)(a0), . . . , G(f)(am−1)]”.
So we assume the left side, i.e.

(∗)1 N |= ϕ[a0, . . . , am−1],
hence for some a∗ ∈ N we have

(∗)2 N |= ψ[a∗, a0, . . . , am−1].
Necessarily a∗ has a Z-support A∗ ∈ I.
Now k ≥ m + 1 and Y is a k-system hence there is f∗ ∈ F such that f �
(
⋃
�<m

A�) ⊆ f∗ and A∗ ⊆ Dom(f∗). So each of a∗, a0, . . . , am−1 has a Z-

support included in Dom(f∗) hence by the induction hypothesis applied to
ψ[a∗, a0, . . . , am1] and (∗)2 we have

(∗)3 N |= ψ[G(f∗)(a∗), G(f∗)(a0), . . . , G(f∗)(am−1)].
So by the definition of |= we get

(∗)4 N |= (∃y)ψ(y,G(f∗)(a0), . . . , G(f∗)(am−1).
But for < m, the set A� is a Z-support of a� and f∗ � A� = f � A� hence
(G(f∗))(a�) = G(f)(a�) so

(∗)5 N |= (∃y)ψ(y,G(f)(a0), . . . , G(f)(am−1)].

Choiceless Polynomial Time Logic: Inability to Express 95

But ϕ(x̄) = (∃y)ψ(y, x̄) so we are done. �2.9

Having dealt with first order logic we should deal with cardinality logic (actually
any of the variants we mention). Here we use the counting version, really natu-
rally the medium version suffices but for it we have to use more “bookkeeping”
of the various things used, and the reader can use only this smoother case.
Note that if we like to add cardinality quantifiers on pairs we need s ≥ 2, etc.,
but we may create the set of pairs in Nt so not so necessary.

2.10 Claim. Assume that Y is a counting k-system (see Def 2.3(1)) and Z =
(N, P̄ ,G,R) is an m1-lifting of Y.
Then

(∗) assume ϕ(x̄) ∈ Lcard,T or ϕ(x̄) ∈ Lcard (can have both kinds quantifiers;
recall that Lf.o. + na is included in a special case of Lcard,T) and every
subformula of ϕ(x̄), including ϕ(x̄) itself, has < k free variables and
m = g(x̄) < k

(α)ϕ(x̄) if f ∈ F and A� is a Z-support of a� and A� ⊆ Dom(f) for < m
then:

(N, P̄) |= “ϕ[a0, . . . , am−1]” iff (N, P̄) |= “ϕ[G(f)(a0), . . . , G(f)(am−1)]”

(β)ϕ(x̄) if f ∈ F and A� is a Z-support of a� for = 1, . . . ,m− 1 and A� ⊆
Dom(f) then the sets {b ∈ N : (N, P̄) |= “ϕ[b, a1, . . . , am−1]”},
and {b ∈ N : (N, P̄) |= “ϕ[b,G(f)(a1), . . . , G(f)(am−1)]”} have the
same number of elements.

Proof. We prove by induction on the quantifier depth of ϕ.
We first show that

� (α)ϕ(x̄) ⇒ (β)ϕ(x̄)

Why? So assume (α)ϕ(x̄), and a1, . . . , am−1 ∈ N be given (where g(x̄) = m) and
also f ∈ F and A1, . . . , Am−1 ∈ N,A� is a Z-support of a� for = 1, . . . ,m− 1
such that A� ⊆ Dom(f), and we should prove the equality in (β)ϕ(x̄). Let ai�
be a� if i = 1 and (G(f))(a�) if i = 2. Let Ai

� be A� if i = 1 and (G(f))”(A�) if
 = 2.

Let Bi =
m−1⋃
�=1

Ai
� so Bi ∈ I[m− 1] and f maps B1 onto B2.

By Definition 2.8(1) we know that EB�
is an equivalence relation on N and, see

Definition 2.8(2), clause (γ), (δ), the function F = Ff,B1 satisfies

(i) F is a one-to-one function from N/EB1 onto N/EB2

(ii) f � B1 ⊆ g ∈ F & (G(g))(x1) = x2 ⇒ (F (x1)/EB1) = x/EB2

96 S. Shelah

(iii) for every x1 ∈ N,A1 ∈ I such that A1R
Zx1, and ā1 ∈ SeqI,A1 for some

E = Ex1 ∈ EY,1(B1) we have Dom(E) = x1/EB1 and

(∗) if [idB1 ⊆ f� & A1 ⊆ Dom(f�)] for = 1, 2 then f1(ā1)Exf2(ā2) ⇔
(G(f1))(x1) = (G(f2))(x1)

(iv) if x1 ∈ N,x2 ∈ N, (G(g))(x1) = x2 for some g ∈ F such that f � B1 ⊆ g,
then |(x1/EB1)/Ex1 | = |(x2/EB2/Ex2 |.

Hence it suffices to prove, assuming F (x1/EA1) = x2/EA2 that

N |= “ϕ[x1, a1, . . . , am−1]” ⇔ N |= “ϕ[x2, G(f)(a1), . . . , G(f)(am−1)]”.

As we can replace f by a suitable extension of f � B1, without loss of generality
there are y1 ∈ x1/EB1 and y2 ∈ x2/EB2 such that (G(f))(y1) = y2. We can find
C1 ⊆ Dom(f) which is a Z-support of y1.

As x1EB1y1 we can find f1 ∈ F such that idB1 ⊆ f1 and (G(f1))(x1) = y1;
as m < k, without lose of generality C1 ⊆ Rang(f1) and let C0 = (f−11)”(C1),
let C2 = f”(C1). As x2EB1y2 we can find f2 ∈ F such that idB2 ⊆ f2 and
(G(f2))(y2) = x2; as m < k without lose of generality C2 ⊆ Dom(f2) and let
C3 = f”2(C2). So f ′ = f2 ◦ f ◦ f1 belongs to F and extends f � B1 and it maps
C0 onto C3 hence y1 ∈ Dom(G(f ′)), and clearly (G(f1))(x1) = y1, (G(f))(y1) =
y2, (G(f2))(y2) = x2 hence (G(f ′))(x1) = x2 and, of course, B� ⊆ Dom(f ′)
hence applying (α)ϕ(x̄) to f ′, x1, a1, . . . , am−1 we get

(N, P̄) |= “ϕ[x1, a1, . . . , am−1]” ⇔ (N, P̄) |= “ϕ[x2, G(f)(a1), . . . , G(f)(am−1)]”

recalling x2 = (G(f ′))(x1). So � holds.
Now the inductive proof of (α)ϕ̄ is separated to cases. The case ϕ atomic,

ϕ = ¬ϕ,ϕ = ψ1 ∧ ψ2, ϕ = (∃y)(ψ(y, x̄)) works as in the proof of 2.9. The new
cases hold because (β)ψ hold by the induction hypothesis + �. �2.10

2.11 Claim. We can weaken in 2.10 the assumption on Y to “medium (t, k)-
dichotomical” provided that:

� if B ∈ I[m], 1 ≤ m ≤ r, then every equivalence class of EY,Z
B (so a subset

of NZ, see Definition 2.8(1)) has ≤ t(MY) members.

Proof. Straightforward.

2.12 Definition. For Y = (M, I,F) a k-system, the 0−Υ-lifting or the 0−m1-
lifting if m1 = mΥ

1 is (M, P̄ ,G,R) where

(a) G is the identity on F

(b) ARy ⇔ A ∈ I & y ∈ A
(c) each P� is the empty relation.

Choiceless Polynomial Time Logic: Inability to Express 97

Clearly our intention requires us for a k-system Y, to move from an Υ-lifting
Zt = (Nt[M,Υ, t], P̄t[M,Υ, t], Gt, Rt) to a Υ-lifting

Zt+1 = (Nt+1[M,Υ], P̄t+1[M,Υ], Gt+1, Rt+1).

Toward this aim naturally in Definition 2.13 below we define for Υ-lifting Z some
successors, and in Claim 2.16 we prove what they satisfy.
In Definition 2.13(6) we can define “Z′ is the full t-successor of Z” (both m1-
liftings of a k-system Y).

2.13 Definition. Let Y = (M, I,F) be a k-system and Z = (N, P̄ ,G,R) be an
m1-lifting of Y.
1) We say X is good or (Y,Z)-good if

(a) X a subset of N
(b) for some A ∈ I we have “A supports X” (for our Y and Z) which means:

if f ∈ F, BRy (so B ∈ I, y ∈ N) and A∪B ⊆ Dom(f), and f � A = idA
then y ∈ X ⇔ (G(f))(y) ∈ X
(note: (G(f))(y) is well defined by clause (f) of 2.6)

(c) X /∈ N .

2) Let P = PY,Z
be the family of good subsets of N , let R = RY,Z

be the
two-place relation defined by: ARX iff A supports X, i.e. (b) of part (1) holds.
3) For f ∈ F we define a function G+(f) = G+

Y,Z
(f) with domain ⊆ PY,Z

∪N
as follows, (well, now (G+(f))(X1) = X2 is just a relation, but by 2.14(1) clause
(ii) below it is a function)

(α) For goodX such thatARX,A ∈ I whenA ⊆ Dom(f) we let (G+(f))(X)
= {y ∈ N : for some g ∈ F and y′ ∈ X we have f � A ⊆ g and G(g)(y′) =
y}

(β) G+(f) � N = G(f).
Note that no contradition arises between clauses (α) and (β) because of
clause (c) in part (1).

4) We define E = EY,Z
as the following two place relation: X1EX2 iff X1, X2

are good subsets of NZ and for some f ∈ F we have (G+(f))(X1) = X2; this is
an equivalence relation (see 2.15(2) below).
5) Z′ = (N ′, P̄ ′, G′, R′) is a successor of Z if:

(a) N ⊆ N ′ ⊆ N ∪ PY,Z
(b) X1EY,Z

X2 & X1 ∈ PY,Z
& X2 ∈ PY,Z

⇒ [X1 ∈ N ′ ↔ X2 ∈ N ′]
(c) G′ is a function with domain F and for f ∈ F the function G′(f) is

defined as G+(f) from part (3) restricted to N ′

(d) R′ is R ∪ [R � (I ×N ′)]
(e) the pair (N ′, P̄ ′) is an (M,m1)-candidate; so P ′� is an m1()-ary relation

or function as dictated by m1

98 S. Shelah

6) We say Z′ is a ϕ̄-reasonable successor of Z if it is a successor and

(e)′ P ′� = {b̄ ∈ N : (N, P̄) |= ϕ�(b̄)} but when Υ is i.c. (see Definition 1.1(2),
clause (F)) this is so only if P ′� ∈ N ′ and P ′� = ∅ otherwise (for each
 <m1 (so we demand P ′� ∈ N ′).

We may omit ϕ̄ if clear from the content.
7) We say that Z′ = (N ′, P̄ ′, G′, R′) is a full successor of Z if it is a successor
of Z and N ′ = N ∪ PY,Z

. We say it is the full successor if in addition P ′� = ∅
and it is the full reasonable successor (or reasonable full successor) if it is a full
successor which is a reasonable successor.
8) Z′ = (N ′, P̄ ′, G′, R′) is a full t-successor of Z if it is a successor of Z and

(a)∗8 N
′ = N ∪ {X ∈ PY,Z

: |X/EY,Z
| ≤ t(‖M‖)}.

So if we omit t we mean t(‖N‖) = ∞.
9) Z′ = (N ′, P̄ ′, G′, R′) is the true (Υ, t)-successor of Z if m1 = mΥ

1 and Z′ is a
reasonable successor of Z and:

(a)∗9 (N ′, P̄ ′) is the (Υ, t)-successor of (N, P̄), (see Definition 1.8(2)).

10) Z′ = (N ′, P̄ ′, G′, R′) is the true Υ-successor of Z if it is a ϕ̄Υ-reasonable
successor of Z and:

(a)∗10 (N ′, P̄ ′) is the Υ-successor of (N, P̄), (see Definition 1.8(2A))
[this just means the true (Υ,∞)-successor of Z].

Note that the names above indicate our intentions, but we have to prove that
“Z′ is a successor of Z” implies that “Z is an m1-lifting of Y” (done in 2.16),
the true (Υ, t)-successor of Z is a t-successor of Z (done in 2.17, 2.18, 2.20) and
similarly without the t.

2.14 Claim. Assume Y is a k-system, Υ an inductive scheme (so τ is common)
and Z is an Υ-lifting of Y.
1) In Definition 2.13(3), if k ≥ 3 then for f ∈ F and (Y,Z)-good X we have:

(i) if the relation X2 = (G+(f))(X1) holds and (G(f))(x1) = x2 then x1 ∈
X1 ≡ x2 ∈ X2

(ii) the value (G+(f))(X) does not depend on A, so G+(f) is well defined.
(iii) if the relation X2 = (G+(f))(X1) holds then X2 is a (Y,Z)-good

2) There is a unique object Z′ which is the full successor of Z. ; there is a unique
object Z′ which is the reasonable full successor of Z and there is a unique object
which is the reasonable t-full successor of Z.
3) If the Z′ is the true (Υ, t)-successor of Z, then Z′ is a reasonable successor of
Z which implies Z′ is a successor of Z.
4) There is at most one true successor Z′ of Z.

Proof. Easy, using 2.16(2) below for part (2); e.g.
1) Clause (i) So assume that X1 is (Y,Z)-good, A1 is a Z-support of X1, A1 ⊆

Choiceless Polynomial Time Logic: Inability to Express 99

Dom(f), f ∈ F and X2 = {(G(g))(x) : x ∈ Dom(g), f � A ⊆ g} ⊆ N and
(G(f))(x1) = x2. First x1 ∈ X1 ⇒ x2 ∈ X2 by the definition of X2. Second
assume that x2 ∈ X2, so for some y ∈ X1 and g ∈ F we have f � A1 ⊆ g and
(G(g))(y) = x2. Let B2 ⊆ Dom(g) be a Z-support of y. Let B1 ⊆ Dom(f)
be a Z-support of x1; as k ≥ 3 there is f1 ∈ F such that f � (A1 ∪ B1) ⊆ f1
and g”(B2) ⊆ Rang(f1) so (G(f1))(x1) = x2. Now (G(g−1 ◦ f1))(x1) is well
defined as B2 ⊆ Dom(g−1 ◦ f1) hence is equal to ((G(g−1) ◦ (G(f1)))(x1) = y
and (g−1 ◦ f1) � A1 = idA1 hence x1 ∈ X1 ≡ y ∈ X1 but y ∈ X1 hence x1 ∈ X1
as required.

Clause (ii) So assume that f ∈ F, X is good and for = 1, 2 the set A� ∈ I is a
support of X and A� ⊆ Dom(f). For = 1, 2 let X� =: {y ∈ N : for some g ∈ F
and y′ ∈ X we have f � A� ⊆ g and (G(g))(y′) = y}.
By the symmetry it is enough to show that y ∈ X1 ⇒ y ∈ X2. So assume y ∈ X1
hence there are g ∈ F and y′ ∈ X such that f � A1 ⊆ g and (G(g))(y′) = y.
As y′ ∈ X ⊆ N , by Definition 2.6(1), clause (g) there is B ∈ I which is a
Z-support of y′. As (G(g))(y′) = y without loss of generalityB is such that
B ⊆ Dom(g) (see Definition 2.6(1), clause (f)). As Y is a k-system and k ≥ 3
there is f∗ ∈ F such that f � (A1 ∪ A2) ⊆ f∗ and g”(B) ⊆ Rang(f∗) hence
for some B∗ ⊆ Dom(f∗) we have (f∗)”(B∗) = g”(B) so for some y∗ ∈ N we
have (G(f∗))(y∗) = y. By clause (i) applied to A2, f

∗, y∗, y we have y∗ ∈ X ≡
y ∈ X2, so it is enough to prove that y∗ ∈ X. Now easily g−1 ◦ f∗ ∈ F,
B∗ ⊆ Dom(g−1 ◦ f∗), idA1 ⊆ g−1 ◦ f∗ and so y∗ ∈ Dom(G(g−1 ◦ f∗)) and
(G(g−1 ◦ f∗))(y∗) = y′. Hence, as X is good (see Definition 2.13(1) clause (b)),
we have y∗ ∈ X ≡ y′ ∈ X, but y′ ∈ X by its choice, so we are done.

Clause (iii) Easy, or see the proof of �(∗)1 inside the proof of 2.16 below.
�2.14

Now for the definition of successor for liftings of Y, we naturally ask whether
there is any.

2.15 Claim. Assume Y is a k-system k ≥ 3, Υ an inductive scheme and Z is
an m1-lifting of Y and t ∈ T.
1) There is a ϕ̄Υ-reasonable full t-successor of Z (and it is unique), similarly
without t.
2) EY,Z

, defined in 2.13(4) is an equivalence relation on PY,Z (see Definition
2.13) and for every f ∈ F, the function G+(f) : PY,Z

→ PY,Z
preverse the

EY,Z
-equivalence class.

Proof. 1) All is straight modulo part (2) (recalling 2.14).
2) Let Z∗ be the ϕ̄Υ-reasonable full successor of Z which exists by 2.14(2), and
is a successor of Z by 2.14, and is an m1-lifting by 2.16 below.

Why is EY,Z
an equivalence relation on PY,Z

= NZ∗\NZ? In short, by the
properties of Z; in details:

EY,Z
is reflexive:

Let X ∈ PY,Z
, so for some A ∈ I we have ARZ∗

X (or equivalently ARX)
(see Definition 2.13(2)) and there is f ∈ F which is the identity on A, hence

100 S. Shelah

(see Definition 2.13), X ∈ Dom(GZ∗
(f)), and (GZ∗

(f))(X) = X (as clause (f))
of Definition 2.6(1) holds as Z∗ is an m1-lifting of Y.

EY,Z
is symmetric:

Use GZ∗
(f−1) = (GZ∗

(f))−1.

EY,Z
is transitive:

Use GZ∗
(f1 ◦ f2) ⊆ GZ∗

(f1) ◦GZ∗
(f2).

[This is similar to 2.4.]
By the definition of EY,Z

(see Definition 2.13(4)), clearly for f ∈ F the
mapping G+(f) = GZ∗ � PY,Z

preserves the EY,Z
-equivalence class or use

2.16. �2.15

Clearly for “reasonable” cases, everything can be interpreted inN
Zfull

Y,t , see later.
We now prove that Definition 2.13(1)-(5) works as intended, i.e. any successor
of Z is an m1-lifting of Y. In particular, we have to show that the functions
defined are functions with the right domain and range and theE’s are equivalence
relations. This is included in the proof of 2.16.

2.16 Claim. Assume Y is a k-system and Z is anm1-lifting of Y (see Definition
2.1(2),Definition 2.6) and k ≥ 3.
Any successor Z′ of Z is an m1-lifting of Y.

Proof. We check the clauses in Definition 2.6. Let G+, G′, R′, N ′, P̄ ′ be as in
Definition 2.13.

Clause (a): As N is transitive with M its set of urelements, and X ∈ N ′\N ⇒
X ∈ PY,Z

⇒ X ⊆ N also N ′ is transitive withM its set of urelements. Clearly

N has the right vocabulary τ+ = τM ∪ {∈} and Q ∈ τM ⇒ QN ′
= QM . So N ′

is as required. Also P̄ ′ = 〈P ′� : < m1〉, each P ′� as required by m1.

Clause (b): By Definition 2.13(5)(c) we have that G′ is G+ � N ′ where the
function G+ is defined in part (3) of Definition 2.13 and f ∈ F implies G+(f)
is a partial function with domain ⊆ N ∪PY,Z

(see 2.14(1)). So G′ is a function
with domain F and G′(f) by its definition is a partial function with domain
⊆ N ′.

Clause (c):

Subclause (α): For f ∈ F we know that G(f) is a function, G(f) � M = f (see
Definition 2.6(1)), clause (c)(i)) and G(f) = (G+(f)) � N (see Definition 2.13(3)
particularly subclause (β), remembering that “X good ⇒ X /∈ N” by Definition
2.13(1), clause (c)). As M ⊆ N ⊆ N ′ and G′(f) = G+(f) � N ′, together we get
f = (G+(f)) �M = (G′(f)) �M .

Subclause (β): Let f ∈ F, G(f) = f1, G′(f) = f2 and let x, y ∈ N ′ belongs to
the domain of f ′ and we should prove

Choiceless Polynomial Time Logic: Inability to Express 101

(α) f2(x) ∈ N ′
(β) x ∈ N ′\N ⇒ f2(x) ∈ N ′\N
(γ) if x != y are from N ′ then f2(x) != f2(y)
(δ) for every predicate Q ∈ τM , f2 preserve Q and ¬Q
(ε) N ′ |= “y ∈ x” ⇔ N ′ |= “f2(y) ∈ f2(x)”

(we shall do more toward proving clause (g) of Definition 2.6(1) below).

Note that for clause (α), as f2 � N = G(f ′) � N = G(f) = f1, it is enough
to check it for x ∈ N ′\N , which is done in �, (∗)4 + (∗)1 + (∗)6 below (as a
good subset of N does not belong to N). Clause (β) also follows from �, (∗)4 +
(∗)1 + (∗)6 below. As for clause (γ), if x, y ∈ N use G(f ′) � N = G(f); if
x ∈ N & y ∈ N ′\N note that G(f ′)(x) = (G(f))(x) ∈ N and (G(f ′))(y) /∈ N
by clause (β); similarly if x ∈ N ′\N & y ∈ N ; lastly if x, y ∈ N ′\N we use
clause (ε) proved below and N ′ being transitive (as f ′(x), f ′(y) are subsets of
N so /∈ M). Now clause (δ) is easy as G′(f) � M = f and f being a partial
automorphism of M being from F.

Lastly, we consider clause (ε), so we let x, y ∈ N ′. If x ∈ N , then f2(x) is
necessarily in N too, but N is transitive, hence N ′ |= “y ∈ x” ⇒ y ∈ N and
N ′ |= “z ∈ f2(x)” ⇒ z ∈ N , so as f2 � N = f1 we are done. So we can assume
x ∈ N ′\N , so x is a good subset of N , so for some A0 ∈ I, A0R

Z′
x. We define

z =:
{
b ∈ N :for some g ∈ F and b′ ∈ x we have⊗1

f � A0 ⊆ g and G(g)(b′) = b}.
We need the following, and it suffices

� assume x ∈ N ′\N and z is defined as in ⊗1.
Then
(∗)1 z is a good subset of N with A1 =: f”(A0) a support of z
(∗)2 x = {b′ ∈ N : for some g ∈ F and b ∈ z we have

f−1 � (f”(A0)) ⊆ g and G(g)(b) = b′}
(∗)3 z does not belong to N
(∗)4 z = f2(x)
(∗)5 if B is another Z-support of x, then z′ = z when z′ = {b ∈ N :

for some g ∈ F and a ∈ x we have f � A ⊆ g and G(g)(a) = b}.
(∗)6 z ∈ N ′

Proof of (∗)1. We should check clauses (a),(b),(c) of Definition 2.13(1). Now
clause (a) is trivial and clause (c) is dealt with in (∗)3 which we prove below
(and we do not use it till then, so no vicious circle). So we concentrate on proving
clause (b). So suppose:

(i) a, b ∈ N and
(ii) g1 ∈ F satisfies A1 ⊆ Dom(g1) and g1 � A1 is the identity and
(iii) a ∈ Dom[G(g1)] and b = G(g1)(a).

102 S. Shelah

Now we should prove that a ∈ z ⇔ b ∈ z. It is enough to prove ⇒ as applying
it to g−11 we get the other implication. As b = G(g1)(a) necessarily by clause (i)
of Definition 2.6 for some Z-support B1 of a we have B1 ⊆ Dom(g1).

Assume a ∈ z then by the definition of z we can find g ∈ F and a′ ∈
X such that f � A0 ⊆ g and G(g)(a′) = a. By Definition 2.6(1), clause
(f)(β) there is B2 ∈ I such that B2 is a Z-support of a′ and B2 ⊆ Dom(g).
As k ≥ 3 and as we can replace g by any g∗ such that g � (A0 ∪ B2) ⊆
g∗ ∈ F,without loss of generalityB1 ⊆ Rang(g). So, possibly changing B2
without loss of generalityB1 = g”(B2) (see clause (b) of Definition 2.6(1)).

Let g′ = g1 ◦ g, so A0 ∪B2 ⊆ Dom(g′), g′ � A0 = g � A0 = f � A0.
[Why? As g � A0 = f � A0, f”(A0) = A1 and g1 � A1 = idA1 ; also B2 ⊆
Dom(g) and g”(B) is equal toB1 which is⊆ Dom(g1)]. Hence a′ ∈ Dom(G(g′))
and so G(g′)(a′) = (G(g1)) (G(g)(a′)) = (G(g1)) (a) = b. (See Definition 2.6(1),
clause (j).)

So g′, a′ witness b ∈ z; so b ∈ z has been proved under the assumption a ∈ z.
So by symmetry we have proved a ∈ z ⇔ b ∈ z.

Proof of (∗)2.
Call the set in the right side x′.
First assume that a ∈ x, so a has a Z-support B1 hence for some g1 ∈ F

we have A0 ∪ B1 ⊆ Dom(g1) and f � A0 ⊆ g1, hence a ∈ Dom(G(g1)) and let
b =: (G(g))(a), so b ∈ z by the definition of z, also b has Z-support B2 =: g”(B1).
Let g2 = g−11 so g2 ∈ F and G(g2) = G(g1)−1 hence (G(g2))(b) = a. Lastly, as
f � A0 ⊆ g1 clearly f−1 � (f”(A0)) ⊆ g2. Together g2, b witness that a ∈ x′. So
we have proved a ∈ x⇒ a ∈ x′.

Second, assume that a ∈ x′, so we have witnesses g, b for this, i.e. g ∈
F, b ∈ z, f−1 � (f”(A0)) ⊆ g and (G(g))(b) = a. So we can find B1 ⊆
Dom(g) a Z-support of b, so B0 = g”(B1) is a Z-support of a. As b ∈ z
there are witnesses for it, that is, there are g1 ∈ F and b′ ∈ x such that
f � A0 ⊆ g1 and (G(g1))(b′) = b, hence g−11 ∈ F, G(g−11) = (G(g1))−1 so
without loss of generalityB1 ⊆ Rang(g1) and let B2 = (g−11)”(B1), but B1 is
a Z-support of b hence B2 is a Z-support of b′. Let g′ = g ◦ g1 ∈ F. Now
A0 ⊆ Dom(g1) and g”1(A0) = f”(A0) ⊆ Dom(g) hence A0 ⊆ Dom(g′), and
as g1 � A0 = f � A0, and g � f”(A0) = f−1 � f”(A0) clearly g′ � A0 = idA0 .
Also B2 ⊆ Dom(g1), B1 = g”(B2) ⊆ Dom(g), hence B2 ⊆ Dom(g′) and
(G(g′))(b′) = (G(g ◦ g1))(b′) = G(g)((G(g1))(b′)) = (G(g))(b) = a, but as
g′ � A0 = idA0 and (∗)1 we have b′ ∈ x ⇔ (G(g′))(b′) ∈ x which means
b′ ∈ x⇔ a ∈ x. But we have chosen b′ ∈ x hence a ∈ x. So we have proved that
a ∈ x′ ⇒ a ∈ x. Thus finishing the proof of (∗)2.

Proof of (∗)3. If z ∈ N there is A∗ ∈ I such that A∗ is a Z-support of z.
Now there is f1 ∈ F, f � A0 ⊆ f1 such that A∗ ⊆ Rang(f1). So z1 =

G(f−11)(z) is well defined and by (∗)2 we can check that {b ∈ N : b ∈ z1} = x;
contradiction to “x /∈ N”.

Choiceless Polynomial Time Logic: Inability to Express 103

Proof of (∗)4.
Should be clear.

Proof of (∗)5.
By 2.14(1).

Proof of (∗)6.
By clause (b) of 2.13(5).

We continue checking the clauses in Definition 2.6.

Clause (d):
Easy as for f, g ∈ F we have f ⊆ g ⇒ G(f) ⊆ G(g).

Clause (i):
By the symmetry it is enough to show that G′(f−1) ⊆ G′(f)−1.
So let (G′(f−1))(x) = z.

Now we know that both G(f) and G(f−1) maps N to N and N ′\N to N ′\N
(that is when defined), so if x ∈ N we have z ∈ N and we use “Z satisfies
Definition 2.6 (1), clause (i)” to get (G(f)−1)(z) = x as required. So assume
x ∈ N ′\N hence z ∈ N ′\N . By �(∗)4 +⊗1 and �(∗)2 we are done.

Clause (j):
Assume x0 ∈ Dom(G′(f)), hence x0 has a Z′-support A0 ⊆ Dom(f), so by the
definition of f2◦f1 = f we have A0 ⊆ Dom(f1) and f”1(A0) ⊆ Dom(f2). So we
have x0 ∈ Dom(G′(f1)) and x1 =: (G′(f1))(x0) has Z′-support A1 =: f”2(A0).
Similarly x2 =: (G′(f2))(x1) is well defined and has Z′-support A2 =: f”1(A1)
which is ⊆ Rang(f2 ◦ f1) = Rang(f). Now we would like to show that x2 =
(G′(f))(x0); if x0 ∈ N this should be clear so assume that x0 ∈ N ′\N hence
x1, x2 ∈ N ′\N . Let x′2 = (G′(f))(x0), it is well defined as x0 has Z′-support
A0, A0 ⊆ Dom(f) and it suffices to prove that x2 = x′2. So let y ∈ N and we
shall prove that (y ∈ x2) ≡ (y ∈ x′2).
Let B2 be a Z′-support, equivalently Z-support of y and let y2 = y. We can
find f ′2 ∈ F such that f ′2 � A1 = f2 � A1 and B2 ⊆ Rang(f ′2) so as A1
is a Z′-support of x1, clearly (G′(f ′2))(x1) = (G′(f2))(x1) = x2. Let B1 =
((f ′2)

−1)”(B2). Also we can find f ′1 ∈ F such that f ′1 � A0 = f1 � A0 and
B1 ⊆ Rang(f ′1) so as A0 is a Z′-support of x0 clearly (G′(f ′2))(x0) = x1 and let
B0 = ((f ′1)

−1)”(B1). Let y1 =: (G′((f ′2)
−1))(y2), so y1 ∈ N has Z-support B1,

and let y0 = (G′((f ′1)
−1))(y1), so y0 ∈ N has Z-support B0. AsG′(f ′2) maps x1 to

x2 and y1 to y2 we have by clause (c)(β) on Z′ which we have already proved that
(y2 ∈ x2) = (y1 ∈ x1). Similarly as G′(f ′1) maps x0 to x1 and y0 to y1 we have by
clause (c)(β) that (y1 ∈ x1) ≡ (y0 ∈ x0) so together (y2 ∈ x2) ≡ (y0 ∈ x0). Now
f ′ = f ′2 ◦ f ′1 ∈ F and its domain include A0 ∪ B0 and G′(f ′) maps y0 to y2 (by
clause (j) for Z!); also as x0 is in its domain (as A0 ⊆ Dom(f ′) is a Z′-support
of x0) and as f � A0 = f ′ � A0 we have (G′(f ′))(x0) = (G′(f))(x0) but the
later is x′2. So (G′(f ′))(x0) = x′2, so as y0 ∈ Dom(G′(f ′)) by clause (c) we have
y0 ∈ x0 ≡ (G′(f ′))(y0)) ∈ x′2 but (G′(f ′))(y0) = y2 so (y0 ∈ x0) ≡ (y2 ∈ x′2). As

104 S. Shelah

earlier we have gotten (y2 ∈ x2) ≡ (y0 ∈ x0) together (y2 ∈ x2) ≡ (y2 ∈ x′2) but
y2 = y so we are done.

Clause (e): See Definition of RZ′
in Definition 2.13(5), clause (d).

Clause (f):
Subclause (α):
So assume ARZ′

y, f ∈ F and A ⊆ Dom(f). First, if y ∈ N then we use
G′(f) � N = G(f) and Z satisfying Definition 2.6(1), clause (f)(α). Second, if
y ∈ N ′\N then ARZ′

y means ARy and clearly y is a good subset of N and by
the definition of G′(f)(= G+(f)), necessarily y ∈ Dom(G′(f)). If in addition
f � A = idA, we should prove that (G′(f))(y) = y. Now by �(∗)4 apply to y,A
instead x,A0 we have

(G′(f))(y) = {b ∈ N :for some g ∈ F and b′ ∈ y we have

f � A ⊆ g (i.e. idA ⊆ g) and G(g)(b′) = b}.

But as ARy we have:

idA ⊆ g & b ∈ Dom(G(g)) ⇒ [b ∈ y ≡ G(g)(b) ∈ y]

which means that (G′(f))(y) = y, as required.

Subclause (β)(of (f)):
So assume f ∈ F and y ∈ Dom(G′(f)) (hence y ∈ N ′). First, if y ∈ N , recall
that G′(f) � N = G(f) and use Z satisfying clause (f)(β) of Definition 2.6(1)
and

�2 R
′ � (I ×N) = R.

Second, if y ∈ N ′\N see the definition of G′(f) = G+(f) and R′.

Clause (g):
See the choice of R′,R.

Clause (h):
The new case is: assume A ⊆ Dom(f), A ∈ I,X ∈ Dom(G′(f)), X ∈ N ′\N .
We have to show ARZ′

X ⇔ f”(A)RZ′
(G′(f))(X); now by by clause (i) it is

enough to prove the implication ⇐.
Let A∗ =: f”(A) and X∗ =: (G′(f))(X), so we know that A,A∗ ∈ I and

X,X∗ ∈ N ′\N and A∗RX∗. We have to show that ARX. If ¬ARX, then we
can find g ∈ F, g � A = idA, and z0 ∈ Dom(G(g)), z1 = G(g)(z0), such that
z0 ∈ X ≡ z1 /∈ X. We can find B0 ∈ I such that B0Rz0 and B0 ⊆ Dom(g) and
let B′1 =: g”(B0). We can find f1, f � A ⊆ f1, B0 ∪ B1 ⊆ Dom(f1), f1 ∈ F and
without loss of generality f1 = f and Dom(g) = A∪B0. Let g∗ = f◦g◦f−1, B∗0 =
f”(B0) and B∗1 = f”(B1). Clearly B∗0 , B

∗
1 ∈ I and f−1, g ◦ f−1, g∗ = f ◦ g ◦

f−1 ∈ F. Also B∗0 ⊆ Dom(f−1), (f−1)”(B∗0) = B0 ⊆ Dom(g), g”(B0) = B1

Choiceless Polynomial Time Logic: Inability to Express 105

and f”(B1) = B∗1 hence together g∗(B∗0) = B∗1 . Let z∗0 =: (G(f))(z0), z∗1 =
(G(f))(z1), so (G(f−1))(z∗0) = z0, (G(g))(z0) = z1, (G(f))(z1) = z

∗
1 , and as B∗0

is Z-support of z∗0 , B
∗
0 ⊆ Dom(g∗) necessarily (G(g∗))(z∗0) = z

∗
1 .

We can also show that (z0 ∈ X) ≡ (z∗0 ∈ X∗) and (z1 ∈ X) ≡ (z∗1 ∈ X∗) by
clause (c)(β) which we already proved so remembering (z0 ∈ X) ≡ (z1 /∈ X) we
get a contradiction to “ARX∗” which we have assumed.

Clause (k):
Trivial. �2.16

Well we have Υ-successors of candidates (in Definition 1.8, implicitly in Defini-
tion 1.1) and we have successors of m1-liftings Z of Y = (M, I,F) where Z has
in it a candidate (NZ, P̄Z).

Of course, we like to connect then, specifically show that true (Υ, t)-successor
of Z exists. This is not always true, as Definition 1.8 can lead us to elements of
N ′\N with no support in I. In Definition 2.13 we restrict ourselves to elements
with support in I, and we can change the definition in 1.1, 1.8 to have it, but it
seems to me not so convincing for a logic. Rather we show that the dichotomy
assumptions (as in 2.1(3), 2.3) help.

When we use L∗ = Lf.o., then dealing with Υ-successor is easier, we have
to look less carefully at cardinalities, still we need a dichotomy property (see
Definition 2.6) in order to get a Z-support to every member.

2.17 Claim. Assume that:

(a) Y = (M, I,F) is a k-system, k ≥ 3

(b) Υ is an inductive scheme for Lf.o.(τ+M)

(c) for every < mΥ
0 any subformula of ψΥ� has ≤ k free variables; also for

every < mΥ
1 any subformula of ϕΥ� has ≤ k free variables

(d) t ∈ T

(e) Y is a t-dichotomical k-system

(f) for every < mΥ
0 the formula ψΥ� has ≤ k/2 free variables.

Then

(α) if Z is an mΥ
1 -lifting of Y then Z has a true (Υ, t)-successor (see Defi-

nition 2.13(9))

(β) for every t ≤ ∞ there is an mΥ
1 -lifting Zt of Y such that recalling Defi-

nition 1.1(3A), we have (NZt

, P̄Zt

) = (Nt[M,Υ, t], P̄t[M,Υ, t])

(γ) if t ≤ tι[M,Υ, t] and ι ∈ {1, . . . , 7} or t ≤ tι[M,Υ, t] & ι = 11, . . . , 17
then there is an mΥ

1 -lifting Zt of Y such that (NZt

, P̄Zt

) is equal to

(Nt[M,Υ], P̄t[M,Υ]) or (Nt[M,Υ, t], P̄t[M,Υ, t]),

respectively; similalry for ι = 21, . . . , 27.

106 S. Shelah

Proof. Clearly clause (β) follows from clause (α), just prove by induction on t.
Also clause (γ) follows from (β) and clause (α), so we deal with clause (α). Let
Z = (N, P̄ ,G,R).

The main point is to prove

� assume < mΥ
0 and for ā ∈ �g(ȳ)N and X = Xā = {b ∈ N : (N, P̄) =

ψ�[b, ā]}. Then ARX for some A ∈ I or
{{b ∈ N : (N, c̄) |= ψ�[b, ā′]} : ā′ ∈ �g(ȳ)N}| > t(‖M‖).

Let m = g(ȳ), so 2(m+ 1) ≤ k and ā = 〈a� : < m〉, let A� ∈ I be a Z-support
of a� and let b̄� be a list of A� without repetitions, and define a function h∗ with
domain [m] with h∗() = b̄�. We define a 2-place relation E on h∗/E0

I,m, see
Definition 2.1(3)(γ):

⊕1 if for j = 1, 2, fj ∈ F and
⋃

�∈[m]

Rang(h∗()) ⊆ Dom(fj) and hj = fj∗h∗

then h1Eh2 ⇔ XG(f1)(ā) = XG(f2)(ā)
(where G(fj)(〈a� : < m〉) = 〈G(fj)(a�) : < m〉.

Now

⊕2 E belongs to EI,m(∅),
see Def 2.1(3)(δ).

Why? by traslating this means that:

(∗) if ā1, ā2, ā3, ā4 ∈ {(G(f))(ā) : ⋃
�<m

A� ⊆ Dom(f) and f ∈ F}, and
(G(f))(ā1ˆā2) = ā3ˆā4, then N |= ψ(ā1, ā2) ≡ ψ(ā3, ā4)

where ψ(ȳ1, ȳ2) =: (∀x)[ϕ(x, ȳ1) ≡ ϕ(x, ȳ2)].
Now every subformula of ψ(ȳ1, ȳ2) has at most 2m + 1 < k free variables or

is a subformula of ϕ(x, ȳ) hence has ≤ k free variables, hence by 2.9 we have
N |= ψ(ā1, ā2) iff N |= ψ(ā3, ā4), so we are done showing ⊕2.

Now m ≤ k/2 and we are assuming that Y is a t-dichotomical k-system, so
(β)1 or (β)2 of Definition 2.1(4) holds. Now (β)2 gives the desirable first possible
conclusion in � and (β)1 gives that |{b : N |= ψ�(b, ā′) : ā′ ∈ mN}| > t(‖M‖),
hence second possible conclusion in �. �2.17

2.18 Claim. 1) Assume that

(a) Y is a counting k-system with k ≥ 3

(b) Υ is an inductive scheme, in Lf.o. or in Lf.o. + na or Lcard or Lcard,T

(c) for < mΥ
0 , every subformula of ψ�(y, x̄) has at most k−1 free variables

and for < mΥ
1 every subformula of ϕ� has at most k − 1 free variables

(d) t ∈ T

(e) Y is a t-dichotomical k-system

Choiceless Polynomial Time Logic: Inability to Express 107

(f) for < mΥ
0 the formula ψ� has ≤ k/2 free variables.

Then
(α) if Z is an mΥ

1 -lifting, then Z has a true (t,Υ)-successor
(β) for every t there is an mΥ

1 -lifting Zt such that
(NZt

, P̄Zt

) = (Nt[M,Υ, t], P̄t[M,Υ, t]).

Proof. The proof is as in 2.17 , but we know by 2.10 that the partial automor-
phism G(f) preserves also ψ1(y, x̄) and even (∃ky)ψ1(y, x̄) when every subfor-
mula of ψ1 has < k free variables; (note that only now having 2m+1 < k rather
than 2m+ 1 ≤ k seem helpful or repeat the proof of 2.10 as we can use the < k
just for subformulas of ϕ). �2.18

2.19 Remark. Why do we still need in 2.18 the “t-dichotomical”? Just to guar-
antee that the true (t,Υ)-successor is included in the full one.

2.20 Claim. Assume

(a) Y is a k-system with k ≥ 3
(b) Υ is an inductive scheme in Lf.o.

(c) for < mΥ
0 , every subformula of ψ�(y, x̄) has at most k−1 free variables

and for < mΥ
1 every subformula of ϕ� has at most k − 1 free variables

(d) t ∈ T

(e) Y is medium t-dichotomical
(f) for < mΥ

0 the formula ψ� has ≤ k/2 free variables.

Then: the conclusion of 2.18 holds, so if t ≤ tι(M,Υ, t), then for some mΥ
1 -

lifting Zt we have (NZt

, P̄Zt

) = (Nt[M,Υ, t], P̄t[M,Υ, t]).

Proof. Like the proof of 2.17, 2.18.

2.21 Definition. 1) We say that H is a witness to the k-equivalence of Y1 and
Y2 if

(a) for = 1, 2 we have Y� = (M�, I�,F�) is a k-system
(b) H is a family of partial isomorphisms from M1 into M2

(c) for every g ∈ H, we have Dom(g) ∈ I1, Rang(g) ∈ I2
(d) if g ∈ H and f1 ∈ F1 then g ◦ f1 ∈ H

(e) if g ∈ H and f2 ∈ F2 then f2 ◦ g ∈ H

(f) if g ∈ H and A ∈ I1[k − 1] and B ∈ I1, then for some g1 ∈ H we have
g � A ⊆ g1 and B ⊆ Dom(g1)

(g) if g ∈ H and A ∈ I2[k − 1] and B ∈ I2, then for some g1 ∈ H we have
g−1 � A ⊆ g−11 and B ⊆ Rang(g1).

108 S. Shelah

2) We say that H is a witness to the dichotomical (k, r)-equivalence of (Y1, t1)
and (Y2, t2) if

(i) Y� is a (t�, k, r)-dichotomical k-system for = 1, 2
(ii) H is a witness to the k-equivalence of Y1 and Y2

(iii) each g ∈ H preserved the possibility chosen in the definition of (t, k, r)-
dichotomical.

If we omit r, we mean s = [k/2].
3) We say that H is a witness to the counting k-equivalence of Y1 and Y2 if

(i) Y� is a counting (t, k, r)-system for = 1, 2
(ii) H is a witness to the k-equivalence of Y1 and Y2

(iii) each g ∈ H preserve the cardinalities involved in the definition of “count-
ing (t, k, r)-system”.

4) Similarly with “medium dichotomy”.

2.22 Main Conclusion: Assume

(a) Y� = (M�, I�,F�) is a t�-dichotomical k-system, and τ(M�) = τ for
 = 1, 2

(b) H is a witness to the k-equivalence of Y1 and Y2

(c) χ ∈ Lf.o.(τ+), i.e. a first order sentence in the vocabulary τ+ = τ ∪{∈},
(d) Υ is an inductive scheme for Lf.o.

(e) every subformula of χ and of ψΥ� and of ϕΥ� has at most < k free variables
(f) t1, t2 ∈ T
(g) every formula ψΥ� has ≤ k/2 free variables and k ≥ 3 of course.

Then

(α) let4 ι ∈ {2, 3, 4, 5}; the truth value of θΥ,χ,t1 in M1 and θΥ,χ,t2 in M2
under |=ι are equal except possibly when: for some ∈ {1, 2} we have
the truth value of θΥ,χ,t�

in M� is undefined whereas that of θΥ,χ,t3−�
in

M3−� is well defined and tι[M�,Υ, t�] < tι[M3−�,Υ, t3−�].
(β) For any t, if N � = Nt[M�,Υ, t�] is well defined for = 1, 2, then for every

sentence θ ∈ Lf.o.(τ+) such that every subformula has at most k free
variables, we have N1 |= θ ⇔ N2 |= θ

(γ) if ι ∈ {2, 3, 4, 5} and θ� = θΥ,χ,t� ∈ LT
ι (Lf.o.(τ)) is ι-good for = 1, 2:

then M1 |=ι “θ1” iff M2 |=ι “θ2”
(δ) for any t, if N � = Nt[M�,Υ, t�] is well defined for = 1, 2 and θ =

θ(x1, . . . , xn) ∈ Lf.o.(τ+) is a formula such that every subformula has at
most k free variables then:
⊕ let a1, . . . , am ∈ N1 and g ∈ H, then

N1 |=ι θ[a1, . . . , am] iff N2 |=ι θ[(G(f))(a1), . . . , (G(f))(am)].

4Here and below, for ι ∈ {6, 7} the conclusion is similar but expressed more cumbersomely

Choiceless Polynomial Time Logic: Inability to Express 109

Proof. First we can prove clause (δ) by induction on the quantifier depth of θ,
as in 2.9.

Second, note that clause (α) follows from clause (β).
Third, note that clause (β) follows from clause (δ)
and the definition of satisfaction 1.1.
Lastly, concerning clause (γ) follows the definition of L-good (and clause (β)).

�2.22

2.23 Conclusion. Assume

(a) Y� = (M�, I�,F�) is a counting k-system, τ(M�) = τ for = 1, 2
(b) H is a witness for the counting k-equivalence of Y1 and Y2

(c) χ ∈ Lcard,T
(d) Υ is an inductive scheme for L∗ = Lcard,T (τ+) or Lcard(τ+)
(e) every subformula of χ and of ψΥ� (for < mΥ

0) and of ϕΥ� (for < mΥ
1)

has at most k − 1 free variables
(f) t ∈ T
(g) if < mΥ

0 then ψΥ� has ≤ k/2 free variables and k ≥ 3 of course.

Then

(α) if θ = θΥ,χ,t and ι ∈ {2, 3, 4, 5, 6, 7, 11, 22} thenM1 |=ι θ ⇔M2 |=ι θ and
M1 |=ι ¬θ ⇔M2 |=ι ¬θ

(β) For any t if N � = Nt[M�,Υ, t] is well defined for = 1, 2, then for every
sentence θ ∈ Lf.o.(τ+) such that every subformula has at most k−1 free
variables, we have N1 |=ι θ ⇔ N2 |=ι θ

(γ) for any t, if N � = Nt[M�,Υ, t] are well defined (for = 1, 2), and θ =
θ(x1, . . . , xn) ∈ Lf.o.(τ+) is a formula such that every subformula has at
most k − 1 free variables we have:
⊕ if a1, . . . , am ∈ N1 and g ∈ H, each (G(f))(a�) is well defined then

N1 |=ι θ[a1, . . . , am] iff N2 |=ι θ[(G(f))(a1), . . . , (G(f))(am)].

Proof. Straight.

Now

2.24 Conclusion. Assume

(a) Y� = (M�, I�,F�) is a medium t-dichotomical k-system, τ(M�) = τ for
 = 1, 2

(b) H is a witness for the medium t-dichotomical k-equivalence of Y1 and
Y2

(c) χ ∈ Lf.o.(τ+)
(d) Υ is an inductive scheme for L∗ = Lf.o.(τ+)

110 S. Shelah

(e) every subformula of χ and of ψΥ� (for < mΥ
0) and of ϕΥ� (for < mΥ

1)
has at most k − 1 free variables

(f) t� ∈ T

(g) if < mΥ
0 then ψΥ� has ≤ k/2 free variables and k ≥ 3 of course.

Then

(α) if θ = θΥ,χ,t and ι ∈ {1, . . . , 5, 6, 7, 11, 22} then M1 |=ι θ ⇒M2 |=ι θ and
M1 |=ι ¬θ ⇔M2 |=ι ¬θ

(β) For any t if N � = Nt[M�,Υ, t�] is well defined for = 1, 2, then for
every sentence θ ∈ Lf.o.(τ+) such that every subformula has at most
(k − 1)-free variables, we have N1 |= θ ⇔ N2 |= θ.

Proof. Straightforward.

2.25 Discussion We consider now some variants.
1) We have to consider the stopping times. If L∗ = Lcar,T or Lcard,T this
is natural, (and they are stronger logics than the earlier variants). If we still
would like to analyze in particular for the others, we should be careful how
much information can be gotten by the time.
2) We can modify Υ such that inNt+1 we can reconstruct the sequence 〈(N�, P̄�) :
 ≤ s〉 (see §4).
3) We can change our presentation: first proving the equivalences for NZ[Y�,t�]

for = 1, 2, (see Definition 5.5) and then proving that (Nt[MY� ,Υ, t], P̄t[M,Υ, t])

is interpretable in N
Zfull

Y�,t uniformly.

§3 The Canonical Example

We apply §2 to the canonical example: random enough graph.

3.1 Definition. Let τ be a fixed (finite) vocabulary consisting of predicates
only. We say M is a (s, k)-random τ -model if every quantifier free 1-type over
A ⊆M, |A| < k (not explicitly inconsistent) is realized in M by at least s(‖M‖)
elements. If s is constantly ∞ we may write k-random.

Remark. We can restrict the set of allowable quantifier free types if it is nice
enough e.g. R two-place symmetric irreflexive. More generally see e.g. [BlSh
528].

3.2 Definition. Tpol is TQ, where for a set Q ⊆ R containing an unbounded
set of reals > 0 let TQ be {fq : q ∈ Q, q > 0} where fq : ω → ω is fq(n) = nq, or
more exactly, %nq& the least integer ≥ nq.

Choiceless Polynomial Time Logic: Inability to Express 111

3.3 Claim. Assume

(a) q∗, k are integers > 1 and k∗ = q∗k
(b) s ≤ k, s > 0 integer
(c) M� is (s�, 3k∗)-random τ -model for = 1, 2

(d) t�(‖M�‖) < (s�(‖M�‖))q∗+1/(q∗ + 1)! and s�(‖M�‖) > q∗
(e) Υ is an inductive scheme for Lf.o.(τ[2]), χ a sentence in Lf.o.(τ[2]) and

each subformula of any formula among ψΥ� (< mΥ
0), ϕ

Υ
m(m < mΥ

1) and
χ has at most s free variables

Then

⊕ if ι ∈ {2, 3, 4, 5, 6} and θΥ,χ,t�
is ι-good (at least for M� that is, the truth

values below are defined) for = 1, 2, then M1 |=ι θΥ,χ,t1 ⇔ M2 |=ι

θΥ,χ,t2 .

3.4 Remark. 1) Compare clause (β) with 2.21(2).
2) Why in 3.3 do we use clause (d)? As there we useNt[M�,Υ, t�] so for some t we
may add the sets in Pt[M1,Υ, t1] to Nt[M1,Υ, t1] (in defining Nt+1[M1,Υ, t1]
but do not add P�[M2,Υ, t2] to Nt[M2,Υ, t2] in defining Nt+1[M2,Υ, t2].
3) We concentrate on ι-good sentences (or local versions) in order to have neat
results. Otherwise we have really to be more careful, e.g. about the cardinalities
of the Nt[M,Υ, t]’s. This is very reasonable for counting logic.
4) We have ignored in this claim, and others in this section, the cases 10 < ι.
We can deal with them, if we note the following required changes. We have to
note that the function t is split to two functions; one, tsp, for telling us how
to increase Nt to Nt+1, that is which additional families of subsets of Nt are
allowed to be added, and for this function the parallel of clause (d) should be
demanded. Secondly we have to consider what families are added in each stage
(so for the counting and the medium analog our situation may be better).

Proof. We let I� = {A ⊆M� : |A| ≤ q∗} and

F� = {f :f is a partial automorphism of M�

and Dom(f) has ≤ q∗k elements}

(∗)1 Y� = (M�, I�,F�) is a k-system
[why? the least obvious clause in Definition 2.1(1) is clause (D) which
holds by Definition 3.1 above.]

(∗)2 Y� = (M�, I�,F�) is (t�, s)-dichotomical, (see Def 2.1(4)).

Why? The proof of (∗)2 takes most of the proof. Let m ∈ N be 1 ≤ m ≤ s and
let E be an equivalence relation from E0I,m(∅) so it is an equivalence relation on
h∗/E0

Y�,m
where h∗ : [m] → SeqI�

, E satisfying (∗) of clause (δ) of Definition

2.1(3). For h ∈ h∗/E0
Y�,m

let b̄h be the concatenation of h(1), h(2), . . . , h(m).

112 S. Shelah

Without loss of generality h∗ is one-to-one and even b̄h∗ is with no repetitions.
Let t∗ = g(b̄h∗) so t∗ ≤ q∗k ≤ k∗. By clause (c) and the definition of F there
is a quantifier free formula ϕ(x̄, ȳ) ∈ L(τ) with g(x̄) = g(ȳ) = t∗ such that
h1Eh2 iff M� |= ϕ[b̄h1 , b̄h2].

Clearly without loss of generalityϕ(x̄, ȳ) tells us that the quantifier free type of
x̄ and of ȳ (same as that of b̄h∗ = h∗(1)ˆh∗(2)ˆ . . . ˆh∗(m)), call it p(x̄) and let
p[M] = {ā ∈ t∗M : ā realizes p(x̄)}, so we can look at E restricted to this set.
Can there be ā0, ā1 ∈ t∗(M�) realizing the same quantifier free type p(x̄) (over
the empty set) which are not E-equivalent? If not, then |p[M�]/E| = 1 and we
are done so assume there are. We can find ā2 ∈ t∗(M�) realizing the same quanti-
fier free type p(x̄) and disjoint to ā0ˆā1 (use “M� is (s�, 3k∗)-random”), so ā2, āj
are not E-equivalent for some j ∈ {0, 1}; so without loss of generality ā0, ā1 are
disjoint. Now we ask “are there disjoint b̄0, b̄1 ∈ t∗(M�) realizing p(x̄) which are
E-equivalent”? If yes, we easily get a contradiction to “E an equivalence rela-
tion” (by finding b̄′, a sequence fromM� realizing p(x̄) such that both b̄′ˆā0, b̄′ˆā1
realize the same quantifier free type as b̄0ˆb̄1; contradiction). So: no disjoint
b̄0, b̄1 ∈ p[M�] are E-equivalent. Next we claim that

⊗
for some u ⊆ [0, t∗) and subgroup g of the group of permutations of u,
moreover of g∗ = g∗u = {σ ∈ Per(u): if ā ∈ t∗(M�) realizes p(x̄) then
〈aσ(i) : i ∈ u〉 realizes the same quantifier type as ā � u}, we have:
E � {ā ∈ t∗(M�) : ā realizes p(x̄)} = Eg � {ā ∈ t∗(M�) : ā realizes p(x̄)}
where for any subgroup g′ of g∗, Eg′ = Et∗,M�

g′ is defined by: for ā, b̄ ∈
t∗(M�), āEg′ b̄ ⇔ (∃σ ∈ g)(〈aσ(t) : t ∈ u〉 = 〈br : t ∈ u〉) (this is an
equivalence relation).

[Why? It is enough to show: assume ā, b̄, c̄ ∈ t∗(M�) realize p(x̄) and ā, b̄ are
E-equivalent, r∗ < t∗ and ar∗ /∈ {bt : t < t∗} then c̄/E does not depend on cr∗

(i.e. if c̄′ ∈ t∗(M�) realizes p(x̄) and r′ < t∗ & r′ != r∗ ⇒ cr′ = c′r′ then c̄Ec̄′.)
Toward this end, let σ be the partial function from [0, t∗) to [0, t∗) such that
σ(r1) = r2 ⇔ ar1 = br2 . Clearly σ is one to one and r∗ /∈ Dom(σ).
We choose by induction on j∗ ≤ t! a sequence āj ∈ p[M�] such that ā0 = ā, ā1 =
b̄, the quantifier free type of ājˆāj+1 in M� is the same as the quantifier free
type of ā0ˆā1 = āˆb̄ in M� and (∀r)[aj+1

r /∈ {ajr : r < t∗} ⇒ ajr /∈ {ar : r < t∗}].
Clearly j < t∗! ⇒ ājEāj+1, hence j ≤ t∗! ⇒ āEāj . Let σj be the partial function
from [0, t∗) to [0, t∗) defined by σj(r1) = r2 ⇔ ar1 = ajr2 . Clearly σ0 = id[0,t∗)
and σj+1 = σ ◦ σj . Clearly σt∗! is the identity function on some subset of [0, t∗)
and at

∗!
r2 = a0r1(= ar1) ⇔ r1 = r2 & σt

∗!(r1) = r1. Now given c̄′ as above we
can find b̄ ∈ p[M1] such that c̄ˆb̄ and c̄′ˆb̄ realizes the same quantifier free type
as ā0ˆāt!, hence c̄Eb̄ & c̄′Eb̄ hence c̄Ec̄′. Easily we are done proving

� p[M�]/E has cardinality ≥ (s�(‖M�‖)|u| · (|g∗|/|g|).
[Why? Clear by � and Definition 3.1.]
This number is ≥ (s�(‖M�‖)|u|/|u|!. Hence if |u| > q∗ as s�(‖M‖) > k∗ = q∗k ≥
|u| > q∗ (see assumption (d)) the number is ≥ (s�(‖M�‖))q∗+1/(q∗ + 1)! which

Choiceless Polynomial Time Logic: Inability to Express 113

by assumption (d) is > t�(‖M�‖) and we get one of the allowable answers in
Definition 2.1(4). So we can assume that |u| ≤ q∗ and this gives the second
possibility so we have finished proving (∗)2.
Let

H =
{
f :f is a partial embedding of M1 into M2

with Dom(f) having ≤ q∗k members
}
.

(∗)3 H is a (k, s)-witness to the equivalence of (Y1, t1) and (Y2, t2)
[why? straight.]

So we can apply 2.22 and get the desired result. �3.3

Lastly, we can conclude the answer for the question in [BGSh 533]:

3.5 Theorem. 1) Assume ι ∈ {2, 3, 4, 5}, τ = {R}, R binary symmetric ir-
reflexive, p ∈ (0, 1) and T are given and each t ∈ T is bounded by a poly-
nomial. The logic LT

ι (Lf.o.)(τ) satisfies the undecided 0-1 law for finite ran-
dom enough model, that is graph with a fix probability p ∈ (0, 1) which means;
if θ1 = θΥ,χ,t ∈ LT

ι (Lf.o.)(τ) and θ0 = θΥ,¬χ,t then 〈Min{Prob(Mn |= θ0),
Prob(Mn |= θ1)} : n < ω〉 converge to zero5, where Mn is G(n,p), the random
graph on n with edge probability p.
2) Moreover also the undecided+ 0− 1-law hold; which means:

if θ1 = θΥ,χ,t ∈ LT
ι (Lf.o.)(τ) and θ0 = θΥ,¬χ,t then for some ∈ {0, 1} the

sequence 〈{Prob(Mn |= θ�) : n < ω〉 converges to zero,
3) Similarly for any fixed (finite) vocabulary τ consisting of predicates only p̄ =
〈pR : R ∈ τ〉,pR ∈ (0, 1)R.

Proof. 1) Let θ0, θ1,Υ, χ, t be as above and ε > 0. Let s be large enough such
that assumption (e) of 3.3 holds, choose k = 3s so assumption (b) there holds.
We choose s� as s(n) = (n− k)× (Min{pk/2, (1− p)k/2}) and let q∗ be integer
> 0 such that for n large enough s(n)q

∗+1 ≥ t(n)(q∗ + 1)! and let k∗ = q∗k.
Let n be large enough and M1

n,M
2
n be random enough (for G(n,p)). We would

like to apply Claim 3.3 with M1 = M1
n,M2 = M2

n and Υ, χ as in the definition
of θ0, θ1 and t1 = t2 = t and s1 = s2 large enough. This is straight, noting that
the case of the truth value of θ1 in Mn is undefined, i.e. we run out of resources,
just help us.
2) Similarly, this time for n is large enough, n1 ≥ n, n2 ≥ n and M1

n1
,M2

n2
are

random enough (for G(n1,p), G(n2,p) respectively).
3) Similarly �3.5

3.6 Discussion: 1) It is reasonable to consider the undecided law if we know
that the (Nt[M�,Υ, t�], P̄t[M�,Υ, t�]) for = 1, 2 are quite equivalent for every

5We do not ask that for some � < 2 the probability for the satisfaction of θ� converges to
1, as the decision when to stop may be complicated. If we e.g. use an inside “clock” to tell us
when to stop, this disappears

114 S. Shelah

t, when ‖M1‖ = ‖M2‖, but we do not have information otherwise.
2) We might prefer to have the usual zero-one law. There are some avenues
to get (at some price), see also 3.7,3.8 below; we may consider all sentences,
ι ∈ {2, . . . , 5} and the usual 0-1 law.
We have to try to use t which tries to diagonalize the right sets. That is, using 3.3
for t1 = t2 = t, we can get strong enough equivalence of N+

t [M1,Υ], N+
t [M2,Υ],

which is fine if ‖M1‖ = ‖M2‖ < ‖M2‖, so it is enough if N+
t1 [M�,Υ], N+

t2 [M�,Υ]
with t1 = tι[M1,Υ, t1], t2 = tι[M2,Υ, t1] and choose t such that they are quite
equivalent. As in N+

t [M�,Υ] we can define N � {0, . . . , t − 1}, this requires
t(‖M�‖) to be quite large compare to ‖M�‖. So we can get our desired 0-1 laws
and all possible ι’s, but for a logic remote from our intention.

On the other hand, we may restrict our family of sentences (here)

3.7 Theorem. If in Theorem 3.5 we restrict ourselves to the good sentences,
i.e. the logic is LT

ι (Lf.o.)good and ι ∈ {2, 3, 4, 5}, then the usual 0-1 law holds.

Proof. Similar. �3.7

3.8 Theorem. 1) Assume ι ∈ {2, 3, 4, 5}, τ = {R}, R binary symmetric ir-
reflexive predicate, p ∈ (0, 1)R and T are given and for each t ∈ T for some
integer r and ε ∈ (0, 1/2)R we have 0 = lim〈t(n)/nr+1−ε : n ∈ N〉 and
∞ = lim〈t(n)/nr+ε : n ∈ N〉. Then the logic LT

ι (Lf.o.)(τ) satisfies the re-
sults in 3.3 - 3.7.
2) Similarly for any fixed (finite vocabulary τ consisting of predicates only,
p̄ = 〈pR : R ∈ τ〉,pR ∈ (0, 1)R.

Proof. 1) Suppose that M∗ |= θΥ,χ,t and this because in stage t∗ the run stop,
i.e., in a good way; and assume further that M is random enough graph (for
our given Υ and χ). We can find E� for < ∗ such that E� is a quantifier
free formula with 2m� variable defining an equivalence relation on p�(M) for
every random enough graph M , p�(x̄) a complete quantifier free type with m�

variables said to be pairwise distinct. We can find non negative integers rt� for
 < ∗, t ≤ t∗ such that: if M is random enough graph and Nt = Nt[M,Υ]
then ‖Nt‖ = Σ�<�∗rt�|(m�M)/E�|. Now the expected value of |(m�M)/E�| is of
the form p′ × binomial(n,m�) for some constant p′. The distribution is similar
enough to normal (see [Sh 550]) to ensure that the run on Mn will not stop for
t ≤ t∗ for over using resources.
2) Similarly �3.8

What we have done for random graphs we can do to unary predicate. The
point is to replace claim 3.3 by a parallel one (the rest will follow).

3.9 Claim. 1) Assume that the vocabulary τ is {P}. P a unary predicate and

(a) q+, q−, k are integers > 1 and h is a decreasing (not necessarily strictly)
function from {0, 1, . . . , q+} to {0, 1, . . . , q−},

Choiceless Polynomial Time Logic: Inability to Express 115

(b) s is an integer ≤ k but > 0
(c) M� = (|M�|, PM�) for = 1, 2
(d) if q ≤ q+ then

(i) t�(‖M�‖) is at least |PM� |q × |(M� \ PM�)|h(q)
(ii) t�(‖M�‖) is strictly smaller than

binomial(|PM� |, q + 1)× binomial(|M� \ PM� |, h(q)),

(iii) t�(‖M�‖) is strictly smaller than

binomial(|PM� |, q)× binomial(|M� \ PM� |, h(q) + 1).

2) The parallel of 3.5- 3.8 holds

Proof. Similar but letting I� = {A ⊆M�: for some q ≤ q+ we have |A∩PM� | ≤ q
and |A \ PM� | ≤ h(q)}. �3.9

3.10 Definition. 1) We say M is a τ -model with k-elimination of quantifiers
if for every subsets A0, A1 of M , |A0| = |A1| < k and an isomorphism f from
M � A0 onto M � A1 and a0 ∈ M there is a1 ∈ M such that f = f ∪ {〈a0, a1〉}
is an isomorphism from M � (A0 ∪ {a0}) onto M � (A1 ∪ {a1}).
2) We replace “quantifiers” by “quantifier and counting” if we add: and the
two sets {a′0 ∈ M : a′0, a0 realize the same quantifier free type over A0} and
{a′1 ∈ M : a′1, a1 realize the same quantifier free type over A1} has the same
number of elements (we can then get it to equivalence relations on m-tuples).

3.11 Claim. 1) Assume (a), (b), (e) in 3.3 replacing first order by counting
logic and

(c)− (α) M� are τ -models which has k-elimination of quantifier for = 1, 2
(β) if ϕ(x̄, ȳ) is a quantifier free formula defining an equivalence

relation and g(x̄) = g(ȳ) ≤ k∗ then the number of classes is
> t�(M�) for = 1, 2 or for some u ⊆ [0, g(x̄)) with ≤ q∗
elements, some ϕ′(x̄ � u, ȳ � u) defines the equivalence relation
in M1 and in M2

(γ) if 2r + s ≤ k and for = 1, 2, ā� ∈ s(M�), x̄j = 〈xji : i < s〉,
for j = 1, 2,
ϕ� = ϕ�(x̄1, x̄2, , ā�) is first order and defines in M0
an equivalence relation E� and ϕ1 = ϕ2 and
the quantifier free types of ā1 in M1 and ā2 in M2 are equal,
then |r(M1)/E�|, |r(M2)/E2| are equal or
|r(M1)/E1| > t1(‖M1‖) & |r(M2)/E2| > t2(‖M2‖).

116 S. Shelah

Then

⊕ if ι ∈ {1− 7, 11− 17, 21− 27} then M1 |=ι θΥ,χ,t1 ⇔M2 |=ι θΥ,χ,t2 .

2) We have a theorem like 3.3, 3.8 (for ι as above) using 3.11(1) instead of 3.3.
3) We can in parts (1), (2) and in 3.3, 3.5, 3.7, 3.8 replace Lf.o. by Lf.o. + na.

Proof. Straight.

3.12 Claim. 1) Choiceless polynomial time does not capture counting logic.
2) Similarly for the pair (LT

ι (Lf.o.),LT
ι (Lf.o.+na)), the pair (LT

ι (Lf.o.+na),
LT

ι (Lcard)) and the pair (LT
ι (Lf.o.+na),LT

ι (Lcard,T)).
3) We can apply 3.11 to show that the pairs (M1

n,M
2
n) of models from [GuSh

526] are not distinguished by our logics (for a sentence θ for n large enough.

Proof. 1) Use 2.22, 3.9 on the question: |PM | ≥ ‖M‖/2 with τ = {P}.
2),3) Also easy �3.12

3.13 Remark. : Y. Gurevich asks for 0-1 laws, as in 3.3 - 3.8, for the general
framework of §2. The answer is quite straight by 3.14, 3.15, when we use constant
I.

3.14 Definition. Let τ be a fixed vocabulary consisting of predicates only. We
sayM is (s, k)-random model if: every quantifier free 1-type over A ⊆M, |A| < k
(not explicitly inconsistent) is realized in M by at least s(‖M‖) elements.

We are, of course, using

3.15 Claim. Let k, s > 0 be integers, let τ = {R}, R symmetric irreflexive
and p ∈ (0, 12]R. The probability that: for Mn a G(n;p) random graph (so
set of vertices in [n]), (Mn, I) is not (s, k)-random is ≤ Σ�<kbinomial(n,)×
Prob(flipping n − times a coin with probability p/2� for a head we get < s
heads).

§4 Relating the Definitions in [BGSh 533] to the One Here

4.1 Discussion If we just like to replace the creation of Nt[M,Υ, t] by ASM,
we can note that we can straightforwardly code the actions of the ASM by a
monotone Υ; the waste is small except that we are not allowed to omit old
elements so for fine measurements this make a difference. But we can just
replace Nt[M,Υ, t] by a situation of the ASM with no lose and no real difference
in the proofs. Still, the reader may instead of just accepting or understanding
this observation choose to read the formal translation below. Though this seem
trivial, writing the details of a translation is tedious.

4.2 Discussion: How do we relate between the definitions above and [BGSh
533]?

Choiceless Polynomial Time Logic: Inability to Express 117

(i) an infinite structure I there corresponds to a τ -model here
(ii) a state A there corresponds to a model of the form N = Nt[M,Υ] in 1.3

and (N, P̄) in 1.8
(iii) dynamic function there corresponds to Pt,� here
(iv) an object x is active at A in 5.1 there, corresponds to x ∈ N
(v) a program 5.7 there corresponds to an Υ in 1.1(2) here (mainly the first

order formulas used);
(vi) the counting function in 5.5 there corresponds to the cardinality quanti-

fier (1.1(6)) here
(vii) the polynomial functions p, q in 5.1 there corresponds to tsp, ttm ∈ T

here
(viii) the logic there corresponds to LT

ι (L∗),L∗ ∈ {Lf.o.,Lr.o.+ na,Lcard}
here.

If we insist on P� being individual constants this still can be done with a price.
The Pt+1,� can in the usual set theory manner be actually 7-place function from
Nt to Nt or 7-place relation on Nt, or be the universe of Nt. Understanding
this to interpret the successor step there to here we need that all parts of the
program are expressible in Lf.o. (or Lcard). For the other direction we need to
show f.o. operations can be expressed by the programs of ASM there (see 6.1
there), no problem (and not needed to show our results solved problems there).

4.3 Lemma. 1) Let π be a program concerned with τ -models (in [BGSh 533,
4.7]’s sense). We can find a natural number r∗ ≥ 1 and Υ such that:

�1(a) Υ is an inductive scheme in Lf.o. with τΥ = τπ

(b) for every integer polynomials p(n), q(n) and τ -model M such that p(n) ≥
2, q(n) > n + 2 we have M |= θΥ,p∗(n),q∗(n) (in the sense of Definition
1.3) iff M |= π̄ (in the sense of [BGSh 533]) when
(∗) p∗(n) = 3 + r∗p(n), q∗(n) = 2 + 2q(n).

2) If π̄ is as in [BGSh 533, §11], that is with being able to compute the cardinality
of M (= set of atoms) then a similar result holds but Υ is in Lf.o. + na.
3) If π̄ is as in [BGSh 533] for cardinality logic (see §4 there), then a similar
result holds but Υ is in Lcard and spaces do not use θΥ,3+n+r∗(p),2+n+2q(n).
4) We can replace p, q by arbitrary function from T and get similar results.

Before proving 4.3:

4.4 Observation. 1) If we identify truth, false with the sets ∅, |M | and m1 is as
in 1.1, then the state (for π, i.e. Υ there, etc.) of [BGSh 533] are the same
(M,m1)+-candidate here when we identify a state there with its set of active
elements (O.K., as they carry the same information). Sometimes we use any
transition set ⊆ V∞(M) containing the active member.

118 S. Shelah

The main point is

4.5 Claim. Let π be a program concerned with τ -models and the states corre-
spond to (M,m1)-candidates.
1) For every term σ for some natural number r(σ) (actually at most its depth)
and pure inductive scheme Υ which is monotonic and ψ0 = [y = x0] we have:

�1 if (Ni, P̄i) is a (M,m1)-candidate for i = 0, . . . , r(σ) and (Ni+1, P̄i+1) is
the (M,Υ)-successor of (Ni, P̄i) and ζ̄ is a variable assignment of x̄, a
sequence listing the free variables of σ into Nσ, then the interpretation
from σ under ζ̄ in Ni satisfies d =: valNi,ζ(σ) ∈ Nr(σ).

2) Moreover in (1) we can find also formulas 〈ψ�,r(x, ȳ�, z̄) : < mΥ
1 , r < r(σ)〉

such that

�2 in �1 above we can add:
if r ≤ r(σ) and let N ′r = N0∪(TC(d)∩Nr) where TC is transitive closure,
then N ′r+1 = Nr ∪ {a : for some b̄ ∈ �g(ȳ)Nr, (N ′r, P) |= ψ�,2(a, b̄, ζ̄)}
(identifying ζ̄ with a sequence of members of N0).

3) For every rule R (see [BGSh 533, 4.5]) there are r(R) ∈ N and an inductive
scheme Υ in Lf.o. such that (P0 is zero place relation):

�3 if (Ni, P̄i) is a (M,Υ)-candidate for i ≤ r(R) and (Ni+1, P̄i+1) is the
Υ-successor of (Ni, P̄i) for i < r(R) and Pi,0 = truth, then i < r(R) ⇒
Ni ⊆ Ni+1, the stationary (Ni(R), P̄

−
i(R)) is the R-udpate of (N0, P̄

−
0),

Pi,r(R) = truth where P̄− = P̄ � [1,mΥ
1).

4) In (3) we can even have

�4 Nr = N0 ∪ {x : x active in Nr∗}.

Proof. 1) By induction on the term.
2) As Nr+2 can be (uniformly) interpreted in Nr.
3) By induction on the rule R. �4.5

Proof of 4.3.
We describe what is an Υ-successor rather than let r∗ = r(Rπ)+ 1,Rπ is the

rule which π is. Then say formally what is Υ.
Now the predicates (and function symbols) {PΥ

k : k < mΥ
0 } serve some pur-

poses:

kind 1: The dynamic predicate and function symbols of π, say Pk for k ∈ w(1),
say Pk(1,0) will denote ∅, Pk(1,a) will denote the set of atoms.
For notation simplicity

kind 2: Pk(2,0) unary predicate will serve to denote the set of active elements;
and

Choiceless Polynomial Time Logic: Inability to Express 119

kind 3: Pk(3,1), . . . , Pk(3,r∗) will be zero place relations, they will denote the time
modulo r∗, say for t = 0 they are all false; for t = 1 we get true, true false ...,
for t = 2 we get true, true, true, false... (without loss of generality r∗ ≥ 3 for
t = 3 + r∗s + r, r < r∗ we have Pk(3,r′) ≡ r′ = r). The reason is that in our
translation one step for π̄ will be translated to r∗ steps in the construction of the
Nt’s and the translation begins only with t = 1. Now we can describe almost a
translation.

Now Υ is such that:

(a) N1[M,Υ] is M ∪ {M, ∅},
N2[M,Υ] is M1[M,Υ] ∪ {1}, recall 1 = {∅}
N3[N,Υ] is N1[M,Υ] ∪ {1, 2},

(b) if t∗ = 3 + r∗s, then Pt∗,k(3,0) = true, Pt∗,k(3,1), . . . , ct∗,k(3,r∗) are false
and we take care that Pt∗+r,k(3,r′) = r′ = 0 mod r∗ for r′ ≤ r∗ and
〈(Nt∗+2, P̄t∗+r) : i ≤ r(R∗)〉 is as in 4.4(3)+(4). Moreover P̄t∗+r∗ =
P̄t∗+r(R∗) andNt∗+r∗ is the set of active members of (Nt∗+r(R∗), P̄t∗+r(R∗).

Well, as in θ = θΥ,1+r∗p,q and ι = 1, the stopping decision for time will be the
same, but we still have to deal with the space (up to now using r + r∗p would
be O.K.). However, between t∗ and t∗+ r∗ we have to preserve Nt∗ till creating
Nt∗+r(R∗) and only then can we omit the elements of Nt∗ no longer necessary.

So we will have

kind 4: individual constants Pk(4,1), Pk(4,2)

(c) if t∗ = 3 + r∗s then: Pt,k(4,0) < Pt,k(4,1) < Pt,k(4.2) are the three last
ordinals, Pt,k(4,0) is an active ordinal but not Pt,k(4,1), Pt,k(4,2) and x ∈
Nt∗ is active iff Pt,k(4,2) ∪ x ∈ Nt∗ .

So ‖Nt∗‖ = 2 + 2‖{x ∈ Nt∗ : x active}‖.
Now starting with Nt∗ in deciding Nt∗ we omit and non-active elements except
the two last ordinals and then do as earlier by 4.4(3)+(4) for r = 1, . . . , r(Rπ)
taking care to have the right natural numbers.

So defining Ni∗+2∗ , we take care of the “doubling”.
2), 3), 4) Similarly. �4.3

Less critical is the inverse relation

4.6 Lemma. 1) Let Υ be an inductive scheme for Lf.o., ι = 7, τ = τΥ, χ ∈
Lf.o.(τ).
Then we can find r∗ ≥ 1 and a program π for the same vocabulary as in [BGSh
533, §4] such that for every integer polynomials p(n), q(n) and τ -model M such
that:

M |=ι θΥ,χ,p,q (see Definition 1.3) iff M |= π̄ where π̄ = (π, p∗, q∗)
and |= is as in [BGSh 533, §4] where: p∗(n) = r∗, p∗(n)+ r∗, q∗(n) =
q(n) + 2

120 S. Shelah

4.7 Lemma. 1) If π̄ is as in [BGSh 533, §11], that is with being able to compute
the cardinality of M (= set of atoms) then a similar result holds but Υ is in
Lf.o. + na.
2) If π̄ is as in [BGSh 533] for cardinality logic (see §4 there), then a similar
result holds but Υ is in Lcard and spaces do not use θΥ,3+n+r∗(p),2+n+2q(n).
3) We can replace p, q by arbitrary function from T and get similar results.

Proof. 1) We ignore too short runs for simplicity. The “q(n) = q(n) + 2” comes
from [BGSh 533] starting with two extra elements so during the computation we
preserve having two entry elements (except when we notice we are to stop-see
below).

Now every step of the computation for π̄ is translated to r∗ step during the
computation of the Nt[M,Υ]’s.
What do we do in those r∗ steps? First we compute the relations on Nt definable
first order subformulas of the ψ�. We also translate χ to be equivalent to what
should be in the next state and then add the new elements (so Nt+1 |= χ was
computed in Nt, as in 4.4).
2), 3), 4) Similar to part (1) + 4.3.
[How do we “compute” the first order formulas? Where Pϕ(x̄) code ϕ(x̄), we of
course represent all subformulas and do it inductively.]

Atomic are given
negation is by “if Pϕ(x̄)(ā) = truth then Pϕ(x̄)(ā) = false, else Pϕ(ā) is truth
(and appropriate “for all” also adding dummy variables is possible by “for all”.
For conjunctions ϕ(x̄) = ϕ1(x̄) use “if Pϕ(x̄)(ā) = truth then Pϕ(x̄)(ā) = Pϕ2(x̄)(ā)
else Pϕ(x̄)(ā) = false.
For existential quantifier, ϕ(x̄) = (∃y)ψ(y, x̄) use
“if Pψ(x̄,bary)(ā) = truth then Pϕ(x̄)(ā) = truth else do nothing”. �4.3

§5 Closing Comments

We may consider a context is (K,I) such that logics related to our proof in §2.
The first version in 5.1(3) changes the satisfaction the second (in 5.1(4),(4A))
changes also the syntax.

5.1 Definition. 1) A context is a pair (K,I) such that

(a) K be a class of models with vocabulary (= the set of predicates) τ
(b) I is a function
(c) Dom(I) = K
(d) I(M) is a family of subsets of M , whose union is |M |, and closed under

subsets.

1A) We call (K,I) invariant if

(e) I is preserved by isomorphisms, i.e. if f is an isomorphism fromM1 ∈ K
onto M2 ∈ K and A ∈ I(M1) then f”(A) ∈ I(M2).

Choiceless Polynomial Time Logic: Inability to Express 121

1B) We say “f is an I-isomorphism from M1 ∈ K onto M2 ∈ K” if f is an
isomorphism from M1 onto M2 such that I(M2) = {f”(A) : A ∈ I(M1)}.
Recall that I(M2)[k] = {

⋃
�<k

A� : A� ∈ I[M]}.

2) In 1) let

SeqαI(M) = {ā : ā a sequence of members of M of length α, Rang(ā) ∈ I(M)}.
3) Let L = Lf.o. or L = Lλ,κ; recalling that the logic Lλ,κ,α for λ, κ cardinals,
is defined like first order logic but we allow conjunctions of

∧
i<α

, for α < λ and

existential quantifier (∃x̄) with x̄ a sequence of variables of length < κ, and
the depth of the formulas is < α. We define L[k] = L

[k]
λ,κ,α, logics with the

same syntax but with a difference in the definition of the satisfaction relation,
M |=[k]

I
ϕ[ā] or (M,I) |=[k] ϕ(ā) is defined inductively on α as usual, except

that

(∗) we demand Rang(ā) ∈ I[M][k] (otherwise not defined) , that is
M |=[k]

I
(∃x̄)ϕ(x̄, b̄) iff

Rang(b̄) ∈ I[M][k − 1] and for some ā ∈ �g(x̄)M with
Rang(ā) ∈ I(M) we have M |=k

I
ϕ[ā, b̄].

Let Lλ,κ,α;card,Lλ,κ;+na,Lλ,κ;card,T be defined similarly (so

M |=[k]
I ∃!µx̄ϕ(x̄, b̄) iff (b̄ ∈ �g(b̄))M), Rang(b̄) ∈ I(M)[k − 1]

and µ = |{a : {a} ∈ I and M |=[k]
I ϕ[a, b̄]}|.

Omitting α means some α.
If λ, κ, α are omitted they are ℵ0 (so Lλ,κ,α is first order).
4) We define a logic L

[k]
λ,κ,α. Let us define the formulas in L

[k]
λ,κ,α by induction

on α, each formula ϕ has the form ϕ(x̄0, x̄1, . . . , x̄k1−1), k1 ≤ k, where the x̄�’s
are pairwise disjoint sequences of variables of length < κ (so if κ = ℵ0, finite
sequences) and every variable appearing freely in ϕ appear in one of those se-
quences (so any formula is coupled with such 〈x̄0, . . . , x̄k1−1〉, probably some not
actually appearing).

α = 0: quantifier free formula; i.e. any Boolean combination of atomic ones
(with the right variables, of course).

α+ 1: α non-limit ϕ(x̄0, . . . , x̄k1−1) is from L
[k]
λ,κ,α or is a Boolean combination of

formulas of the form (∃ȳ)ψ(x̄i0 , . . . , x̄ik2−2 , ȳ) where k2 ≤ k, ψ(x̄i0 , . . . , x̄ik2−2 , ȳ) ∈
L

[k]
λ,κ,α.

α limit: L
[k]
λ,κ,α =

⋃
β<α

L
[k]
λ,κ,β .

122 S. Shelah

α+ 1, α limit: L
[k]
λ,κ,α+1 is the set of ϕ ∈ L

[k]
λ,κ,α or ϕ a Boolean combinations of

members of L∗λ,κ,α of the right variables.

Let Lk
λ,κ =

⋃
α

L
[k]
λ,κ,α and L

[∗]
λ,κ,α =

⋃
k<ω

L
[k]
λ,κ,α and L

[k]
α = L[k]ℵ0,ℵ0,α

and L
[k]
<α =

⋃
β<α

L
[k]
β and L[k] = L

[k]
ℵ0,ℵ0

and L[∗] =
⋃
k<ω

Lk.

4A) We now define a satisfaction relation M |= ϕ(ā0, . . . , āk1−1) where k1 ≤ k
(depending on I).
I.e. we define by induction on α, for ϕ(x̄0, . . . , x̄k1−1) ∈ L

[k]
λ,κ,α, ā� ∈ Seq�g(x̄�)

I
(M),

when does M |= ϕ[ā0, . . . , āk1−1] and when M |= ¬ϕ[ā0, . . . , āk1−1]. This
is done naturally, in particular M |= (∃ȳ)ϕ(ā0, . . . , āk2−2, ȳ) iff for some b̄ ∈
Seq�g(ȳ)

I
(M), (so Rang(b̄) ∈ I(M)) we have M |= ϕ[ā0, . . . , āk2−2, b̄].

5) We can define for L one of the above, (L)card similarly adding the quanti-
fiers [ϕ′(x̄; z̄)/ϕ′′(x̄, ȳ, z̄)] saying: ϕ′′(. . . , . . . ; z̄) define an equivalence relation
on {x̄ : ϕ′(x̄)} with exactly s equivalence classes.
6) We can above replace models M by pairs (M, I), I ⊆ P(M) closed under
subsets.

5.2 Discussion: We may replace M by M+, adding elements coding each A ∈
I(M), with decoding by functions, but

(a) this does not capture |=[k] and

(b) for |=[k] this requires infinitely many functions, we need to actually code
any sequence listing each A ∈ I(M).

Still this framework seems to work quite smoothly for its purposes. We could
have made it more central (use 5.5 below).

Note that

5.3 Observation. For any k-system Y and Z and mΥ
1 -lifting of Y, letting MY =

M we have

YZ = (NZ, {A : (∃f ∈ F)[Dom(f) ∈ IF & A ⊆ Dom(G(f))]}, {G(f) : f ∈ F})

is a k-system.

Now easily (and it makes a connection with §1, §2):
5.4 Observation: 1) Let (K,I) be a context and M1,M2 ∈ K be (finite as
always), τ -models, τ a vocabulary, and k < ω.
The following are equivalent:

(A) there are k-systems
Y� = (M�,I(M�),F�) for = 1, 2 and H as in Definition 2.21(1),(2)

Choiceless Polynomial Time Logic: Inability to Express 123

(B) for every sentence ψ ∈ L
[k]
f.o.(τ) we have

M1 |=[k]
I
ψ ⇔M2 |=[k]

I
ψ

(C) for infinite λ, κ, α, for every sentence ψ ∈ L
[k]
λ,κ,α(τ) we have

M1 |=[k]
I
ψ ⇔M2 |=[k]

I
ψ

(D) for every t and infinite λ, κ, α for every sentence ψ ∈ L
[k]
λ,κ,α(τ) we have

N
Zfull

Y1,t |=[k]

I
Y1
t

ψ ⇔ N
Zfull

Y2,t |=[k]

I
Y2
t

ψ where N
Zfull

Y�,t is defined in 2.13(7)

and IYt = {Dom(f) : f ∈ GZfull

Y,t}.
�5.4

Proof. Straight.

5.5 Definition. 1) We say Υ (from Definition 1.1) is pure if m1[Υ] = 0 so no
P�.
2) Let Y = (M, I,F) be a k-system; let “Z∗ is the full t-successor of Z” be
as defined in 2.13. We define by induction on t;Zt = Zt[Y, t] as follows: for
t = 0, NZt

= M,PZt

� is the empty set, GZt

is the identity on F and RZ =
{(A, x) : A ∈ I, x ∈ A}; for t = s + 1 let Zt be the full t-successor of Zs. Let
IZ = I

Z,Y = {B : B ⊆ SZ(A) for some A ∈ I} where SZ(A) = SZ,A = {x ∈
NZ : A is a Z-support of x}.

We can also see:

5.6 Claim. 1) Assume

(a) Y� = (M�,I�,F�) is a t-dichotomical k-system for = 1, 2
(b) Z�

t = Zt[M�, I�], so Z�
t+1 is the full successor of Z�

t.

Then the following are equivalent:

(α) (M1, I1), (M2, I2) are L[k]-equivalent

(β) for every t <∞ the pairs (MZt
1 , I

Zt), (MZt
2 , I

Z2) are L[k]-equivalent.

2) For any given (M, I) there in a sentence ψ ∈ L
[k]
f.o.(τM) satisfied by (M, I)

and implying any other sentence ψ′ ∈ L[k]∞,∞(τµ) satisfied by (M, I).

5.7 Remark. 1) So in part (2) we can apply 2.22, 2.23, 2.24.
2) Note that by 5.3, L[k] satisfies addition theorems.

5.8 Fact: For any Υ we can find Υ′ which is equivalent if we use in Definition
1.3 the case ι = 4 (well when t(‖M�‖) always is ≥ 2). In fact, we can reconstruct
(i.e. define by a formula in L∗) the sequence of 〈Pt,� : t′ < t〉 in Nt.

124 S. Shelah

5.9 Conclusion 1) Assume Y is counting k-system (see 2.3). Then we can define
Rt, Gt for every t (Nt the “computation” in time t) such that

(M, P̄0, G0, R0) is 0-lifting

(Nt+1, P̄t+1, Gt+1, Rt+1) is a lifting, successor of (Nt, c̄t, Gt, Rt).

2) So the formula the ϕ̄ defines is preserved by f ∈ F0.

Proof. Straight.

∗ ∗ ∗

5.10 Discussion: 1) In §2 and in 5.5 we can allow infinite models M and define
Nt[M] = Nt[M,Υ, t] for every ordinal t, for this better assume Υ is standard,
monotonic and pure (or strongly monotonic, i.e. demand P�,t[M,Υ, t] is in-
creasing with t; for t limit we take union and so V [M,Υ, t] = ∪{Nα[M,Υ, t] :
α an ordinal}, see below. Now as in the case ι = 4, the analysis in §2 works for
this but it is not clear if we can get any interesting things.
Note that those definitions remind us of Gödel’s construction of L, particularly of
Lα+1 from Lα, and the Frankel-Mostowski models (which use automorphisms).

May can this give interesting proofs of consistency for set theory with no choice
but with urelements? It seems they can be reduced to the classical case.
2) We can prove various equivalence and 0-1 laws by 5.5, by proving that the
relevant model Nt can be interpreted in Zt[M, I] from 5.5, using f.o. logic which
suffices.

Proof. Straight.

Choiceless Polynomial Time Logic: Inability to Express 125

References

[References of the form math.XX/· · · refer to the xxx.lanl.gov archive]

[BlSh 528] John Baldwin and Saharon Shelah. Randomness and Semigeneric-
ity. Transactions of the American Mathematical Society, 349:1359–
1376, 1997. math.LO/9607226

[BGSh 533] Andreas Blass, Yuri Gurevich, and Saharon Shelah. Choiceless Poly-
nomial Time. Annals of Pure and Applied Logic, 100:141–187, 1999.
math.LO/9705225

[CK] Chen C. Chang and Jerome H. Keisler. Model Theory, volume 73
of Studies in Logic and the Foundation of Math. North Holland
Publishing Co., Amsterdam, 1973.

[Di] M. A. Dickman. Larger infinitary languages. In J. Barwise and
S. Feferman, editors, Model Theoretic Logics, Perspectives in Math-
ematical Logic, chapter IX, pages 317–364. Springer-Verlag, New
York Berlin Heidelberg Tokyo, 1985.

[EbFl95] Heinz-Dieter Ebbinghaus and Jorg Flum. Finite model theory. Per-
spectives in Mathematical Logic. Springer-Verlag, Berlin, 1995.

[GuSh 526] Yuri Gurevich and Saharon Shelah. On finite rigid structures. Jour-
nal of Symbolic Logic, 61:549–562, 1996. math.LO/9411236

[Ho93] Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cam-
bridge, 1993.

[Ka] Carol R. Karp. Finite quantifier equivalence. In J. W. Addison,
L.A. Henkin, and A. Tarski, editors, The Theory of Models, pages
407–412. North Holland Publ. Co, 1965.

[Sh 550] Saharon Shelah. 0–1 laws. Preprint. math.LO/9804154

[Sh:a] Saharon Shelah. Classification theory and the number of noniso-
morphic models, volume 92 of Studies in Logic and the Foundations
of Mathematics. North-Holland Publishing Co., Amsterdam-New
York, xvi+544 pp, $62.25, 1978.

[Sh:c] Saharon Shelah. Classification theory and the number of noniso-
morphic models, volume 92 of Studies in Logic and the Founda-
tions of Mathematics. North-Holland Publishing Co., Amsterdam,
xxxiv+705 pp, 1990.

Schema Revisited

Colin Stirling

Division of Informatics
University of Edinburgh
Edinburgh EH9 3JZ, UK

cps@dcs.ed.ac.uk

1 Introduction

Two schema problems from the 1970s are examined, monadic recursion schemes
and first-order recursion schemas. Research on these problems halted because
they were shown to be equivalent to the problem of decidability of language
equivalence between DPDA (deterministic pushdown automata). Recently a de-
cidability proof for equivalence of DPDA was given by Sénizergues [10,11], which
therefore also solves the schema problems. However Sénizergues proof is quite
formidable. A simplification of the proof was presented by the author [13] using
ideas from concurrency theory (for showing decidability of bismilarity [9,12]) and
crucial insights from Sénizergues’s intricate proof.

In this abstract we concentrate on first-order schemes and we outline a so-
lution, based on the DPDA equivalence proof, which is reasonably close to its
original formulation. We make use of Courcelle’s work [1,2], which shows how
to reduce this schema problem to decidability of language equivalence between
strict deterministic grammars. And the proof in [13] of decidability of DPDA
equivalence proceeds via (a small extension of) these grammars.

2 Monadic Recursion Schemes

A monadic recursion scheme, following Garland and Luckham [6], is defined rel-
ative to a set of basis monadic functions F = {f1, . . . , fk} and a set of predicates
P = {P1, . . . , Pl} as a finite family

F1x
def= if P1x then α1x else β1x

...
...

Fnx
def= if Pnx then αnx else βnx

where each Fi is distinct and each αi and βi is a string of defined and basis
functions, a member of (F ∪ DF)∗ when DF = {F1, . . . , Fn}, and each Pi ∈ P.
The scheme is usually identified by the initial defined function F1.

Example 1 A simple example is Fx def= if Px then fx else FFfx. ✷

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 126–138, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Schema Revisited 127

A computation of a scheme is defined with respect to an interpretation I
which fixes the meanings of the basis functions, predicates and variable. An
interpretation I over a non-empty value space D is a mapping such that I(x) ∈
D, I(fi) ∈ D → D and I(Pi) ∈ D → {tt, ff}. A computation relative to I is
then defined using the following transition rules

F1x→ F1d if I(x) = d δfid→ δd′ if I(fi)(d) = d′

δFid→ δαid if I(Pi)(d) = tt δFid→ δβid if I(Pi)(d) = ff

The value of a scheme Fx relative to I, written ValI(Fx), is a member of D⊥. If
Fx −→∗ d then ValI(Fx) = d and if the computation never ends ValI(Fx) =⊥.

Two schemes F and G are strongly equivalent, written F ∼ G, if for all
interpretations I, ValI(Fx) = ValI(Gx). The classical equivalence problem for
monadic recursion schemes is to show whether or not there is a decision procedure
for F ∼ G. For background and significance of the problem, see Garland and
Luckham [6] and references cited therein.

An interpretation I is free if the domain D = F∗{x} and I(f) = f and
I(x) = x. The result of a computation relative to a free I is a word (or ⊥).
Example 2 Let I be the free interpretation for example 1 where I(P)(fnx) = tt
iff n > 0. Therefore Fx −→ FFfx −→ Fffx −→ fffx, and ValI(Fx) = fffx.
In contrast, if I(P)(fnx) = tt iff n is odd then ValI(Fx) =⊥. ✷

Relationships with language theory were underpinned by the following result
in Garland and Luckham.

Fact 1 F ∼ G iff for all free interpretations I, ValI(Fx) = ValI(Gx).

Garland and Luckham showed that the decision problem for schemes reduces
to the problem of decidability of DPDA, and Friedman showed that the con-
verse also holds using jump DPDA [5]. We shall now provide a cleaner variant
reduction to the DPDA problem, inspired by these authors.

First we assume a “Greibach” normal form for a scheme. In Fi
def= if Pix then

αix else βix each αi and βi has one of the forms ε or fj or Fj or Fjfk or FjFk.
It is straightforward to transform a scheme into normal form by adding auxilary
definitions. For instance, example 1 becomes Fx def= if Px then fx else Gfx and
Gx

def= if Px then FFx else FFx.
Let B be the set of boolean arrays of size l. If b ∈ B then bi is the ith entry of

b: the idea is that bi = tt means that Pi is true. A stack symbol is an element
of DF, a state is a boolean b and the alphabet consists of elements bfb′ where
f ∈ F. A configuration of the DPDA has the form bδ where δ ∈ DF∗ is a sequence

of stack symbols. Transitions have the form bδ
bfb′
−→ b′δ′ or bδ ε−→ b′δ′. Let δR be

the reverse of δ. Assume a scheme with definition Fx def= if Pix then αx else βx.

128 C. Stirling

Basic transitions for bF are determined from the scheme as follows.

bF
bfb′
−→ b′α′ if either bi = tt and αR = fα′

or bi = ff and βR = fα′

bF
ε−→ bα′ if either bi = tt and αR = α′ and α ∈ DF∗

or bi = ff and βR = α′ and β ∈ DF∗

There is also the prefix rule, if bF a−→ b′α′ then bFδ a−→ b′α′δ. Basic transitions
obey the following two deterministic properties:

if bF ε−→ bδ then not(bF
bfb′
−→ b′δ′) for any b′δ′

if bF a−→ b′δ′ and bF a−→ b′′δ′′ then b′ = b′′ and δ′ = δ′′

The result is therefore a DPDA.
The language of a configuration bδ, written L(bδ), is the set of words w ∈

(B × F × B)∗ recognised by bδ using these transition rules, where ε-transitions
are swallowed in the usual way, and assuming empty stack acceptance, L(bδ) =
{w : bδ w−→ b′ε for some b′}. The following is a consequence of Fact 1 and the
construction.

Proposition 1 F ∼ G iff for all b, L(bF) = L(bG).

There is a routine transformation of a DPDA into a context-free grammar
(which is strict deterministic [7,8], more on this later). First one transforms the
DPDA into normal form where ε-transitions only pop the stack, by examining
what happens under repeated basic ε-transitions. Next one transforms the nor-
malised DPDA into a context free grammar whose nonterminals are triples of the
form bFb′ and whose alphabet is the same as that of the DPDA. The idea is that,
for instance, a basic transition of the DPDA of the form bF

a−→ b′′GH becomes
in the grammar the family of transitions for each b′′′, bFb′ a−→ b′′Gb′′′ b′′′Hb′.
Hence the language accepted by the nonterminal bFb′, L(bFb′), is the set of words
w such that bF w−→ b′ε. Hence F ∼ G iff for all b and b′, L(bFb′) = L(bGb′).
Decidability of monadic recursion schemes follows from the following theorem.

Theorem 1 It is decidable whether L(bFb′) = L(bGb′).

In this abstract there is only an intimatation of the procedure in section 4,
because we shall concentrate on the second schema problem.

3 Recursive Program Schemes

A recursive program scheme, following Courcelle [1,2], is defined relative to a set
of basis functions F = {f1, . . . , fk} and a set of basis variables V = {x1, . . . , xl}.
Each basis function f has an associated arity ρ(f) > 0, and therefore need not

Schema Revisited 129

be monadic. A scheme is a finite family of the form

F1(x1, . . . , xm1)
def= t1

...
...

Fn(x1, . . . , xmn
) def= tn

where each Fi is distinct, and has an associated arity ρ(Fi) = mi, and where
terms ti are built from the basis and defined functions and variables, and there-
fore have the form xj or fj(t1, . . . , tρ(fj)) or Fj(t1, . . . , tρ(Fj)). A scheme is again
usually identified with its head function F1. We let DF be the set of defined
functions.

Example 1 A simple example is F (x) def= f(F (gx), g(x)).

The interpretation of a scheme is either the undefined tree or a completed
tree whose depth is finite or infinite and where internal nodes are labelled with
elements of F and leaves are labelled with elements of V. The following transition
rules generate the tree and they are applied down the depth of the tree starting
with F1(x1, . . . , xρ(F1))

xi −→ xi
Fi(t′1, . . . , t

′
ρ(Fi)) −→ ti{t′1/x1, . . . , t′ρ(Fi)/xρ(Fi)}

if t′j −→ t′′j , 1 ≤ j ≤ ρ(fi), then fi(t′1, . . . , t
′
ρ(fi)) −→ fi(t′′1 , . . . , t

′′
ρ(fi))

where {·/·} is simultaneous substitution. For instance in the case of example 1

Fx −→ f(F (gx), gx) −→ f(f(F (ggx), ggx), gx) −→ . . .

The value of a scheme belongs to the family Tω⊥ of appropriate trees.
Alternatively one can view Tω⊥ as a domain

1 of trees. The meaning of a scheme
is the least fixed point with respect to the free tree interpretation, following
Damm [3,4]. In the case of example 1

F 0(x) =⊥ F i+1(x) = f(F i(gx), gx)

So F 2(x) = f(((f ⊥), ggx), gx). The resulting tree in Tω⊥ is Fω(x) =
⊔
i≥0 F

i(x)
which is the meaning of Y (λF. λx. f(F (gx), gx))(x) with respect to the free
interpretation. Thus schemes are only “first-order”. Higher order schemes are
considered by Damm [3,4].

Two schemes F and G with arity n are equivalent, written F ∼ G, if they
produce the same tree, that is if Fω(x1, . . . , xn) = Gω(x1, . . . , xn). The classical
equivalence problem for recursion schemes is to show whether or not there is a
decision procedure for F ∼ G. For background and significance of the problem
see [1,2] and references cited therein.
1 With ordering ⊥� T and Ti � T ′

i for each i implies fj(T1, . . . , Tρ(fj)) �
fj(T ′

1, . . . , T
′
ρ(fj)).

130 C. Stirling

The equivalence problem for schemes was shown to be interreducible to the
DPDA problem by Courcelle [2], via grammars. A key idea is to represent a tree
T ∈ Tω⊥ as the language of its finite branches, B(T). The following finite tree
f(g(x1, x2), f(x1, h(x3))) is given as {f1g1x1, f1g2x2, f2f1x1, f2f2h1x3}. Each
word is a branch. One splits each basis function f of arity k into terminal symbols
f1, . . . , fk reflecting the different directions that can be taken to obtain the
branch. In the case of T generated by example 1 above B(T) is the deterministic
context-free language {f2g1x, f1f2g1g1x, f1f1f2g1g1g1x, . . .}.

If T = T ′ then B(T) = B(T ′). But the converse need not hold. Consider
the trees generated by the schemes Fx def= f(Fx) and Gx def= g(Gx). These trees
are not “locally finite” [2]. A tree T is locally finite if whenever u is a prefix
of a branch of T then there is a finite word v such that uv ∈ B(T). Locally
finite trees with the same branch language are equal. It is straightforward as
Courcelle notes to guarantee local finiteness by increasing the arity of the basis
functions by one and adding a new variable. Consider the transformed schemes
Fxy

def= f(Fxy, y) and Gxy
def= g(Gxy, y). Two schemes are equivalent iff their

transformations are also equivalent. Hence we can restrict attention to schemes
that generate locally finite trees, and for these the following holds, as shown by
Courcelle [2].

Fact 1 F ∼ G iff B(Fω(x1, . . . , xn)) = B(Gω(x1, . . . , xn)).

Following Courcelle, the next step is to transform a scheme into a context-
free grammar which generates its branch language. We exclude the case where
a scheme generates a single node tree xi: it is easy to directly check equivalence
betweeen such schemes. With this exclusion, we assume that schemes are given
in “Greibach” normal form. Each term ti in the definition of Fi has the form
f(rt1, . . . , rtρ(f)) where f ∈ F and where each rtj is built from variables and
defined function symbols only and where the depth of their embedding is at
most two. This normal form is easy to achieve by introducing auxilary defined
functions.

An ε-free context-free grammar in 3-Greibach normal form consists of a finite
set N of nonterminals, a finite alphabet A and a finite family of basic transitions,
each of the form X

a−→ α where X ∈ N, a ∈ A and α ∈ N∗ such that its length,
|α| is less than 3. A simple configuration is a sequence of nonterminals whose
behaviour is determined by the basic transitions and the prefix rule: if X a−→ α
then Xβ

a−→ αβ where β ∈ N∗. The language accepted by a simple configuration
α, L(α), is the set of words {w ∈ A∗ : α w−→ ε}.

Given a scheme in normal form we associate a grammar with it as follows.
The alphabet A is the set of split functions f j , 1 ≤ j ≤ ρ(f) for f ∈ F.
The nonterminals N is the set F j , 1 ≤ j ≤ ρ(F). Assume in the scheme that
F (x1, . . . , xρ(F))

def= f(rt1, . . . , rtρ(f)). The basic transitions are defined as fol-

Schema Revisited 131

lows, for each nonterminal F i and alphabet symbol f j .

F i
fj

−→ ε if rtj = xi

F i
fj

−→ Gk if rtj = G(rt′1, . . . , rt
′
ρ(G)) and rt

′
k = xi

F i
fj

−→ GkH l if rtj = G(rt′1, . . . , rt
′
ρ(G)) and

rt′k = H(rt′′1 , . . . , rt
′′
ρ(H)) and rt

′′
l = xi

The grammar is defined so that the language accepted by a nonterminal F i is
the set of words w ∈ A+ such that wxi ∈ B(Fω(x1, . . . , xρ(F))). For example in
the case of the second transition rule because G has xi in its kth position in the
definition of F it follows that {f jw : w ∈ L(Gk)} ⊆ L(F i). Hence the following
result holds.

Fact 2 F ∼ G iff for each i, L(F i) = L(Gi).

4 The Decision Procedure

The disjoint union of two recursion schemes is a single scheme and therefore we
need only consider a single grammar. The equivalence problem is then to show
that for each i, L(F i) = L(Gi) for F , G ∈ DF. We assume that the grammar is
“tidied” as usual by removing redundant nonterminals (those not reachable from
any F i and Gi and those whose language is ∅). In the following we use X, Y and
Z to range over nonterminals and α, β to range over sequences of nonterminals.

The decision procedure consists of two semi-decision procedures. One half is
easy, if L(F i) �= L(Gi) then there is a smallest word which distinguishes them.
The other half is more difficult. We show that F ∼ G iff there is a finite tableau
proof for this. Tableaux have been used for proving decidability of bisimulation
equivalence [9,12]. They are also implicit in Sénizergues’s proof [11] where they
appear as strategies.

The tableau proof system is goal directed, and consists of two kinds of rules,
simple and conditional. Simple rules have the form

Goal
Subgoal1 . . . Subgoaln

C

where Goal is what currently is to be proved and the subgoals are what it reduces
to, provided the side condition C holds. A conditional rule has the form

Goal1
...

Goalk
... C

Goal
Subgoal

132 C. Stirling

where Goal is the current goal to be shown and there is a single subgoal to
which it reduces provided that the goals Goal1,. . .,Goalk occur above Goal on
the path between it and the root (starting goal) and provided that the side
condition C holds. The use of conditional tableau rules is a new innovation,
which is essentially due to Sénizergues.

There is also the important notion of when a current goal counts as final.
Final goals are classified as either successful or unsuccessful. A tableau proof for
a starting Goal is a finite proof tree, whose root is Goal and all of whose leaves
are successful final goals, and all of whose inner subgoals are the result of an
application of one of the rules.

The first tableau proof rule is the initial simple rule, INIT.

F = G

F 1 = G1 . . . Fn = Gn

The initial goal F = G, “are schemes F and G equivalent?” reduces to the
subgoals F i = Gi, “is L(F i) = L(Gi)?”, for each i.

The main idea of the tableau proof system is to reduce goals to subgoals by
following branches down the trees for F and G. F i represents the subtree for F
all of whose branches end in xi. The configuration (F i ·w) represents the subtree
for F given by taking path w down the subtree F i: it is therefore the subtree
whoses branches are {v : wvxi is a branch of the tree for F}. Clearly F ∼ G iff
for all w and i, (F i ·w) ∼ (Gi ·w). We show that the subtree (F i ·w) is naturally
described in the grammar.

Basic transitions of the grammar induced by a scheme are “almost” deter-

ministic. If F i
fj

−→ ε and F i
fj

−→ α then α = ε because xi is in the jth position
of f and nothing else is thereby allowed. However if the jth position of f is

G(rt′1, . . . , rt
′
ρ(G)) then it is possible that F

i fj

−→ α and F i
fj

−→ β when α �= β.
However α and β are “similar”: if α = Gkα′ then β must have the form Glβ′

and if l = k then α′ and β′ must again be similar (both of the form H l′). The
grammar is in fact strict deterministic [7,8].

Let ≡ be a partition of the nonterminals N of a context-free grammar (in
normal form). The partition ≡ is extended to sequences of nonterminals, α ≡ β
if α = β or there is a δ such that α = δXα1 and β = δY β1 and X ≡ Y and
X �= Y . A partition ≡ on N is strict if the basic transitions obey the following
two conditions:

if X a−→ α and Y a−→ δ and X ≡ Y then α ≡ δ

if X a−→ α and Y a−→ α and X ≡ Y then X = Y

A context-free grammar is strict deterministic if there exists a strict partition
of its nonterminals. The partition on the grammar induced by a scheme is given
by F i ≡ F j for each F and indices i and j. Clearly the two strictness conditions
hold2. Hence for α, β �= ε and α �= β, α ≡ β if α = δF iα′ and β = δF jβ′ for
i �= j.
2 Similarly the context-free grammar induced by a monadic recursion scheme is strict
deterministic when the partition is given by bFb′ ≡ bFb′′

Schema Revisited 133

The strictness conditions generalise to words (replacing a with w ∈ A+

throughout). It therefore follows that if X ≡ Y then the languages accepted
by X and Y are prefix-disjoint and if X �= Y then they accept disjoint lan-
guages. That is, if w ∈ L(F i) and i �= j then no prefix of w including w belongs
to L(F j). This is clear from the tree generated by F : if wxi is a branch then
this excludes vxj as a branch whenever v is a prefix of w.

A simple configuration of a grammar is a sequence of nonterminals β. A
composite configuration is a finite family of simple configurations, β1+ . . .+βn.
The language accepted by a composite configuration is the union of the languages
acccepted by the components, L(β1+ . . .+βn) =

⋃
L(βi). For simplicity we also

assume that the empty sum, ∅, is also a configuration. Our main concern is with
a subset of such configurations: β1+ . . .+βn is admissible if βi ≡ βj for each pair
of components βi and βj . Note that the singleton member ε is admissible and so
is ∅. Subtrees of (the tree for) F such as (F i · w) are represented as admissible
configurations. Let (F i · a) be defined as ∑{α : F i a−→ α is a basic transition}
which is an admissible configuration because the grammar is strict. L((F i ·a)) is
{w : awxi is a branch in the tree for F}. If A = X1β1+ . . .+Xnβn is admissible
then (A · a) is ∑{αi1β1 : X1

a−→ αi1} + . . . +
∑{αinβn : Xn

a−→ αin},
which is also admissible. The notation is extended to words. (A · ε) = A and
(A · aw) = (A · a) · w, where (∅ · w) = ∅. It is easy to check that for any w, if A
is admissible then (A · w) is also admissible.

We now return to the tableau construction. We let A, B, C and D range
over admissible configurations. Goals in the tableau proof system (except for
the initial goal F = G) have the form A = B. The next tableau proof rule is
again a simple rule, UNF (unfold). Let A = {a1, . . . , ak}.

A = B

(A · a1) = (B · a1) . . . (A · ak) = (B · ak)

UNF allows one to walk down the trees for F i and Gi. UNF is the strategy TA
in Sénizuergues’s proof.

The size of an admissible configuration A = β1 + . . . + βn, written |A|, is
the length of its largest sequence, max{|βi| : 1 ≤ i ≤ n}. A has many different
“shapes”, as it can be written in many different ways using obvious equalities
(such as B(C + D) = BC + BD). A basic shape is a head nonterminal form
X1A1 + . . . +XkAk where Xi �= Xj , i �= j, and Xi ≡ Xj . In this case the Xis
are heads and Ais are tails. Another head form is α1A1+ . . .+αnAn+B where
αi ≡ αj and |αi| = |αj | and no Aj = ε and |B| ≤ |αi|. Instead one may focus
on tail forms. If (Xi · w) = Di (where Di may be ∅ and for no prefix v of w is
Xi · v = ε) then (X1A1 + . . . + XkAk · w) = D1A1 + . . . + DkAk. The shape
D1A1+ . . .+DkAk highlights the tails Ai. Because the grammar is in 3-Greibach
normal form |Di| ≤ 1 + |w| for each i.

Associated with any nonterminal F i is a smallest word w(F i) such that
w(F i) ∈ L(F i), and so (F i · w(F i)) = ε. Note that if (F i · v) = ε and j �= i
then (F j · v) = ∅. An important measure is M which is max{|w(X)| : X is a
nonterminal}.

134 C. Stirling

UNF allows one to proceed down the trees for F and G. Any subgoal A = B
can be thought of as (F i · w) = (Gi · w) where w is a prefix of a branch. The
next step is to permit tree surgery and transplantation to “balance” the subtree
expressions. We give the tableau rule BAL(L). This is a conditional tableau rule.
In Sénizuergues’s proof this is the strategy TB .

X1A1 + . . .+XkAk = B
... C

D1A1 + . . .+DkAk = B′

D1(B · w(X1)) + . . .+Dk(B · w(Xk)) = B′

where C is the condition: there are exactly M applications of UNF between the
top goal and bottom goal and no other rule is applied, and each Di �= ε. To
understand the rule assume that D1A1 + . . . +DkAk = B′ is the current goal.
This reduces to the subgoal beneath it provided that the top goal appears above
it in the proof tree and condition C holds. There is also the symmetric rule
BAL(R) where the premises are B = . . . and B′ = . . ., and the conclusion is
B′ =

Consider the top goal of BAL(L), A = B. Let B have shape β1B1 + . . . +
βnBn+C where |βi| = M+1. Because (Xi·w(Xi)) = ε it follows that (A·w(Xi)) =
Ai. Therefore if the top goal is true then L(Ai) = L(B · w(Xi)). It is this
substitution of (B · w(Xi)) for Ai for each i in the bottom goal which the rule
sanctions. Moreover (B·w(Xi)) is (β1·w(Xi))B1+. . .+(βn·w(Xi))Bn+(C·w(Xi))
because |w(Xi)| < |βj |. Also B′ has the shape B′1B1 + . . .+B′nBn + C ′ (where
|C ′|, |B′i| ≤ 2M+1). Putting all this together it means that the subgoal has the
following form, where some of the A′i and B

′
j may be ∅ and Bn+1 = ε.

A′1B1 + . . .+A′nBn + C ′′Bn+1 = B′1B1 + . . .+B′nBn + C ′Bn+1

We think of this subgoal as “balanced” because they have this common tail form,
and all their heads have bounded size.

Introducing balanced subgoals is not sufficient for showing decidability. For
the sizes of the common tails may keep growing. There is one more tableau rule,
CUT, which allows one to cut the common tails. The exact formulation relies
on families of auxiliary nonterminals ranged over by V , each of which has an
associated definition V

def= B. We say that (V1, . . . , Vn) is a family of recursive
nonterminals if for each i either Vi

def= Ai1V1+ . . .+AinVn where Ai1+ . . .+Ain

is admissible and does not contain auxiliary nonterminals, or Vi
def= Vj and j ≤ i

and Vj
def= Vj . An auxiliary nonterminal can only appear as a final element in a

sequence of nonterminals. Admissibility is extended to such families of sequences.
A configuration which is a singleton V is admissible and β1V

′
1 + . . . + βkV

′
k is

admissible if the head β1 + . . . + βk is admissible and each βi is distinct, and
there is a family of recursive nonterminals (V1, . . . , Vn) such that each V ′i is one
of the Vjs. An admissible configuration can therefore be presented in tail form

Schema Revisited 135

A = A1V1 + . . .+ AnVn. The definition of (A · w) is refined. If (Ai · w) = ε and
Vi

def= B then (A · w) = B. The language accepted by A is the set of words w
such that (A · w) = Vi where Vi

def= Vi. Two configurations containing auxiliary
nonterminals are equivalent if they accept the same words and agree on their
terminating nonterminals.

The idea of CUT is that a balanced goal

(1) A1B1 + . . .+AnBn = C1B1 + . . .+ CnBn

where the Ais and Cis do not contain recursive nonterminals, can be reduced to
a subgoal of the form

(2) A1V1 + . . .+AnVn = C1V1 + . . .+ CnVn

where (V1, . . . , Vn) is a family of recursive nonterminals. The mechanism for re-
ducing goal (1) to goal (2) involves constructing the recursive family (V1, . . . , Vn)
from a subsidary family of goals, Ai1B1+ . . .+AinBn = Ci1B1+ . . .+CinBn where
i ≥ 1, with the same tails as (1).

We now state an important result which underpins the rule CUT.

Lemma 1 Assume 0 < m ≤ n. If for all i : 1 ≤ i ≤ m, L(Ai1B1 + . . . +
AinBn) = L(Ci1B1+ . . .+CinBn) then there is a family of recursive nonterminals
(V1, . . . , Vn) such that

1. For each i : 1 ≤ i ≤ m, L(Ai1V1 + . . .+AinVn) = L(Ci1V1 + . . .+ CinVn),
2. If Vj

def= A′1V1 + . . .+A′nVn then L(Bj) = L(A′1B1 + . . .+A′nBn),

3. If Vi
def= Vj then L(Bi) = L(Bj).

The recursive family (V1, . . . , Vn) which issues from the proof of Lemma 1 is said
to be “canonical” for the family Ai1B1+ . . .+AinBn = Ci1B1+ . . .+CinBn of true
goals. The construction of canonical nonterminals is independent of the tails Bi.

Fact 1 If (V1, . . . , Vn) is canonical for Ai1B1+ . . .+AinBn = Ci1B1+ . . .+CinBn
then it is also canonical for the family Ai1D1+ . . .+AinDn = Ci1D1+ . . .+CinDn,
where i : 1 ≤ i ≤ k.

The proof of Lemma 1 assembles the canonical family in stages. At stage
j, the family (V j+1

1 , . . . , V j+1
n) is constructed from (V j

1 , . . . , V
j
n). If each V j+1

i

has the same definition as V j
i then the construction terminates. In fact it must

terminate by stage j = n − 1. The building of the V j+1
i s from the V j

i s appeals
to a smallest distinguishing word uj+1 for L(A′) �= L(C ′), where A′ is Al1V

j
1 +

. . . + AlnV
j
n and C ′ is Cl1V

j
1 + . . . + ClnV

j
n for some l. The depth of a canonical

family is given by the sum over all stages of the distinguishing words,
∑ |uj |.

We need to consider how to introduce recursive nonterminals when the family
of goals need not all be true. The idea is to approximate canonicity by defining
when a recursive family (V1, . . . , Vn) is “canonical to depth d” where d ≥ 0, for a

136 C. Stirling

family of goals Ai1B
1+ . . .+AinBn = Ci1B1+ . . .+CinBn. The construction is the

same as for the proof of Lemma 1, except that we stop at the first stage j ≥ 0
with (V j1 , . . . , V

j
n) as the required family of recursive nonterminals if the sum of

the distinguishing words sj = |u1|+ . . .+ |uj | is no larger than d, and for all w
such that |w| ≤ d−sj , w ∈ L(Ai1V j

1 +. . .+A
i
nV

j
n) iff is w ∈ L(Ci1V j

1 +. . .+C
i
nV

j
n),

for each i.
The rule CUT, where k ≤ n, is as follows.

A1
1B1 + . . .+A1

nBn = C1
1B1 + . . .+ C1

nBn
...

Ak1B1 + . . .+AknBn = Ck1B1 + . . .+ CknBn
... C

A1B1 + . . .+AnBn = C1B1 + . . .+ CnBn
A1V1 + . . .+AnVn = C1V1 + . . .+ CnVn

where C is the condition that (V1, . . . , Vn) is canonical to depth d for the family
of goals Ai1B1 + . . .+ AinBn = Ci1B1 + . . .+ CinBn, 1 ≤ i ≤ k, and there are at
least d applications of UNF (as well as possibly applications of BAL) between
Ak1B1 + . . . + AknBn = Ck1B1 + . . . + CknBn and the final goal in the premises
A1B1 + . . . + AnBn = C1B1 + . . . + CnBn. CUT is essentially the strategy TC
in S̀’enizuergues’s proof (although he uses regular expressions and not recursive
nonterminals).

From Fact 1 it follows that for any other family of goals with different tailsDi

but the same heads Aij , C
i
j the same recursive nonterminal family is introduced.

It is this feature which guarantees that there is a finite tableau proof for F ∼ G.
We have now seen all the tableau proof rules, INIT, UNF, BAL(L), BAL(R)

and CUT. There is also the important notion of when a current goal counts
as final. Final goals are classified as either successful or unsuccessful. A tableau
proof for the starting goal F = G is a finite proof tree, whose root is F = G
and all of whose leaves are successful final goals, and all of whose inner subgoals
are the result of an application of one of the rules. Successful final goals are as
follows:

A = B
... UNF at least once

A = A A = B

An identity and a goal which is repeated count as successful. Unsuccessful final
goals are

∅ = B and L(B) �= ∅ A = ∅ and L(A) �= ∅ Vi = Vj and i �= j

The tableau rules are sound and complete, which we now explain. First UNF
is complete in the sense that if the premise is true then so are the subgoals.
Completeness for BAL is that if the premise goals (those above the subgoal) are
true then so is the subgoal. The statement of completeness for CUT is that there

Schema Revisited 137

are correct applications of it. If (V1, . . . , Vn) is canonical for the first k premises
then there is a depth d for which it is canonical. Moreover (V1, . . . , Vn) needs to
be a recursive family for the true goal A1B1+ . . .+AnBn = C1B1+ . . .+BnCn,
in which case the subgoal follows.

For soundness of the tableau rules consider global soundness of the proof
system. The overall idea is that if there is a successful tableau whose root is
false then there is a path through the tableau within which each subgoal is
false. The idea is refined using approximants. If F i �∼ Gi then there is smallest
distinguishing word w. One can define n-equivalence between F i and Gi, if for
all words w such that |w| ≤ n, w does not distinguish between F i and Gi. UNF
obeys the simple soundness property that if the goal is not n+1-equivalent then a
subgoal is not n-equivalent. Therefore if the root is false then there is an offending
path (of false goals) through the tableau within which the approximant indices
decrease whenever rule UNF has been applied, and hence this would mean that
a successful final goal is false (which, as we shall show, is impossible). Soundness
of the conditional rules is that if the premises are on an offending path then the
subgoal preserves the falsity index of the goal immediately above it. In the case of
BAL(R) assume that the offending path passes through the premise goals. There
is a least n such that for the initial premiseB is n-equivalent toX1A1+. . .+XkAk
and B is not n + 1-equivalent to X1A1 + . . . + XkAk. As there are exactly M
applications of UNF between the initial and final premise it follows that B′ is
(n−M)-equivalent to D1A1+ . . .+DkAk. However, as this is the offending path
B′ is not (n+1−M)-equivalent to D1A1+ . . .+DkAk. A small argument shows
that B′ is not (n+ 1−M)-equivalent to D1(B · w(X1)) + . . .+Dk(B · w(Xk))
(because Ai is (n −M)-equivalent to (B · w(Xi). There is a similar soundness
argument for CUT. The idea of this style of soundness is essentially due to
Sénizuergues (although he uses the different framework of deduction systems).

The main result is as follows, and a similar result holds for monadic resursion
schemes.

Theorem 1 F ∼ G iff there is a finite tableau proof for F = G.

5 Conclusion

We have sketched decidability of equivalence for two old schema problems. How-
ever there are many open questions for further work. First we do not have a
complexity bound for the decision procedures. Secondly we have only shown
decidability for first-order recursion schemes. There is a known hierarchy of
schema problems at higher order [3,4]. The branch languages of higher-order
schemes are deterministic context-sensitive languages, as illustrated by the fol-
lowing 2nd-order scheme

Φ(G,H)(x) def= f(Φ(Gg,Hh)(x), G(Hx))

starting from Φ(g, h)(x). And so little is known about deterministic context-
sensitive languages.

138 C. Stirling

References

1. Courcelle, B. (1978). A representation of trees by languages I, Theoretical Com-
puter Science, 6, 255-279.

2. Courcelle, B. (1978). A representation of trees by languages II, Theoretical Com-
puter Science, 7, 25-55.

3. Damm W, (1977). Languages defined by higher type program schemes, Lecture
Notes in Computer Science, 52, 164-179.

4. Damm W, (1979). An algebraic extension of the Chomsky-hierarchy. Lecture
Notes in Computer Science, 74, 266-276.

5. Friedman, E. (1977). Equivalence problems for deterministic context-free lan-
guages and monadic recursion schemes. Journal of Computer and System Sci-
ences, 14, 344-359.

6. Garland, S., and Luckham, D. (1973). Program schemes, recursion schemes, and
formal languages. Journal of Computer and System Sciences, 7, 119-160.

7. Harrison, M. (1978). Introduction to Formal Language Theory, Addison-Wesley.
8. Harrison, M., and Havel, I. (1973). Strict deterministic grammars. Journal of

Computer and System Sciences, 7, 237-277.
9. Hüttel, H., and Stirling, C. (1991). Actions speak louder than words: proving

bisimilarity for context free processes. Proceedings 6th Annual Symposium on
Logic in Computer Science,IEEE Computer Science Press, 376-386.

10. Sénizergues, G. (1997). The equivalence problem for deterministic pushdown au-
tomata is decidable. Lecture Notes in Computer Science, 1256, 671-681.

11. Sénizergues, G. (1998). L(A) = L(B)? Tech. Report LaBRI, Université Bordeaux I,
pp. 1-166. (To appear in Theoretical Computer Science.)

12. Stirling, C. (1998). Decidability of bisimulation equivalence for normed pushdown
processes. Theoretical Computer Science, 195, 113-131.

13. Stirling, C. (1999). Decidability of DPDA equivalence. Tech. Report LFCS-99-411,
University of Edinburgh, pp. 1-25. (To appear in Theoretical Computer Science.)

Automated Verification = Graphs, Automata, and Logic

Moshe Y. Vardi�

Rice University, Department of Computer Science, Houston, TX 77005-1892, USA

Abstract. In automated verification one uses algorithmic techniques to establish
the correctness of the design with respect to a given property. Automated verifi-
cation is based on a small number of key algorithmic ideas, tying together graph
theory, automata theory, and logic. In this self-contained talk I will describe how
this “holy trinity” gave rise to automated-verification tools.

References

1. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages
and Systems, 8(2):244–263, January 1986.

2. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
3. R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,

1994.
4. M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller and

G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata, volume 1043 of
Lecture Notes in Computer Science, pages 238–266. Springer-Verlag, Berlin, 1996.

5. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proc. First Symposium on Logic in Computer Science, pages 332–344, Cambridge, June
1986.

� Supported in part by NSF grant CCR-9700061, and by a grant from the Intel Corporation. URL:
http://www.cs.rice.edu/∼vardi.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, p. 139, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A Fully Complete PER Model
for ML Polymorphic Types

Samson Abramsky1 and Marina Lenisa2 �

1 LFCS, Division of Informatics, University of Edinburgh,
The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK.

samson@dcs.ed.ac.uk
2 Dipartimento di Matematica e Informatica, Università di Udine,

Viale delle Scienze 206, 33100 Udine, ITALY.
lenisa@dimi.uniud.it

Abstract. We present a linear realizability technique for building Par-
tial Equivalence Relations (PER) categories over Linear Combinatory
Algebras. These PER categories turn out to be linear categories and to
form an adjoint model with their co-Kleisli categories. We show that a
special linear combinatory algebra of partial involutions, arising from
Geometry of Interaction constructions, gives rise to a fully and faithfully
complete model for ML polymorphic types of system F.

Keywords: ML-polymorphic types, linear logic, PER models, Geometry
of Interaction, full completeness.

Introduction

Recently, Game Semantics has been used to define fully-complete models for
various fragments of Linear Logic ([AJ94a,AM99]), and to give fully-abstract
models for many programming languages, including PCF [AJM96,HO96,Nic94],
richer functional languages [McC96], and languages with non-functional features
such as reference types and non-local control constructs [AM97,Lai97].

All these results are crucially based on the linear analysis of the intuitionistic
arrow which is possible in the intensional setting of game categories. However,
the definitions of game and game categories are quite complex, often requiring
cumbersome quotienting operations. In this paper, we present the technique of
linear realizability as a simpler and more direct alternative to game constructions
for addressing full completeness issues.

The linear realizability technique amounts to constructing a category of Par-
tial Equivalence Relations (PERs) over a Linear Combinatory Algebra (LCA),
which turns out to be a linear category, and to form an adjoint model with its co-
Kleisli category. The notion of Linear Combinatory Algebra introduced by the
first author ([Abr97a]) refines the standard notion of Combinatory Algebra, in
the same way in which intuitionistic linear logic refines intuitionistic logic. The
� Work partially supported by TMR Linear FMRX-CT98-0170.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 140–155, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A Fully Complete PER Model for ML Polymorphic Types 141

construction of PER models from LCA’s presented in this paper is quite simple
and clear, and it yields models with extensionality properties, thus avoiding the
quotienting operations which are often needed in defining game categories and
models. Moreover, PER categories offer simple natural models for second order
(polymorphic) λ-calculus, i.e. Girard’s System F ([Gir72]).

Recently, there has been much interest in realizability techniques, and in
particular in linear realizability, especially in connection with full completeness
and full abstraction problems. Realizability can be regarded as a powerful tool
for mediating between intensional and extensional aspects of computation, and
it has been used for extensionalizing intensional constructions (e.g. in [AM99]),
and as a technique for building directly interesting (possibly fully-complete/fully-
abstract) models. Examples of this latter use of realizability appear in this paper,
and in [AL99], where a fully-abstract PER model for PCF, alternative to the
game model of [AJM96], is provided using the algebra of well-bracketed strategies.

A categorical model of a type theory (or logic) is said to be fully-complete
([AJ94a]) if, for all types (formulae) A,B, all morphisms f : [[A]]→ [[B]], from the
interpretation of A into the interpretation of B, are denotations of a proof-term
of the entailment A � B, i.e. if the interpretation function from the category
of syntactical objects to the category of denotations is full. The notion of full-
completeness is the counterpart of the notion of full abstraction, in the sense
that, if the term language is executable, then a fully-complete model is (up-to a
possible quotient) fully-abstract.

Besides full completeness, one can ask the question whether the theory in-
duced by a model M coincides precisely with the syntactical theory or whether
more equations are satisfied in M. A model M is called faithful if it realizes
exactly the syntactical theory.

The fully and faithfully complete model for ML-types built in this paper
is obtained as an instance of the PER construction, by considering the special
linear combinatory algebra of partial involutions. ML-types are universal clo-
sures of simple types, i.e. types of the form ∀X1. . . . Xn.T , where T is ∀-free and
FV (T) ⊆ {X1, . . . , Xn}. The algebra of partial involutions arises in the con-
text of the generalization of Girard’s Geometry of Interaction due to the first
author ([AJ94,Abr96,Abr97a,AHPS98]). This is a powerful construction, which
allows to build many new combinatory algebras, as well as to recover previously
known models by viewing them in an alternative perspective. The algebra of
partial involutions is a highly constrained algebra, in which all computations are
reversible. Partial involutions are reminiscent of the copy-cat strategies of game
categories, in that all the combinators mediate the required interactions between
the arguments simply by copying information between input and output ports.

The proof of full completeness consists in showing that this model satisfies
the axioms in the axiomatization of fully-complete models for ML-types given
in [AL99a]. This axiomatization is given on the models of system F which are
called hyperdoctrines ([Cro93]). In particular, it works in the context of adjoint
models. It consists of two main steps. The first is an axiomatization of the fact
that every morphism f : 1 → [[T]], where T is an ML-type generates, under

142 S. Abramsky and M. Lenisa

decomposition, a possibly infinite typed Böhm tree. Then, an axiom which rules
out infinite trees from the model is introduced.

Proving that the model of partial involutions considered in this paper does
not contain infinite typed Böhm trees is quite difficult, and it requires the study
of an intermediate model. This is the model generated by the Sierpinski PER
and it consists of all (possibly infinite) Böhm trees of the typed λ-calculus, with
constants ⊥,	. A crucial step in our proof consists in proving that, in the simply
typed λ-calculus with typical ambiguity and ⊥-constants, “totality tests” are λ-
definable by finite typed trees. These totality tests allow us to tell apart normal
forms in which ⊥ appears, from those in which ⊥ does not appear. A further
ingredient is an Approximation Lemma, along the lines of [AJM96].

The full completeness result obtained in this paper is interesting, since, until
now, the research on full completeness for System F has produced fully-complete
denotational models only for a small subclass of ML-types, i.e. the algebraic
types (see [HRR90]). In the literature, there are two fully-complete models for
the whole system F: i.e. that of [BC88], and that of [Hug99]. The first model
is based on a quotient of a term model, the latter is a game model. But both
these models still have a somewhat syntactical flavor, and their constructions
are extremely complex. The model in this paper can be viewed as the first
denotational model which is fully-complete for the whole class of ML-types.

In Section 1, we recall the syntax of ML types of system F, and we present
two results on the simply typed λ-calculus with a theory satisfying Typical Am-
biguity. The first is due to Statman, the latter is a new Typed Separability result.
In Section 2, we recall the notion of 2λ×-hyperdoctrine and the notion of ad-
joint hyperdoctrine introduced in [AL99a], and we formalize the definition of
fully-complete hyperdoctrine. In Section 3, we present the linear realizability
technique, for building PER categories over LCAs. In Section 4, the LCA of
partial involutions is described. In Section 5, the proof of full completeness for
the PER model over the LCA of partial involutions is sketched. Final remarks
and directions for future work appear in Section 6.

The authors are thankful to F.Honsell, R.Jagadeesan, J.Laird, J.Longley,
S.Martini, G.Plotkin, A.Simpson for useful discussions on some of the issues of
the paper.

1 ML Polymorphism

First, we recall the syntax of the class of ML-types of system F. Then, we present
two important results on the simply typed λ-calculus with a theory satisfying
Typical Ambiguity. A theory is said to satisfy Typical Ambiguity if two terms
are equated if and only if they are equated for all possible substitutions of type
variables. The first result that we present is Statman’s Typical Ambiguity Theo-
rem, which asserts that there is exactly one consistent theory satisfying Typical
Ambiguity on the simply typed λ-calculus with infinitely many type variables:
this is the βη-theory. An immediate consequence of this result is that the only
consistent theory on the fragment of system F consisting of ML-types is precisely

A Fully Complete PER Model for ML Polymorphic Types 143

the βη-theory. The second result concerns the definability of “convergence tests”
in the simply typed λ-calculus with infinitely many type variables, ⊥-constants,
and satisfying Typical Ambiguity. In particular, we prove that, for any given
type, there are convergence test terms, which detect the presence of ⊥-constants
in a term of that type. This implies immediately that, in a theory of Typical
Ambiguity over the simply typed λ-calculus with infinite type variables and ⊥-
constants, a term containing ⊥ in its normal form can never be equated to a
term in whose normal form ⊥ does not appear. This result is used in the proof
of full completeness of the model of PERs over the LCA of partial involutions.

We assume that the reader is familiar with System F (see e.g. [AL91]).
The class of ML-polymorphic types of system F corresponds to the limited

kind of polymorphism allowed in the language ML.

Definition 1 (ML-types). The class ML-Type of ML-types is defined by:
ML-Type = {∀X.T | T ∈ SimType ∧ FV (T) ⊆X} ,

where SimType is the class of simple types of system F, i.e. simple types over
an infinite set of type variables, and X stands for X1, . . . , Xn, for n ≥ 0.

Terms of ML-types have essentially the same “combinatorics” as the typically
ambiguous terms of the simply typed λ-calculus. In fact, any theory on ML-terms
induces a theory satisfying Typical Ambiguity.

The following is a result about simply typed λ-calculus with infinitely many
type variables λ∞, first proved in [Sta88].

Theorem 1 (Statman’s Typical Ambiguity). Let T be a type of λ∞ s.t.
FV (T) ⊆ {X1, . . . , Xn}. If ��M =βη N : T , then, there exist types S1, . . . , Sn,
and Y ∈ TV ar, and a term L s.t. � L[S/X] : T [S/X]→ BoolY , where BoolY =
Y → Y → Y , s.t.
� (LM)[S/X] =βη true : BoolY ∧ � (LN)[S/X] =βη false : BoolY ,

where true = λx : Y.y : Y.x and false = λx : Y.y : Y.y.

Corollary 1. i) The maximal consistent theory satisfying Typical Ambiguity on
the simply typed λ-calculus with infinitely many type variables is the βη-theory.
ii) The maximal consistent theory on the fragment of system F consisting of
ML-types is the βη-theory.

As it will be clear in the following section from the definition of full com-
pleteness, by Corollary 1ii), any non-trivial fully-complete model for ML-types of
system F is necessarily faithful, i.e. it realizes exactly the βη-theory at ML-types.

Now we show that “convergence tests” are λ-definable in the simply typed
λ-calculus with infinitely many type variables and ⊥-constants for any type
variable, and a theory satisfying Typical Ambiguity, which we call λ∞⊥ .

Definition 2 (Typed Convergence Tests). Let T = T1 → . . . → Tn →
Xk ∈SimType, let ι be a distinguished type variable, and let αT = T [ι → ι/X].
We define, by induction on T , the convergence test term � SαT

: αT as follows:
if T = X, then Sι→ι = Iι→ι , otherwise,
let T = T1 → . . .→ Tn → Xk, where Ti = Ui1 → . . .→ Uiqi → Xi, then
SαT

=λx1 :αT1 . . . xn :αTn .λz : ι.(x1SαU11
. . . SαU1q1

)(. . . (xnSαUn1
. . . SαUnqn

z)) .

144 S. Abramsky and M. Lenisa

The “convergence test” terms defined above give us a procedure for deciding
whether a normal form of λ∞⊥ contains a divergent subterm. Namely, let M
be a normal form of λ∞⊥ of type T1 → . . . → Tn → Xk. We first instantiate
all the free variables in M by ι → ι, then we apply M to the sequence of
convergence tests SαT1

, . . . , SαTn
. The effect of this is that, in the head reduction

of MSαT1
, . . . , SαTn

, each subterm of M definitely appears in head position, and
it reduces to the identity, until a ⊥ is detected.

For a term y : U � M : T , we denote by y : αU � MαT
: αT (or simply by

MαT
) the term of type αT obtained from y : U �M : T by instantiating all the

type variables free in T by ι→ ι.

Theorem 2 (Typed Separability). Let T = T1 → . . .→ Tn → Xk ∈SimType,
and let �M : T be a term of λ∞⊥ . Then

MαT
SαT1

. . . SαTn
=
{
Iι→ι if the normal form of M is ⊥-free
λx : ι. ⊥ otherwise .

Theorem 2 above can be regarded as a typed Böhm-like Separability Theorem,
in the sense that, if we think of ⊥ as a generic unsolvable term, then Theorem 2
allows us to tell apart normal forms from unsolvable terms.

Corollary 2. In any theory satisfying Typical Ambiguity on λ∞⊥ , a term in
whose normal form ⊥ appears cannot be equated to a term, in whose normal
form ⊥ does not appear.

2 Models of System F

We recall first the notion of 2λ×-hyperdoctrine (see [Cro93]). This essentially
corresponds to the notion of external model (see [AL91]). Then, we give the for-
mal definition of fully (and faithfully) complete hyperdoctrine model. Finally, we
define the categorical notion of adjoint hyperdoctrine, on which the axiomatiza-
tion of full completeness at ML-types of [AL99a] is given. Adjoint hyperdoctrines
arise as co-Kleisli indexed categories of linear indexed categories.

In what follows, we assume that all indexed categories which we consider are
strict (see e.g. [AL91,Cro93] for more details).

Definition 3 (2λ×-hyperdoctrine). A 2λ×-hyperdoctrine is a triple (C,G,∀),
where:
– C is the base category, it has with finite products, and it consists of a distin-

guished object U which generates all other objects using the product operation
×. We will denote by Um, for m ≥ 0, the objects of C.

– G : Cop → CCCat is a C-indexed cartesian closed category, where CCCat is
the category of cartesian closed categories and strict cartesian closed func-
tors, such that: for all Um, the collection of objects of the cartesian closed
fibre category G(Um) is indexed by the morphisms from Um to U in C, i.e.
the objects of G(Um) are the morphisms in HomC(Um,U), and, for any
f : Um → Un in Cop, the cartesian closed functor G(f) : G(Un)→ G(Um),
called reindexing functor and denoted by f∗, is s.t., for any object h : Un →
U , f∗(h) = f ;h;

A Fully Complete PER Model for ML Polymorphic Types 145

– For each object Um of C, there are functors ∀m : G(Um × U)→ G(Um) s.t.
• ∀m is right adjoint to the functor π∗m : G(Um) → G(Um × U), where
πm : Um × U → Um is the projection in C;
• ∀m satisfies the Beck-Chevalley condition.

Any 2λ×-hyperdoctrine can be endowed with a notion of interpretation [[]]
for the language of system F.
Types with free variables in X1, . . . , Xm are interpreted by objects of G(Um),
i.e. by morphisms from Um to U in C: [[X1, . . . , Xm � T]] : Um → U .
Well-typed terms, i.e. X1, . . . , Xm;x1 : T1, . . . , xn : Tn � M : T , are interpreted
by morphisms in the category G(Um):
[[X1, . . . , Xm;x1 : T1, . . . , xn : Tn �M :T]] : [[X � T1]]×. . .×[[X � Tn]]→ [[X � T]] .

Definition 4 (Full (and Faithful) Completeness). Let M = (C,G,∀, [[]])
be a 2λ×-hyperdoctrine. M is fully and faithfully complete w.r.t. the class of
closed types T if, for all T ∈ T ,
∀f ∈ HomG(1)(1, [[� T]]). ∃(!)βη-normal form M. �M : T ∧ f = [[�M : T]] .

In the following definition, we capture those 2λ×-hyperdoctrines which arise
from a co-Kleisli construction over an indexed linear category, and on which the
axiomatization of fully-complete models for ML-types given in [AL99a] is based.

Definition 5 (Adjoint Hyperdoctrine).
An adjoint hyperdoctrine is a quadruple (C,L,G,∀), where:

– C is the base category, it has finite products, which consists of a distinguished
object U which generates all other objects using the product operation ×. We
will denote by Um, for m ≥ 0, the objects of C.

– L : Cop → LCat is a C-indexed linear category, where LCat is the category of
linear categories and strict monoidal closed functors preserving the comonad
structure, s.t.: for all Um, the underlying collection of objects of the linear
fibre category L(Um) is indexed by the morphisms from Um to U in C.

– G : Cop → CCCat is the C-indexed co-Kleisli category of L, which we assume
to be cartesian closed.

– For each object Um of C, there are functors ∀m : G(Um × U)→ G(Um) s.t.
• ∀m : G(Um × U) → G(Um) is right adjoint to the functor G(πm) :

G(Um)→ G(Um×U), where πm : Um×U → Um is the projection in C;
• ∀m : G(Um × U)→ G(Um) satisfies the Beck-Chevalley condition.

3 Models of PERs over a Linear Combinatory Algebra

Canonical examples of 2λ×-hyperdoctrines arise from considering the Partial
Equivalence Relation (PER) category over a combinatory algebra (see [Cro93],
Chapter 5, Section 5.5 for more details). In this section, we show how to build
a PER category from a linear combinatory algebra (LCA). This category turns
out to form an adjoint model with its co-kleisli category, and it gives rise to an
adjoint hyperdoctrine.
We start by recalling the definition of linear combinatory algebra ([Abr97a],
[AHPS98]):

146 S. Abramsky and M. Lenisa

Definition 6 (Linear Combinatory Algebra). A linear combinatory algebra
A = (A, •, !) is an applicative structure (A, •) with a unary (injective) operation
!, and distinguished elements (combinators) B,C, I,K,W,D, δ, F satisfying the
following equations:

Equation Principal type Logical rule
Ix = x α−−◦α Identity
Bxyz = x(yz) (α−−◦β)−−◦(γ−−◦α)−−◦γ−−◦β Cut
Cxyz = (xz)y (α−−◦β−−◦γ)−−◦β−−◦α−−◦γ Exchange
Kx!y = x α−−◦!β−−◦α Weakening
Wx!y = x!y!y (!α−−◦!α−−◦β)−−◦!α−−◦β Contraction
D!x = x !α−−◦α Dereliction
δ!x =!!x !α−−◦!!α Comultiplication
F!x!y =!(xy) !(α−−◦β)−−◦!α−−◦!β Closed Functoriality .

LCA’s correspond to Hilbert style axiomatization of −−◦, ! fragment of Linear
Logic. Given an LCA A = (A, •, !), we can form a standard CA As = (A, •s)
by the “combinatory version” of Girard’s translation of Intuitionistic Logic into
Linear Logic. We define: α •s β = α•!β (standard combinators can be defined in
terms of the linear ones, see [AHPS98] for details).

We recall that a BCI-algebra is an applicative structure (A, •) with B,C, I
combinators. In the next definition, we define a PER category over a BCI-
algebra, which turns out to be symmetric monoidal closed.

Definition 7. Let A = (A, •) be a BCI-algebra. We define the category PERA
as follows.
Objects: PERs R⊆ A×A, i.e. symmetric and transitive relations.
Morphisms: a morphism f from R to S is an equivalence class of the PER
R −−◦ S, where the PER R −−◦ S is defined by

α(R −−◦ S)β iff ∀γ R γ′. α • γ S β • γ′ .

On BCI-algebras, standard pairing gives rise to a tensor product, but the
definition of tensor product requires some care:

Lemma 1. Let A = (A, •) be a BCI-algebra. Let P be the pairing combinator,
i.e. (using λ-notation) P = λxyz.zxy. Then, for all PERs R,S, let R ⊗ S be
the PER defined as the transitive closure of the following relation:

R ⊗′ S= {(Pαβ, Pα′β′) | α R α′ ∧ β S β′} .

Notice in particular that, if the BCI-algebra is affine, i.e. it is a BCK-algebra,
then the relation R ⊗′ S is already transitive, since, using projections, we get:
Pαβ = Pα′β′ =⇒ α = α′ ∧ β = β′ .

Proposition 1. Let A = (A, •) be a BCI-algebra. Then PERA is a symmetric
monoidal closed category.

Now we show how an LCA gives rise to a linear category.

A Fully Complete PER Model for ML Polymorphic Types 147

Proposition 2. Let A = (A, •, !) be an LCA. Let ! : PERA → PERA be the
functor defined by

∀ R . ! R= {(!α, !β) | α R β}, ∀f :R1→R2 . !f = [F !f] .
Then (!, D, δ, φ, φ′) is a symmetric monoidal comonad, where
– φR1,R2 : ! R1 ⊗! R2→ !(R1 ⊗ R2) is defined by φR1,R2 = [λu.F !P (uF)];
– φ′ : I � !I is [δ]

I→!I .

The following isomorphisms hold immediately in PER categories over LCA’s:

Lemma 2. Let A = (A, •, !) be an LCA. Then, for all PERs R,S,
1. (Idempotency of !) [D] : !! R� ! R : [δ];
2. (Uniformity of Threads) ψ : ! R −−◦! S� ! R −−◦ S : (·)† , where ψ =

[λx.x;D]; or equivalently: ∀α ∈ ! R −−◦! S, (α; [D])† = α;
3. (Commutativity of

⋂
w.r.t. !)

⋂
X ! R�!(

⋂
X R).

The second isomorphism in Lemma 2 above is relevant for full completeness.
In fact, this isomorphism amounts exactly to the Uniformity of Threads Axiom in
the axiomatization of full completeness of [AL99a]. The isomorphisms of Lemma
2 above highlight the fact that the PER category is a “degenerate” model of
linear logic.

Theorem 3. Let A = (A, •, !) be an LCA. Then
– The category PERA is linear.
– The co-Kleisli category (PERA)!, induced by the comonad ! on the category

PERA, is cartesian closed.
– The categories PERA and (PERA)! form an adjoint model.
– The category (PERA)! is isomorphic to the category PERAs , where PERAs is

the category obtained by standard realizability from the standard combinatory
algebra As.
Finally, we show how to build an adjoint hyperdoctrine from an LCA:

Theorem 4 (PER Adjoint Hyperdoctrine). Let A = (A, •, !) be an LCA.
Then A gives rise to an adjoint hyperdoctrine (C,L,G,∀), by defining:
C : Let U be the set {R | R is a PER on A}. The objects of C, Un, for n ≥ 0,

are the finite products in Set of n copies of the set U , in particular U0 is the
terminal object in Set. A morphism in C, f : Un → Um, is a set-theoretic
function from Um to Un.

L : The morphisms in the fibre category L(Um) from h1 : Um → U to h2 :
Um → U are the equivalence classes of the PER

⋂
X∈Um(h1X−−◦h2X). For

any object f : Um → U in L(Um), we define !f to be λX.!(fX). For any
morphism f : Um → Un in C, we define the behavior of the functor L(f) :
L(Un)→ L(Um) on morphisms by: for any morphism H : h1 → h2 in L(Un),
H = ΛX.H ′ ∈ ⋂X(h1X−−◦h2X), let L(f)(H) : L(f)(h1) → L(f)(h2) be
ΛX.H ′ ◦ f(X) ∈ ⋂X(L(f)(h1)X−−◦L(f)(h2)X).

∀ : The functor ∀m : L(Um × U) → L(Um) is defined as follows. For any h :
Um × U → U , ∀m(h) = λX.

⋂
Xh(X). For any morphism H : h1 → h2 in

L(Um × U), ∀m(H) = H.

148 S. Abramsky and M. Lenisa

4 Partial Involutions Affine Combinatory Algebra

Many examples of LCAs arise from the categorical version of Girard’s Geometry
of Interaction (GoI) construction, based on traced symmetric monoidal cate-
gories ([Abr97a,Abr96,AHPS98]). A basic example of GoI LCA, introduced in
[Abr97a], can be defined on the space [N ⇀ N] of partial functions from nat-
ural numbers into natural numbers, by applying the GoI construction to the
the traced category Pfn of sets and partial functions. Here we briefly recall
the definition of this LCA, without discussing the categorical framework (see
[Abr97a,Abr96,AHPS98] for more details). The LCA of partial involutions, which
will be shown to provide a fully-complete model for ML-types (see Section 5),
arises as subalgebra of this.

Let us consider the space [N⇀ N] of partial functions from natural numbers
to natural numbers. For any α ∈ [N⇀ N] injective, we denote by α−1 the inverse
of α. Now we show how we can endow the space [N ⇀ N] with a structure of
LCA. Actually, the algebra which we obtain is affine, i.e. it has a full K-combi-
nator. We start by fixing two injective coding functions t and p:

t : N + N→ N , p : N×N→ N .

The first is used in order to define application, and it allows to transform an
one-input/one-output function into a two-input/two-output function. The latter
is used for creating infinitely many copies of an one-input/one-output function
α, i.e. for defining !α.

We now explain how application is computed geometrically, using the lan-
guage of “boxes and wires” which arises in the general setting of traced sym-
metric monoidal categories (see [JSV96] for an abstract treatment).

Let us represent an one-input/one-output function α ∈ [N ⇀ N] by the
following one-input-port/one-output-port box (see Fig. 1(i) below).

In order to define the application α•β, for α, β ∈ [N⇀ N], we regard α as a
two-input/two-output function via the coding t. In particular, t;α; t−1 : N+N⇀
N+N can be described as a matrix of 4 one-input/one-output functions, where
each entry αij : N ⇀ N, αij = ini; t;α; t−1; in−1j accounts for the contribution
from the i-th input wire into the j-th output wire (see Fig. 1(ii)).

❄
◗

◗
◗

❄
✑

✑
✑

(ii)

α11

α12
α22

α21

❄ ❄

❄
α

❄
(i)

❄ ❄

n

t; α; t∗

❄ ❄α • β(n)

β

(iii)

Fig. 1. Geometrical description of linear application.

A Fully Complete PER Model for ML Polymorphic Types 149

The result of the application α • β is the following one-input/one-output
function (see Fig. 1(iii)):

α • β = α22 ∪ α21; (β;α11)�;β;α12 ,
where ∪ denotes union of graph relations, and (β;α11)� denotes

⋃
n≥0(β;α11)n.

The above formula for computing the application is essentially the Execution
Formula from Girard’s Geometry of Interaction ([Gir89]).

The definition of the !-operation on our applicative structure is quite simple.
The operation ! is intended to produce, from a single copy of α, infinitely many
copies of α. These are obtained by simply tagging each of these copies with a
natural number, i.e. we define:

!α = p−1; (idN × α); p .
Finally, we are left to show that (affine) combinators can be defined on the

structure ([N ⇀ N], •, !). The formal (algebraic) definition of the combinators
is the following:

Definition 8 (Combinators). For X ∈ {I,B,C,K,W,D, δ,F}, let
X = s−1X ; fX; sX ,

where:
I : – sI = t.

– fI : N + N ⇀ N + N is defined by:
∀n. fI(r, n) = (l, n) ∧ ∀n. fI(l, n) = (r, n).

B : – sB : (((N + N) + (N + N)) + N) + N ⇀ N is defined by
sB = ((t + t) + idN) + idN; (t + idN) + idN; t + idN; t .

– fB : (((N+N)+(N+N))+N)+N ⇀ (((N+N)+(N+N))+N)+N is the
function defined by the following equations together with their symmetric
closure:
• ∀n. fB(r, n) = (l, (l, (l, (r, n))))
• ∀n. fB(l, (l, (l, (l, n)))) = (l, (l, (r, (r, n))))
• ∀n. fB(l, (l, (r, (l, n)))) = (l, (r, n)).

C : – sC : ((N + N) + ((N + N) + N)) + N ⇀ N is defined by
sC = (t + (t + idN)) + idN; (t + t) + idN; t + idN; t .

– fC : ((N+N)+((N+N)+N))+N ⇀ ((N+N)+((N+N)+N))+N is the
function defined by the following equations together with their symmetric
closure:
• ∀n. fC(r, n) = (l, (r, (r, n)))
• ∀n. fC(l, (r, (l, (r, n)))) = (l, (l, (r, n)))
• ∀n. fC(l, (r, (l, (l, n)))) = (l, (l, (l, n))).

K : – sK : (N + N) + N ⇀ N is defined by sK = t + idN; t .
– fK : (N + N) + N ⇀ (N + N) + N is the function defined by:
∀n. fK(r, n) = (l, (r, n)) ∧ ∀n. fK(l, (r, n)) = (r, n).

W : In order to define W, we need first to fix i, j ∈ N such that i �= j. Then
– sW : ((N×N) + ((N + N) + N)) + N ⇀ N is defined by
sW = (p + (t + idN)) + idN; (idN + t) + idN; t + idN; t .

– fW : ((N×N) + ((N + N) + N)) + N ⇀ ((N×N) + ((N + N) + N)) +
N is the function defined by the following equations together with their
symmetric closure:

150 S. Abramsky and M. Lenisa

• ∀n. fW(r, n) = (l, (r, (r, n)))
• ∀n. fW(l, (r, (l, (r, n)))) = (l, (l, (i, n)))
• ∀n. fW(l, (r, (l, (l, n)))) = (l, (l, (j, n))).

D : In order to define D, we need to fix i ∈ N. Then
– sD : (N×N) + N ⇀ N is defined by sD = p + idN; t .
– fD : (N×N) + N ⇀ (N×N) + N is the function defined by:
∀n. fD(r, n) = (l, (i, n)) ∧ ∀n. fD(l, (i, n)) = (r, n).

δ : In order to define δ, we need to fix i, j ∈ N. Then
– sδ : (N× (N×N)) + N ⇀ N is defined by
sδ = (idN × p) + idN; p + idN; t .

– fδ : (N × (N ×N)) + N ⇀ (N × (N ×N)) + N is the function defined
by:
∀n. fδ(r, n) = (l, (i, (j, n))) ∧ ∀n. fδ(l, (i, (j, n))) = (r, n).

F : In order to define F, we need to fix i, j ∈ N. Then
– sF : ((N×N) + N× (N + N)) + N ⇀ N is defined by
sF = (p + (idN × t)) + idN; (idN + p) + idN; t .

– fF : ((N×N)+N×(N+N))+N ⇀ ((N×N)+N×(N+N))+N is the
function defined by the following equations together with their symmetric
closure:
• ∀n. fF(r, n) = (l, (r, (i, (r, n))))
• ∀n. fF(l, (r, (i, (l, n)))) = (l, (l, (j, n))).

There is a simple, intuitive, geometrical explanation of these combinators,
which makes use of the language of boxes and wires. For example, let us consider
the identity combinator I. Since I has to satisfy the equation Ix = x, in order
to define I, it is convenient to regard I as a two-input/two-output function,
up-to-coding. The Identity combinator just copies informations from the left-
hand input-wire to the right-hand output-wire, and vice versa from the right-
hand input-wire to the left-hand output-wire (see Fig. 2(i)). The fact that I
satisfies the identity equation has a simple geometrical explanation. Let us apply
I to a partial function x (see Fig. 2(ii)). Now yank the string connecting the
input and the output wires of the result of the application, forgetting about
the box corresponding to I. This gives us immediately the expected result (see
Fig. 2(iii)). Our argument is based on the Yanking Property of the trace on
the symmetric monoidal category Pfn underlying our combinatory algebra. In
particular, Yanking is one of the axioms characterizing the trace operation in
the setting of traced symmetric monoidal categories.

Let us now consider the combinator B which satisfies the equation Bxyz =
x(yz). Concretely, the box for B has two input (and two output) wires for x
and two input (and two output) wires for y, since both x and y are applied
to an argument, one input (and one output) wire for z, which appears only as
argument, plus one extra input (and one output) wire, along which the input-
token (output-token) is intended to enter (exit). The connections of the wires
inside the box for B are determined by the control flow between x, y, z in the
right-hand part of the equation. First of all, the control flow passes from the
input port of B to the input port of x. The second port of x is then connected

A Fully Complete PER Model for ML Polymorphic Types 151

❄ ❄
I

❄ ❄

◗
◗

◗
✑

✑
✑

x

(ii)

❄ ❄
I

❄ ❄

◗
◗

◗
✑

✑
✑

(i)

x

❄

❄

(iii)

Fig. 2. Geometrical description of I.

to the input port of y, while the second port of y is connected to the unique
port of z. The remaining connections are then obtained by symmetry (see Fig.
3(i)). Using the Yanking Property, one can then check that the result of the
application of B to x, y, z is the expected one.

B

✡
✡

✡✡

❏
❏

❏❏

✡
✡

✡✡

❏
❏

❏❏

✡
✡

✡✡

❏
❏

❏❏

❄ ❄ ❄ ❄ ❄ ❄

z y︷ ︸︸ ︷ x︷ ︸︸ ︷

❄ ❄ ❄ ❄ ❄ ❄

(i)

K

✡
✡

✡✡

❏
❏

❏❏

❄ ❄ ❄

❄ ❄ ❄

y x

(ii)

Fig. 3. Geometrical representations of B, K.

Now we briefly discuss the remaining combinators. The combinator C can be
explained in a similar way as B. The affine combinator K simply forgets about
its second argument y (see Fig. 3(ii)).

In order to define W, we need to fix two different indices i, j ∈ N, tagging
the copies of y which are used as arguments by x. The remaining copies of y are
ignored:

W

✟✟✟✟✟✟

✟✟✟✟✟✟

❍❍❍❍❍❍

❍❍❍❍❍❍

✡
✡

✡✡

❏
❏

❏❏

❄ ❄ ❄ ❄ ❄ ❄

!y︷ ︸︸ ︷ x︷ ︸︸ ︷

❄ ❄ ❄ ❄ ❄ ❄

(i, n) (j, n)

n n

.

.

152 S. Abramsky and M. Lenisa

The behavior of D, δ,F can be explained similarly (see [AL99a]).
Essentially, all the combinators of Definition 8 are functions that mediate

the required interactions between the arguments simply by copying information
between the various ports.

There are many possible conditions that can be imposed on partial functions
in order to cut down the space [N⇀ N], still maintaining closure under the ap-
plication, !, and all the affine combinators. The subalgebra which gives rise to the
fully-complete model of Section 5 is obtained by considering partial involutions:

Definition 9. Let f : N ⇀ N. f is a partial involution iff its graph is a sym-
metric relation. Let us denote by [N ⇀Inv N] the space of partial involutions
from N to N.

One can check that partial involutions are closed under the application, the
!-operation, and all the combinators of Definition 8, i.e.:

Proposition 3. APInv = ([N ⇀Inv N], •, !) is an affine combinatory algebra.

APInv is a highly constrained algebra, in which all computations are reversible.
Partial involutions are reminiscent of the copy-cat strategies of game categories,
in that the only computational effect that they have is that of copying informa-
tions from input to output wires.

5 A Fully Complete PER Model

In this section, we sketch the proof that the PER category over the LCA APInv

of Section 4 satisfies the Axioms of [AL99a], and hence it gives rise to a fully
and faithfully complete PER model for ML-types.

The axiomatization of [AL99a] consists of two main steps. The first is an
axiomatization of the fact that every morphism f : 1→ [[T]], where T is an ML-
type generates, under decomposition, a possibly infinite typed Böhm tree. The
second step consists of an axiom which rules out infinite trees from the model
is introduced. We start by discussing briefly the axioms for the decomposition.
First of all, notice that the axiom which expresses the fact that the type ∀X.Xk is
empty, and the Uniformity of Threads Axiom hold immediately on PER models.
In fact, for the first axiom to hold, we need only to verify that the PER

⋂
XXk is

the empty PER. This follows immediately, by instantiating Xk with the empty
PER. The Uniformity of Threads Axiom follows from the isomorphism

⋂
X ! R

−−◦!S � ⋂X ! R −−◦S, which is an immediate consequence of Lemma 2 of Section
3. The proof of the validity of the remaining axioms for the Decomposition
Theorem is based essentially on the nature of partial involutions, and it requires
a careful analysis of their applicative behavior. The details of the lengthy proof
appear in [AL99a]. The most difficult part of the proof of full completeness for
the model PERAPInv consists in proving the Finiteness Axiom, i.e. in ruling out
infinite typed trees. In particular, we prove that the trees generated by elements
of PERs which are denotations of ML-types, via repeated applications of the

A Fully Complete PER Model for ML Polymorphic Types 153

Decomposition Theorem, have finite height. In order to prove this finiteness
result, we need to study an intermediate model, which contains also approximant
terms of possibly infinite trees. This intermediate model consists of the hierarchy
of simple PERs over the Sierpinski PER. This hierarchy gives rise to a model for
the simply typed calculus with ⊥,	 constants at the base type. First of all, we
prove an Approximation Lemma (along the lines of [AJM96]), which says that the
graph of every partial involution f in a closed polymorphic PER can be viewed as
the union of all its approximants. The approximants of f correspond, essentially,
to the finite trees obtained by truncating at level k the tree generated from f by
applying the Decomposition Theorem. Then, reasoning by contradiction, using
the Typed Separability result of Section 1, and the fact that ⊥ does not live in
closed polymorphic PERs, we conclude that only trees with finite height belong
to such PERs. The details of the proof appear in [AL99a].

6 Final Remarks and Directions for Future Work

We conclude this paper with a list of remarks and interesting issues which still
remain to be addressed (some of them are currently under investigation).
• In this paper, we have presented a fully-complete model for ML-types. A nat-
ural question arises: what happens beyond ML-types. Here is a partial answer.
Already at the type Nat → Nat, where Nat is the type of Church’s numerals,
i.e. ∀X.(X → X)→ X → X, the PER model of partial involutions is not fully-
complete. In fact, not only all recursive functions, but even all functions from
natural numbers to natural numbers, can be encoded in the type Nat→ Nat. A
similar problem arises even if we consider the term combinatory algebra. PER
models as they are defined in this paper, do not seem to give full-completeness
beyond ML-types. An innovative construction is called for here.
• Another question which arises naturally is whether the PER model over the
linear term combinatory algebra is fully-complete at ML-types. We conjecture
that this is the case, but a proof of this fact seems difficult. A logical relation
technique relating the term algebra and the term subalgebra of partial involu-
tions could be useful here. The interest of linear term algebras lies in the fact
that the PER model generated by these is essentially the PER model shown to
be fully-complete at algebraic types in [HRR90].
•We have presented a linear realizability technique for building PER categories
over an LCA. These PER categories turn out to be linear categories. It would
be interesting to carry on the investigation of the general properties of these
categories, e.g. define coproducts, products, etc..
• Models of partial involutions are worthwhile investigating also for typed/unty-
ped λ-calculi different from system F. E.g. strategies in the [AJM96] style, which
are represented by partial involutions from Opponent moves to Player moves,
should provide fully-complete models for simply typed λ-calculus with ⊥,	-base
constants. In the untyped setting, partial involutions strategies could possibly
provide fully-abstract models, alternative to those in [DFH99,KNO99].
• In the category PERPInv, models of typed Böhm trees naturally arise (e.g. the

154 S. Abramsky and M. Lenisa

model induced by the Sierpinski PER). These are in particular models of the
simply typed λ-calculus together with a fixed point combinator, as suggested by
Alex Simpson. All these “infinite” calculi seem interesting by themselves, but
have not yet been property investigated.

References

Abr96. S.Abramsky. Retracing some paths in Process Algebra, Concur’96, 1996.
Abr97. S.Abramsky. Axioms for Full Abstraction and Full Completeness, 1997, to

appear.
Abr97a. S.Abramsky. Interaction, Combinators, and Complexity, Notes, Siena

(Italy), 1997.
AHPS98. S.Abramsky, E.Haghverdi, P.Panangaden, P.Scott. Geometry of Interaction

and Models of Combinatory Logic, 1998, to appear.
AJ94. S.Abramsky, R.Jagadeesan. New foundations for the Geometry of Interac-

tion, Inf. and Comp. 111(1), 1994, 53–119.
AJ94a. S.Abramsky, R.Jagadeesan. Games and Full Completeness for Multiplica-

tive Linear Logic, J. of Symbolic Logic 59(2), 1994, 543–574.
AJM96. S.Abramsky, R.Jagadeesan, P.Malacaria. Full Abstraction for PCF, 1996,

Inf. and Comp. to appear.
AL99. S.Abramsky, J.Longley. Realizability models based on history-free strate-

gies, Draft paper, 1999.
AL99a. S.Abramsky, M.Lenisa. Fully Complete Models for ML Polymorphic

Types, Technical Report ECS-LFCS-99-414, LFCS, 1999 (available at
http://www.dimi.uniud.it/˜lenisa/Papers/Soft-copy-ps/lfcs99.ps.gz).

AM97. S.Abramsky, G.McCusker. Full abstraction for idealized Algol with passive
expressions, TCS 227, 1999, 3–42.

AM99. S.Abramsky, P.Mellies. Concurrent Games and Full Completeness, LICS’99.
AL91. A.Asperti, G.Longo. Categories, Types and Structures, Foundations of Com-

puting Series, The MIT Press, 1991.
BC88. V.Breazu-Tannen, T.Coquand. Extensional models for polymorphism, TCS

59, 1988, 85–114.
Cro93. R.Crole, Categories for Types, Cambridge University Press, 1993.
DFH99. P.Di Gianantonio, G.Franco, F.Honsell. Game Semantics for Untyped λ-

calculus, TLCA’99, LNCS, 1999.
Gir72. J.Y.Girard. Interprétation functionelle et élimunation des coupures de

l’arithmètique d’ordre supérieur, Thèse d’Etat, Université Paris VII, 1972.
Gir89. J.Y.Girard. Towards a Geometry of Interaction, Contemporary Mathematics

92, 1989, 69–108.
Hug99. D.Hughes. Hypergame Semantics: Full Completeness for System F, D.Phil.

thesis, University of Oxford, submitted 1999.
HRR90. J.Hyland, E.Robinson, G.Rosolini. Algebraic types in PER models, MFPS,

M.Main et al. eds, LNCS 442, 1990, 333–350.
HO96. M.Hyland, L.Ong. On full abstraction for PCF, Inf. and Comp., 1996, to

appear.
KNO99. A.Ker, H.Nickau, L.Ong. More Universal Game Models of Untyped λ-

Calculus: The Böhm Tree Strikes Back, CSL’99, LNCS, 1999.
JSV96. A.Joyal, R.Street, D.Verity. Traced monoidal categories, Math. Proc. Comb.

Phil. Soc. 119, 1996, 447–468.

A Fully Complete PER Model for ML Polymorphic Types 155

Lai97. J.Laird. Full abstraction for functional languages with control, LICS’97.
McC96. G.McCusker. Games and full abstraction for FPC, LICS’96, 1996.
Nic94. H.Nickau. Hereditarily sequential functionals, Proc. of the Symposium Log-

ical Foundations for Computer Science, LNCS 813, 1994.
Sta88. R.Statman. λ-definable functionals and βη-conversion, Arch. Math. Logik

23, 1983, 21–26.

Subtyping with Power Types�

David Aspinall
http://www.dcs.ed.ac.uk/home/da

LFCS, University of Edinburgh, U.K.

Abstract. This paper introduces a typed λ-calculus called λPower , a
predicative reformulation of part of Cardelli’s power type system. Power
types integrate subtyping into the typing judgement, allowing bounded
abstraction and bounded quantification over both types and terms. This
gives a powerful and concise system of dependent types, but leads to
difficulty in the meta-theory and semantics which has impeded the ap-
plication of power types so far. Basic properties of λPower are proved here,
and it is given a model definition using a form of applicative structures. A
particular novelty is the auxiliary system for rough typing, which assigns
simple types to terms in λPower . These “rough” types are used to prove
strong normalization of the calculus and to structure models, allowing a
novel form of containment semantics without a universal domain.

Keywords: type theory, subtyping, dependent types.

1 Introducing Power Types

Power types were introduced in a seminal paper by Cardelli [4]. The notion is
that Power (A) is a type “whose elements are all of the subtypes of the type A,”

A type
Power (A) type

In place of a separate definition of subtyping, a relation between types is induced
by inhabitation of power types, so A ≤ B =def A : Power (B). The rules for
power types are chosen to make this definition sensible. Cardelli called the three
basic rules power introduction, elimination and subtyping:

A type
A : Power (A)

M : A A : Power (B)
M : B

A : Power (B)
Power (A) : Power (Power (B))

The first rule makes the induced subtyping relation reflexive. The second rule is
the characteristic subtyping rule of subsumption, which adds subtype polymor-
phism to the system. The third rule expresses monotonicity of the Power opera-
tor, and together with the second rule, it makes the induced subtyping relation
transitive. Other rules capture the subtyping behaviour of type constructors.
� Summary version. The full version [2] is available from my web page, address above.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 156–171, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Subtyping with Power Types 157

Cardelli meant his type system to be used for programming languages with
object-oriented features. Power types can encode bounded type abstraction and
quantification used in OOP with the usual λ-abstraction and dependent func-
tion space, defining Λα ≤ A.M =def λα: Power (A).M and ∀α ≤ A.B =def

Πα: Power (A). B. This is a simplification, since there is no need to add new
constructs. (The work described here grew from a slightly different application:
in ASL+ [1], subtyping models specification refinement, and ΛX ≤ SP .M is
a parameterised specification which can be applied to any refinement of SP .)
Unfortunately, Cardelli’s full power type system is tricky to handle: it has im-
predicative polymorphism via the Type : Type axiom along with other features,
rendering it undecidable, inconsistent when viewed as a logic, and difficult to
give a semantics to. Later work on Quest [6] used power kinds instead, where
Power (A) does not enjoy the status of a type itself.

As far as I know, power types have not been studied extensively since
Cardelli’s work; this is perhaps the first in-depth study. First I define a calculus
called λPower (Section 3). It is almost a fragment of Cardelli’s system, except for
a richer power introduction rule and an equality judgement. Then I give some
brief examples (Section 2), before considering the meta-theory (Section 4) and a
semantics (Section 6). The semantics and some of the meta-theory are based on
rough typing, a way of assigning “rough” non-dependent types to λPower terms
(Section 5). Finally, Section 7 summarizes.

2 Examples in λPower

As a calculus of functions, λPower is no more expressive than the simply-typed
λ-calculus.1 In contrast with Cardelli’s system, it is predicative: we cannot write
a function which operates on any type, so there is no System F style universal
polymorphism. All type operators are parameterised on subtypes of a given
type. Despite this, λPower can express complex typings, because of the powerful
combination of dependent types and arbitrarily nested power types.

2.1 A Simple Programming Example

Suppose int is an atomic type and let ΓPERM be the context:

nat : Power (int),
Upto : nat → Power (nat),
Perm : Πn:nat. Power ((Upto n)→ (Upto n))

Invperm : Πn:nat. (Perm n)→ (Perm n)

Imagine that Upto n stands for the set {m ∈ nat m ≤ n }, and Perm n is the
set of permutations of { 1, . . . , n }, which is a subset of the set of functions from
1 If M is typable in λPower , then the type-erasure of M can be assigned a simple type,

treating Π and Power as families of constants.

158 D. Aspinall

Upto n to Upto n. The function Invperm n p yields the inverse of the permutation
p on such a set. Here is a function to apply the inverse of a permutation of
{ 1, . . . , n } to a number in that range:

ApplyPerm =def λn:nat. λp:Perm n. λm:Upto n. Invperm n pm

Using subsumption for Invperm n p, we can get the expected typing:

ΓPERM � ApplyPerm : Πn:nat. (Perm n) → (Upto n) → (Upto n).

which reveals that ApplyPerm n f is in fact a function from Upto n to Upto n.

2.2 Subtyping Type Operators and Families

Systems of higher-order subtyping extend subtyping to type-constructors. The
prototypical one is F≤ω [5], in which one can declare a type variable ranging
over type operators, F ≤ (λβ ≤ nat. List(β × β)). A system with dependent
types instead of polymorphism is λP≤ [3], in which one can declare a variable
ranging over type families, G ≤ (λx:nat.Vecnat(5∗x)). In the first case, F ranges
over constructors that map a subtype β of nat to a subtype of List(β × β); in
the second case G ranges over constructors that map an element x of nat to a
subtype of the type of vectors of numbers with 5∗x elements. Both systems have
a pointwise rule for subtyping operators and a corresponding application rule:

Γ, α : K � A ≤ B

Γ � λα:K.A ≤ λα:K.B
(sub-λ)

Γ � H ≤ J Γ � J C : K
Γ � H C ≤ J C

(sub-app)

The second premise of (sub-app) ensures that the application J C is well-typed;
this implies that H C is also well-typed. Here’s an example using (sub-app):

Gn ≤ (λx:nat.Vecnat(5 ∗ x))n
(λx:nat.Vecnat(5 ∗ x))n ≤ Vecnat(5 ∗ n)

Gn ≤ Vecnat(5 ∗ n)

(where n : nat in the context). This is derived using conversion and transitivity.
In λPower , there is no rule directly corresponding to (sub-λ). Indeed it is

impossible to prove anything with the form Γ � λα:K.A : Power (C). The rules
above are hard to interpret semantically, because the interpretation of λα:K.A :
Power (C) must be considered pointwise rather than as a subset inclusion, so the
meaning of Power would depend on its context in a term.

Perhaps surprisingly, power types can express similar typings without the
pointwise rules. Suppose that F is a subtype of a type-constructor H with domain
K; this is like asking F to be an element of Πα:K. Power (H α), since each

Subtyping with Power Types 159

application F M must be a subtype of H M . This “η-like” expansion for Π-
types works uniformly2 and we can declare:

F : Πβ: Power (nat). Power (List(β × β))
G : Πx:nat. Power (Vecnat (5 ∗ x))

To derive Gn ≤ Vecnat(5 ∗ n) we need only one use of ordinary application:

G : Πx:nat. Power (Vecnat (5 ∗ x)) n : nat
Gn : Power (Vecnat (5 ∗ n))

Substitution in the application rule for dependent products takes place of conver-
sion and transitivity needed before, so derivations in λPower can be more direct.3

2.3 λPower as a Logical Framework

λPower is related to λP, which underlies the Edinburgh LF [9]. It’s quite easy to
see that λPower can be used in the same way as λP. Let υ be an atomic type.
Then declare a universe of types by writing U =def Power (υ). We can use U
in place of Type in LF, to declare the term formers and judgements of a logic.
If Γ � A : U and Γ, x : A � B : U, then we do not have Γ � Πx:A.B : U,
but rather Γ � Πx:A.B : Power (Πx:A. υ). Since λP lacks quantification or
abstraction over types, this difference has little effect, and we can translate any
λP judgement into one which holds in λPower .4 With power types we can declare
one syntactic category to be a subtype of another, or one judgement to be a
subtype of another, so that every proof of the first judgement is also a proof of
the second. This is also possible in the proposals studied in [11, 3], but λPower

goes beyond both these systems by allowing refinements of the universe U itself.
Gardner proposed doing this [8] to help adequacy proofs. She defined a frame-

work ELF+ which distinguishes between terms that represent: object-level syn-
tax, proof terms, and other terms. To emulate ELF+ in λPower , declare three
subtypes: Sort : Power (U), Judge : Power (U), and Type : Power (U).

An encoding where power types are useful is higher-order logic (HOL). Sim-
ple types τ of the form ι, o, and τ ⇒ τ are encoded in an LF type dom : Type,
with i, o : dom, ⇒: dom → dom → dom and obj : dom → Type. HOL terms
with domain τ are represented as elements of obj(τ). ELF+ improves this, show-
ing dom and obj to be artifacts of the encoding, inhabiting Type, and typing
obj : dom → Sort, showing that elements of obj(τ) correspond to object logic
syntax. But in both LF and ELF+, the proliferation of obj quickly pollutes large
terms. In λPower , we can remove it altogether and declare dom : Power (Sort). The
mapping obj is now implicit; the representation of the logic becomes more con-
cise, yet no less accurate. For example, the application term former becomes:

app : Πs, t: dom. (s⇒ t)→ s→ t
2 This idea also appears in Crary’s λK system which has power kinds [7].
3 But practical effects on type-checking algorithms have not been investigated yet.
4 Perhaps, moreover, λPower is conservative over λP under this translation.

160 D. Aspinall

instead of
app : Πs, t: dom. obj(s⇒ t)→ obj(s)→ obj(t).

Although simple, it is important to emphasise that this example goes beyond
many other subtyping proposals. Power types apply uniformly; other systems
would have to be extended with sub-kinding to cope with this example.

3 The System λPower

Let V be a fixed countable infinite set of variables and K be a set of atomic type
constants. The set TK of pre-terms is given by:

T ::= K | V | λV:T.T | T T | ΠV:T.T | Power (T)

(writing T as short for TK). For meta-variables I use x, y, . . . ∈ V, κ, . . . ∈ K,
and A,B, . . . ,M,N, . . . ∈ T. Usual conventions are used for writing pre-terms.
A pre-context is a sequence of variable declarations x1 : A1, x2 : A2 . . . where no
variable is declared more than once. The empty pre-context is sometimes written
〈〉, otherwise it is invisible. I use Γ and variants to range over pre-contexts.

Not all pre-terms make sense. The well-formed pre-terms consist of terms
and types, defined in Definition 3.1 below. These are not disjoint; types are also
terms of the calculus. Terms and types are defined via three judgement forms:

� Γ Γ is a well-formed context
Γ � M : A In context Γ , M has type A
Γ � M = N : A In context Γ , M and N are equal at type A

These judgements are defined simultaneously by the rules shown at the end of
the paper. The system λPower is close to a predicative fragment of Cardeilli’s
original system [4]; the difference is that we use an equality judgement in the
presentation, and the more powerful (refl). Here is a brief outline of the rules.
Context formation (Figure 2). These rules are standard. The judgement
Γ � A : Power (B) serves to say that A is a well-formed type, as well as asserting
that A is a subtype of B. This is a general pattern.
Typing rules (Figure 1). Most rules are standard. The rule (atomic) intro-
duces atomic types; each atomic type is a subtype of itself, so is self-evidently
well-formed. The rule-scheme (refl) is novel, it expands to this:

Γ � M : Πx1:A1. . . . Πxn:An. Power (B)
Γ � M : Πx1:A1. . . . Πxn:An. Power (M x1 · · ·xn)

Reflexivity of subtyping for types is the case that n = 0. For each n > 0,
the rule (refl) asserts reflexivity of subtyping for n-ary type-valued functions5

(the example in Section 2.2 motivates this). The rule (Π) generalises the usual
5 A technical note: (refl) adds a case of η-subject reduction to the sytem; if y :

Πx:A. Power (B) then with (λ) we get λx:A. y x : Πx:A. Power (y x), but we need
(refl) to get y : Πx:A. Power (y x).

Subtyping with Power Types 161

contravariant subtyping rule for function spaces to dependent products. The last
premise is a well-formedness check.
Equality rules (Figure 2). These rules are standard.

Definition 3.1 (Terms, types and subtypes). We say that M is a Γ -term
if for some A, Γ � M : A, A is a Γ -type if for some B, Γ � A : Power (B),
and A is a subtype of B in Γ if Γ � A : Power (B).

The adjective “well-formed” emphasises that a pre-term can be typed in the
calculus, as required by Definition 3.1. There are three derived judgement forms:

Γ � A ≤ B =def Γ � A : Power (B)
Γ � A type =def for some B, Γ � A : Power (B)
Γ � A = B =def for some C, Γ � A = B : Power (C)

Section 4 shows that these definitions make sense.

4 Properties of λPower

The development begins with showing derivability of several rules: that the in-
duced subtype relation is a pre-order, and that type equality is reflexive and
symmetric. I distinguish derivable rules from those which are admissible but
not derivable because in the semantics we consider some important admissible
rules (namely, substitution and thinning) as part of the system, making sure they
are valid in every model. Some authors add these “important” admissible rules
to the presentation but this spoils the inductive proof of several meta-properties.

Notation 4.1. Let Γ ≡ x1 : A1, . . . be a pre-context. Let Dom(Γ) =def {x1, . . . }
be the set of variables Γ declares, Γ |xi =def x1 : A1, . . . , xi−1 : Ai−1 be the re-
striction of Γ up to xi−1. Define Γ (xi) =def Ai, viewing Γ as a partial mapping
Γ : V ⇀ T. Define Γ ⊆ Γ ′ iff every declaration xi : Ai in Γ also appears in Γ ′.

I use J to range over judgements of the system, and Γ � J for a judgement with
context Γ . A simultaneous substitution is a partial map from variables to pre-
terms; a renaming is the special case of a simultaneous substitution which is a
bijection on a subset of V. Substitution is extended to contexts and judgements
componentwise, e.g., if Γ ≡ x1 : A1, . . . then Γ [N/x] ≡ x1 : A1[N/x], x2 :,

We first prove by induction on derivations that the usual good properties for
subtyping systems hold: context formation, renaming, thinning, substition and
bound narrowing (replacing x : A with x : A′ where A′ : Power (A)). Next we
show the important formation and type correctness properties.

Proposition 4.2 (Formation).

1. Γ � λx:A.M : C =⇒ Γ � A type and ∃B. Γ, x : A � M : B.
2. Γ � M N : C =⇒ ∃A,B. Γ � M : Πx:A.B and Γ � N : A.
3. Γ � Πx:A.B : C =⇒ Γ � A type and Γ, x : A � B type.
4. Γ � Power (A) : C =⇒ Γ � A type.

162 D. Aspinall

Proposition 4.3 (Type correctness).

1. Γ � M : A =⇒ Γ � A type.
2. Γ � M = N : A =⇒ Γ � A type and Γ � M,N : A.

The few basic equality rules of Figure 2 have some important admissible rules
as consequences, proved using the propositions above. These include congruence
rules for the type constructors, and rules of subsumption, conversion and sub-
stitution for the equality judgement itself. For details, see [2]. An important
intermediate stage is proving the transitivity of type equality, using this rule:

Γ � A = B : Power (C)
Γ � A = B : Power (B)

(eq-sub-refl)

This shows that type equality is “absolute”, in the sense that the derivability of
A = B : Power (C) is not affected by the choice of C when A and B are types
such that A,B : Power (C).6 In general, we expect this for type equality, but not
necessarily for term equality. It is typical for subtyping calculi that the equality
of two terms may vary across their common types. The semantics considered
later reflects these ideas.

4.1 Further Properties

We would like to prove more about the λPower system than the properties in
the previous section. One desirable property is the important practical property
of subject reduction: If Γ � M : A and M −�βη M ′, then Γ � M ′ : A too.
Unfortunately it seems difficult to prove for λPower . The key is a generation
principle, which gives a way of decomposing derivations by stating how a par-
ticular judgement was derived. Proposition 4.2 is a weak generation principle,
but it is not strong enough. For a judgement Γ � N : C, we need a principle
which connects C with the judgements about subterms of N asserted to exist.
For the λ-case, a first approximation might be this: if Γ � λx:A.M : C then
C = Πx:A′. B′, where Γ � A′ ≤ A and there is a B such that Γ, x : A � M : B
and Γ, x : A′ � B ≤ B′. This captures the observation that after applying
(λ) there can be several subsumptions and conversions through which Πx:A.B
mutates into C:

x : A � M : B
λx:A. M : Πx:A. B....

λx:A. M : Cj Cj ≤ Cj+1

λx:A. M : Cj+1
(sub)

....
λx:A. M : Ck Ck = Ck+1

λx:A. M : Ck+1
(conv)

....
λx:A. M : C

6 If there is a C′ such that B : Power (C′) then A = B : Power (C′) too by
(eq-sub-refl), (Power), and subsumption for equality.

Subtyping with Power Types 163

The cut-like rules (sub) and (conv) make it hard to prove the statement di-
rectly, because to “join up” the arbitrary Ci’s in the intervening typings we nant
to use the generation principle being proved. It is worse than this, because (refl)
can introduce other detours, so the putative statement above needs altering.

The traditional syntactic solution to this problem is to give a syntax-directed
reformulation of the system, eliminating the cut-like rules. Unfortunately this
technique does not apply easily to λPower . The sticking point is bounded operator
abstraction which makes it hard to prove substitution lemmas in the syntax-
directed system before proving other properties which depend on substitution.
A related solution involves giving a revised definition of the subtyping relation
from the outset, on pre-terms. This too is difficult for power types, which have
no separate subtyping judgement anyway. The problem remains open.

5 Rough Type-Checking

Although λPower is a dependently-typed calculus, we can approximate type-
checking using “rough” types without term dependency. Rough type-checking
is useful because it enforces a structural well-formedness property that is neces-
sary for typability in the full system. Two pre-terms which are in the full typing
relation of λPower have related rough types, and two terms which are equal in the
equational theory have the same rough type. The idea of rough type-checking
comes from [12], which suggested that rough types could be used to give a se-
mantics to ASL+. This is done for λPower in Section 6. Another application of
rough types is the proof of strong normalization for λPower [2].

5.1 Rough Typing System

Given a set K of atomic types, the set TyK of rough types over K consists of
type constants, arrow types, and power types, defined by the grammar:

Ty ::= K | Ty ⇒ Ty | P(Ty)

(writing Ty as short for TyK). I use τ, υ, . . . to range over Ty. There are two
rough typing judgements, using filled triangles:

� Γ Γ is a roughly-typable context
Γ � M : τ M has rough type τ in Γ

The judgements are defined inductively by the rules in Figure 3. Notice that full
λPower contexts are used in the rough typing judgements.

One can understand the rough typing rules as an abstract interpretation
of terms-in-context, which follows set-theoretic intuitions for the calculus. The
rough type of a term tells us what kind of beast it denotes: lambda terms denote
functions and have arrow rough-types; atomic types and power types denote
collections of values and have power rough-types. A term Πx:A.B has a rough
type of the form P(τ ⇒ υ), indicating that it denotes a collection of functions.

164 D. Aspinall

Example 5.1. To illustrate rough typing, recall the example context ΓPERM from
Section 2.1. We can derive these rough typings:

ΓPERM � Perm : int ⇒ P(int ⇒ int)

ΓPERM � Invperm : int ⇒ (int ⇒ int)⇒ (int ⇒ int).

At once we see how “rough” this is: Perm and Invperm were defined on nat, but
nat gets replaced by the atomic type int.

In general, rough typing judgements — or to be more precise, their translation
got by mapping τ ⇒ υ to Πx:τ. υ — do not hold in the full λPower type system.
Certainly we do not have:

ΓPERM � Perm : int → Power (int → int)

because, for starters, Perm is not defined on all of int. In Proposition 5.4, we
prove that typability in the full calculus guarantees rough typability. The above
example shows that the converse fails, since:

ΓPERM, i : int � Perm i : P(int ⇒ int)

but Perm i cannot be typed in the full system7.
It is easier to establish properties of the rough-typing system than the full

system, because the types are non-dependent and subtyping has been removed.
First, we have the usual thinning, substitution and also strengthening properties
for the rough type system. Then we can prove decidability and subject reduction.

Proposition 5.2 (Properties of rough typing).

1. If Γ � M : τ , then τ is the unique such rough type.
2. Rough type-checking and rough type-inference are decidable.8

Proposition 5.3 (Subject reduction for rough typing). If Γ � M : τ
and M −�βη M ′, then Γ � M ′ : τ too.

The agreement property below is the important connection between rough
types and typing in full λPower , claimed at the beginning of this section.

Theorem 5.4 (Agreement of rough typing).

1. If � Γ then � Γ .
2. If Γ � M : A then for some τ ∈ Ty, Γ � M : τ and Γ � A : P(τ).
3. If Γ � M = N : A then for some τ ∈ Ty, Γ � M,N : τ and Γ � A : P(τ).

7 To prove this rigorously we need to use a generation principle or model construction.
8 Assuming we can decide syntactic identity of atomic types, i.e., whether κ ≡ κ′.

Subtyping with Power Types 165

6 Semantics

Subtyping calculi have two basic kinds of model. With a typed value space, we
may choose a coercion semantics, where each use of subsumption is modelled
by the insertion of a coercion from type to supertype. If A ≤ B, there is a map
cA,B : �A�→ �B�. This is a general setting, but it requires a coherence property
of the interpretation, to show that different ways of putting coercions into a
coercion-free judgement have the same interpretation. The coherence property
can be difficult to establish. The other kind of model is a containment semantics
in which subtyping is interpreted as containment between types: �A� ⊆ �B�.
There is no problem of coherence in this case, but there is a difficulty with
the rule for subtyping Π-types. In the syntax we have int → int ≤ nat → int,
but this does not hold as a set-theoretic inclusion; Z → Z �⊆ N → Z when the
semantic→ is set-theoretic function space. This is usually solved by interpreting
nat → int as the collection of all partial functions defined at least on N; then
the inclusion Z ⇀ Z ⊆ N ⇀ Z holds. But then we need a universe of values over
which to form this “collection of all partial functions,” and this is what leads to
an untyped value space in containment semantics. Typically, the untyped value
space is the domain of a model of the untyped λ-calculus, and the denotation of
a term is defined using its type-erasure [10]. But it is a surprising overkill to base
a semantics for a calculus as simple as λ≤ (the extension of λ→ with subtyping)
on a model of the untyped λ-calculus which requires a universal domain.

For power types, a containment semantics is natural and is the intended
model for ASL+. I shall and give a containment semantics for λPower which
is nevertheless based on a typed value space. Rough types make this possible.
Whenever A ≤ B, then A and B have the same rough type P(τ), say, and so
both may be interpreted as subsets of the interpretation of τ : �A� ⊆ �B� ⊆ �τ�.
Since every type Πx:C.D has a rough type of the form P(τC ⇒ τD), we can
form the “collection of all functions with domain at least �C�” using �τC� as a
universe, instead of a universal domain. The final ingredient is the equational
theory of subtyping, where the equality of two terms may depend upon the
type at which they are viewed. To deal with this, we use PERs rather than
sets. The following sections give an abstract model definition for λPower based on
these ideas, beginning from applicative structures. The reason for an abstract
definition is to capture both the intended model and a term model; the term
model is unusual for using an external equality notion rather than quotients
(because of this extensionality is not assumed from the start). Space reasons
prevent description of the term model here, see [2] for details.

6.1 Structures

A λPower applicative structure is similar to a typed-applicative structure for λ→

It provides semantic domains for every rough type; the domains are sets.

Definition 6.1 (λPower applicative structure). A λPower applicative struc-
ture D = 〈D,Const,App〉 consists of a family of sets {Dτ }τ∈Ty ; a constant

166 D. Aspinall

Const(κ) ∈ DP(κ) for each κ ∈ K, and a mapping Appτ,υ : Dτ⇒υ → Dτ → Dυ
for each τ, υ ∈ Ty. Type annotations τ, υ are sometimes omitted for brevity. ��

Notation 6.2. Given a set S, REL(S) is the set of relations on S, REL(S) =def

Pow(S × S). If R ∈ REL(S), then dom(R) = { a a R a }. A relation is a partial
equivalence (PER) if it is symmetric and transitive; PER(S) is the set of PERs
on S. The notation a �→ f(a) stands for the function mapping a to f(a).

Example 6.3 (Full hierarchy structure). Given a family of sets and PERs C =
{Cκ, Rκ ∈ PER(Cκ) }κ∈K, the full hierarchy FC on C has Fκ = Cκ, Fτ⇒υ =
Fτ → Fυ, FP(τ) = REL(Fτ), App(f,m) = f(m), and Const(κ) = Rκ. ��
In the full hierarchy structure, FP(τ) is the set of all relations over Fτ , rather
than the set of all PERs. This is for a technical reason: because the interpreta-
tion in the full structure (Example 6.7) is defined over rough types, the type-
constructors are not guaranteed to construct PERs.

6.2 Environments and Interpretations

For each roughly-typable context Γ , we define a semantic domain DΓ by induc-
tion on Γ , setting D〈〉 = { , } and DΓ,x:A = DΓ ×Dτ , where Γ � A : P(τ) and
{ , } is some singleton set. A Γ -environment is a nested tuple η ∈ DΓ . Because
we use a name-free denotation, if Φ is a renaming on Dom(Γ) then η is a Φ(Γ)-
environment iff it is a Γ -environment. Given a Γ -environment η ∈ DΓ , we can
define a projection function from the variables of Γ :

η〈〉(y) undefined, for all y.

ηΓ, x:A(y) =
{

snd(η), if y ≡ x,
(fst η)Γ (y) if y �≡ x.

So if Γ |x � Γ (x) : P(τ), then ηΓ (x) ∈ Dτ . Thinning between environments is
defined using this projection notation. If Γ1 ⊆ Γ2, η1 ∈ DΓ1 and η2 ∈ DΓ2 , then
η1
Γ1 ⊆ η2

Γ2 iff ηΓ1
1 (x) = ηΓ2

2 (x) for all x ∈ Dom(Γ1). The notation η|xi
stands

for the restriction of a Γ -environment η to variables declared before xi, meaning
the shorter tuple fstn−i(η) where xi is the ith variable of n declared in Γ .

Unlike a partial function environment, this tupled form has an explicit notion
of the domain DΓ associated to a context. We need this because relations over
DΓ are used in the soundness proof. Using tuples gives us an interpretation
function reminiscent of the semantics of λ→ in (set-like) CCCs.

Definition 6.4 (λPower interpretation). A λPower interpretation in D consists
of a meaning function �Γ � − : τ�− : T ⇀ DΓ → Dτ , for each roughly-typable
context Γ and τ ∈ Ty, such that whenever Γ � M : τ and η ∈ DΓ , then
�Γ � M : τ�η ∈ Dτ , and for each τ ∈ Ty, a mapping Relτ : DP(τ) → REL(Dτ)
Type annotations τ may be omitted for brevity. ��

Subtyping with Power Types 167

When a ∈ DP(τ), I sometimes use Ra as shorthand for Relτ (a). The map-
ping Rel models the behaviour (or extension) of elements denoting types, just
as App models the extension of elements denoting functions. It is part of the in-
terpretation so we can consider different “views” of types in the same structure.
Definition 6.4 does not require a priori that Ra is a PER, for the reason outlined
before; instead the soundness theorem will imply that any type of λPower denotes
a PER. This differs slightly from other model definitions for dependent types
which use a partial definition, proved to be total on well-typed terms. Instead
we require that an interpretation is defined on all roughly-typed terms.

6.3 Models

We will use some constructions on relations. Let D be a λPower interpretation.
Given R ∈ REL(Dτ) and G ∈ dom(R) → REL(Dυ), we define Π(R,G) ∈
REL(Dτ⇒υ), Pwr(R) ∈ PER(DP(τ)) by:

f Π(R,G) g iff ∀a, b. (a R b) =⇒ App(f, a) G(a) App(g, b).
a Pwr(R) b iff Rel (a) = Rel (b) ∈ PER(Dτ) and Rel (a) ⊆ R.

Fact 6.5. If R ∈ PER(Dτ) and G(a) = G(b) ∈ PER(Dυ) whenever a R b,
then Π(R,G) ∈ PER(Dτ⇒υ).

Definition 6.6 (λPower environment model). A λPower environment model
for a structure D is an interpretation for D such that the following 9 conditions
are satisfied, for all suitable roughly-typable terms. For roughly-typable contexts
Γ, Γ1, Γ2 and all η ∈ DΓ , η1 ∈ DΓ1 , η2 ∈ DΓ2 with η1

Γ1 ⊆ η2
Γ2 ,

CONST �κ�η = Const(κ).
CONST2 R�κ�η

∈ PER(Dκ).
VAR �x�η = ηΓ (x).
APP �M N�η = App(�M�η, �N�η).

FAMILY If for all a, b (a R�A�η
b) =⇒ R�B�〈η, a〉 = R�B�〈η, b〉, then

R�Πx:A.B�η
= Π(R�A�η

, a �→ R�B�〈η, a〉).
SUBSET R�Power (C)�η = Pwr(R�C�η

).
ABS If ∀d, e. d R�A�η

e =⇒ �M�〈η, d〉 R�B�〈η, d〉 �N�〈η, e〉, then
∀d, e. d R�A�η

e =⇒ App(�λx:A.M�η, d) R�B�〈η, d〉 �N�〈η, e〉.
THIN If Φ is a renaming on Dom(Γ1) such that Φ(Γ1) ⊆ Γ2, then �Φ(Γ1) �

Φ(M) : τ�η1 = �Γ2 � M : τ�η2
SUBST If Γ1 ≡ Γ, x : A, Γ ′, Γ2 ≡ Γ, Γ ′[N/x] then �Γ1 � M�η1 = �Γ2 �

M [N/x]�η2 provided η1
Γ1(x) = �Γ � N�η1|x ∈ Rel (�Γ � A�η1|x). ��

Axioms CONST, VAR, APP are standard. CONST2 requires that atomic types
denote PERs. FAMILY and SUBSET define the extension of the denotation of
types of the form Πx:A.B and Power (C). ABS ensures the soundness of the
three equality rules which mention the λ-constructor.

168 D. Aspinall

Example 6.7 (Full hierarchy model). We define an interpretation by:

Rel (A) = A

�Γ � x : τ �η = ηΓ (x)
�Γ � κ : P(κ)�η = Rκ

�Γ � λx:A. M : τ ⇒ υ�η = a �→ �Γ, x : A � M : υ�〈η, a〉
�Γ � M N : υ�η = App(�Γ � M : τ ⇒ υ�η, �Γ � N : τ�η)
�Γ � Πx:A. B : P(τ ⇒ υ)�η = Π(R�A�η

, a �→ R�B�〈η, a〉)

�Γ � Power (A) : P(P(τ))�η = Pwr(R�A�η
) 	

Lemma 6.8. The interpretation defined in Example 6.7 is a model of λPower .

Here, R�Πx:A.B�η
is not automatically a PER, since the uniformity condition

that a R�A�η
b =⇒ R�B�〈η, a〉 = R�B�〈η, b〉 may fail. For example, if B ≡ zx,

the “rough-soundness” requirement that η(z) ∈ Dτ⇒P(υ) does not force the value
of z at one element of Dτ to be related to the value at another. This is why we
generalized to relations. PERs are only guaranteed for well-formed terms.

6.4 Soundness

Here we show that when Γ � M : A, then �M�η is in the domain of the relation
R�A�η

, and when Γ � M = N : A, then �M�η is related to �N�η by R�A�.
Moreover, Rel (�A�η) is a PER on Dτ , where Γ � A : P(τ). But we can only
expect soundness if the environment η satisfies the context in a suitable way.
The interpretation of a context Γ is defined by combining the interpretations of
its components. Let S and T be sets, R ∈ REL(S), and G ∈ dom(R)→ REL(T).
Then we define Σ(R,G) ∈ REL(S × T) by:

p Σ(R,G) q iff π1(p) R π1(q) and π2(p) G(π1(p)) π2(q)

Fact 6.9. If R ∈ PER(S) and G(a) = G(b) ∈ PER(T) whenever a R b, then
Σ(R,G) ∈ PER(S × T).

Definition 6.10 (Interpretation of contexts). Given a model for D and
a roughly-typable context Γ , we define �Γ � ∈ REL(DΓ) by induction on Γ , by
�〈〉� = { (,, ,) } and �Γ ′, x : A� = Σ(�Γ ′�, η �→ R�Γ ′ �A:P(τ)�η). We say η1, η2 ∈
DΓ are related environments satisfying Γ iff η1 �Γ � η2.

Fact 6.11. If Γ is roughly-typable and η1 �Γ � η2, then for all x ∈ Dom(Γ),
ηΓ1 (x) R�Γ |x �Γ (x):P(τ)�η1|x ηΓ2 (x).

Lemma 6.12. Suppose that R�A�η
∈ PER(Dτ) and that d R�A�η

e =⇒
R�B�〈η, d〉 = R�B�〈η, e〉 ∈ PER(Dυ) for all d, e. Then in any model:

Subtyping with Power Types 169

WEAK-EXT If ∀d, e. d R�A�η
e =⇒ �M�〈η, d〉 R�B�〈η, d〉 �N�〈η, e〉, then

∀d, e. d R�A�η
e =⇒ App(�λx:A.M�η, d) R�B�〈η, d〉 App(�λx:A.N�η, e)

ETA If ∀d, e. d R�A�η
e =⇒ App(�M�η, d) R�B�〈η, d〉 App(�N�η, e), then

∀d, e. d R�A�η
e =⇒ App(�λx:A.M x�η, d) R�B�〈η, d〉 App(�N�η, e)

Theorem 6.13 (Soundness for models).

1. If � Γ then �Γ � ∈ PER(DΓ).
2. If Γ � M : A, then ∀η1, η2 ∈ DΓ , η1 �Γ � η2 =⇒ �M�η1 R�A�η1

�M�η2.

3. If Γ � M = N : A, then ∀η1, η2 ∈ DΓ , η1 �Γ � η2 =⇒ �M�η1 R�A�η1
�N�η2.

Corollary 6.14 (Soundness of Typing). If Γ � M : A, then for all η,
η ∈ dom �Γ � =⇒ �M�η ∈ R�A�η

.

7 Conclusions

This paper introduces the type system λPower , a predicative fragment of Cardelli’s
original power type system [4]. Power types provide a cunning way of dealing with
the subtyping judgement at the same time as the typing judgement. At first sight
it appears to be a simplification, because two separate concerns are combined
into one. However, the generalisation which occurs from using Power (A) as both
a term and a type leads to complication of the meta-theory.

The semantics of λPower is set-based, but uses partial equivalence relations to
interpret equality. The subtyping relation induced by power types is understood
as inclusion between PERs. In contrast to other semantics for subtyping or
dependent types, the intended model is made by “carving out” from a classical
set-hierarchy, without using a universal domain. Every term in λPower has a rough
type which is either an atomic type, or one of the forms τ ⇒ υ or P(τ), where τ
and υ are rough types. These rough types are used to structure the set hierarchy.

Several important results are established. Unfortunately, there are still gaps
in the meta-theory of λPower : ideally, we would like to prove a generation principle
and thus prove subject reduction for λPower , which seems less straightforward
than might be hoped (but no counterexamples have been found).

Acknowledgements

I’m especially grateful to Don Sannella who suggested that I study ASL+ [12],
from which λPower grew. The work here first appeared in my thesis supervised
by Sannella [1]. I am grateful to many people I discussed this work with during
its evolution, including L. Cardelli, A. Compagnoni, H. Goguen, M. Hofmann,
B. Pierce, and A. Tarklecki. More recently, the referees for CSL 2000 provided
very useful and detailed comments (some questions are addressed only in [2] due
to lack of space here).

170 D. Aspinall

� Γ

Γ � κ : Power (κ)
(atomic)

� Γ x ∈ Dom(Γ)

Γ � x : Γ (x)
(var)

Γ, x : A � M : B
Γ � λx:A.M : Πx:A.B

(λ)

Γ � M : Πx:A.B Γ � N : A
Γ � M N : B[N/x]

(app)

Γ � M : A Γ � A : Power (B)

Γ � M : B
(sub)

Γ � M : Π�x: �A. Power (B)

Γ � M : Π�x: �A. Power (M �x)
(refl)

Γ � M : A Γ � A = B : Power (C)

Γ � M : B
(conv)

Γ � A′ : Power (A)
Γ, x : A′ � B : Power (B′)
Γ, x : A � B : Power (C)

Γ � Πx:A.B : Power (Πx:A′. B′)
(Π)

Γ � A : Power (B)

Γ � Power (A) : Power (Power (B))
(Power)

Fig. 1. Typing rules

� 〈〉 (empty)

� Γ Γ � A : Power (B)

� Γ, x : A
(extend)

Γ � M : A
Γ � M =M : A

(eq-refl)

Γ � N =M : A
Γ � M = N : A

(eq-sym)

Γ � M = N : A Γ � N = P : A
Γ � M = P : A

(eq-trans)

Γ, x : A � M =M ′ : B

Γ � λx:A.M = λx:A.M ′ : Πx:A.B
(eq-λ)

Γ � M =M ′ : Πx:A.B
Γ � N = N ′ : A

Γ � M N =M ′ N ′ : B[N/x]
(eq-app)

Γ, x : A � M : B Γ � N : A

Γ � (λx:A.M)N =M [N/x] : B[N/x]
(eq-β)

Γ � M : Πx:A.B
Γ � λx:A.M x =M : Πx:A.B

(eq-η)

Fig. 2. Context and equality rules

� 〈〉

� Γ Γ � A : P(τ)

� Γ, x : A

� Γ

Γ � κ : P(κ)

� Γ Γ |x � Γ (x) : P(τ)

Γ � x : τ

Γ � A : P(τ) Γ, x : A � M : υ

Γ � λx:A.M : τ ⇒ υ

Γ � M : τ ⇒ υ Γ � N : τ
Γ � M N : υ

Γ � A : P(τ) Γ, x : A � B : P(υ)

Γ � Πx:A.B : P(τ ⇒ υ)

Γ � A : P(τ)

Γ � Power (A) : P(P(τ))

Fig. 3. Rough typing rules

Subtyping with Power Types 171

References

[1] David Aspinall. Type Systems for Modular Programs and Specification. PhD
thesis, Department of Computer Science, University of Edinburgh, 1997.

[2] David Aspinall. Subtyping with power types. Draft full version. LFCS, University
of Edinburgh, 2000.

[3] David Aspinall and Adriana Compagnoni. Subtyping dependent types. In
E. Clarke, editor, Proceedings, Eleventh Annual IEEE Symposium on Logic in
Computer Science, pages 86–97, New Brunswick, New Jersey, 1996. IEEE Com-
puter Society Press.

[4] Luca Cardelli. Structural subtyping and the notion of power type. In Confer-
ence Record of the Fifteenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 70–79, San Diego, California, January 13–15, 1988. ACM
SIGACT-SIGPLAN, ACM Press.

[5] Luca Cardelli. Notes about Fω
<:. Unpublished manuscript, October 1990.

[6] Luca Cardelli and Giuseppe Longo. A semantic basis for Quest. Journal of
Functional Programming, 1(4):417–458, 1991.

[7] Karl Crary. Type-theoretic Methodology for Practical Programming Languages.
PhD thesis, Cornell University, 1998.

[8] Philippa Gardner. Representing Logics in Type Theory. PhD thesis, Department
of Computer Science, University of Edinburgh, 1992.

[9] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. JACM,
40(1):143–184, 1993.

[10] John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.
[11] Frank Pfenning. Refinement types for logical frameworks. In Informal Proceedings

of the 1993 Workshop on Types for Proofs and Programs, pages 315–328, May
1993.

[12] Donald Sannella, Stefan SokoKlowski, and Andrzej Tarlecki. Toward formal de-
velopment of programs from algebraic specifications: Parameterisation revisited.
Acta Informatica, 29:689–736, 1992.

The Descriptive Complexity
of the Fixed-Points of Bounded Formulas

Albert Atserias�

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

c/ Jordi Girona Salgado, 1-3, Edif. C6.
08034 Barcelona, Spain.
atserias@lsi.upc.es

Abstract. We investigate the complexity of the fixed-points of bounded
formulas in the context of finite set theory; that is, in the context of ar-
bitrary classes of finite structures that are equipped with a built-in BIT
predicate, or equivalently, with a built-in membership relation between
hereditarily finite sets (input relations are allowed). We show that the
iteration of a positive bounded formula converges in polylogarithmically
many steps in the cardinality of the structure. This extends a previously
known much weaker result. We obtain a number of connections with
the rudimentary languages and deterministic polynomial-time. Moreover,
our results provide a natural characterization of the complexity class con-
sisting of all languages computable by bounded-depth, polynomial-size
circuits, and polylogarithmic-time uniformity. As a byproduct, we see
that this class coincides with LH(P), the logarithmic-time hierarchy with
an oracle to deterministic polynomial-time. Finally, we discuss the con-
nection of this result with the well-studied algorithms for integer division.

Keywords: Circuit uniformity, BIT predicate, logarithmic-time hierar-
chy, rudimentary languages, integer division.

1 Introduction

1.1 Background

The Ordered Conjecture of Kolaitis and Vardi [22] states that least fixed-point
logic LFP is strictly more expressive than first-order logic FO on every infinite
class of ordered finite structures. Informally, the conjecture expresses an inherent
limitation of first-order logic to capture polynomial-time computations on finite
structures, no-matter how rich the combinatorial nature of the structures is.
The question remains open, and it is known that any way of solving it will have
important consequences in Complexity Theory. A refutation would imply that
P �= PSPACE [12], and a proof would imply that LINH �= E [13]. Here, LINH
� Supported by the CUR, Generalitat de Catalunya, through grant 1999FI 00532, and

partially supported by ALCOM-FT, IST-99-14186.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 172–186, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

The Descriptive Complexity of the Fixed-Points of Bounded Formulas 173

is the linear-time hierarchy of Wrathall [35], and E is the usual complexity class
that consists of all languages that are accepted by deterministic Turing machines
in time 2O(n).

There is a special case of the conjecture, singled out by Gurevich, Immerman,
and Shelah [15], that is of particular interest. Namely, it is unknown whether LFP
collapses to FO on the class of all finite structures of the form ({0, . . . , n− 1},≤
,BIT), where ≤ is the usual linear ordering, and BIT is the binary relation
that consists of all pairs (p, q) of natural numbers such that the p-th bit in
the binary expansion of q is one. As pointed out in [15], the collapse happens
if and only if DLOGTIME-uniform AC0 = P-uniform AC0 (see Section 2
for definitions), or equivalently, if and only if LINH = E. Motivated by this
interesting connection, Atserias and Kolaitis [3] investigated the difficulty of
settling this special case of the Ordered Conjecture. Their approach is further
motivated by the existence of a well-known isomorphism between (IN,BIT) and
(Vω,∈) (see [6]), where Vω is the class of all hereditarily finite sets; that is,
Vω =

⋃
n≥0 Vn, where Vn+1 = P(Vn) and V0 = ∅. The Ackermann bijection

e : IN→ Vω defined for every n ∈ IN as

e(n) = {e(m) : the m-th bit of n is one},

is the aforementioned isomorphism. Furthermore, by exploiting this mapping
of BIT into ∈, Dawar, Doets, Lindell and Weinstein [11] showed the somewhat
surprising result that the standard linear order is first-order definable from the
BIT predicate alone. Hence, the question translates into whether LFP collapses
to FO on the class BFR = {({e(0), . . . , e(n − 1)},∈) : n ≥ 0}. In view of
the Ackermann bijection, we identify the structures ({0, . . . , n − 1},BIT) and
({e(0), . . . , e(n − 1)},∈), here and in the future, and thus use the notation
BITn = ({0, . . . , n− 1},∈).

This set-theoretic framework led to the study of the fixed-points of the ∆0
formulas of set theory, also called bounded formulas. These are the formulas
all of whose quantifiers are of the form (∃x ∈ y) and (∀x ∈ y) (Sazonov has
studied the fixed-points of bounded formulas in the context of definability on
(Vω,∈), rather than in the context of uniform definability on finite structures;
see [30] for a survey). It was proved by Atserias and Kolaitis [3] that if the fixed-
points of positive ∆0 formulas LFP(∆0) were first-order definable on BFR, then
P ⊆ LINH and so P �= PSPACE. Thus, settling whether LFP(∆0) collapses
is already a difficulty question. Nonetheless, the authors were able to show that
the fixed-points of the so-called restricted ∆0 formulas were indeed first-order
definable, and so were the fixed-points of all unary and binary ∆0 formulas.
Finally back to complexity issues, they showed that the number of times that a
positive ∆0 formula has to be iterated until its fixed-point is reached in a finite
structure, its closure function, is bounded by a polylogarithm of the cardinality
of the structure on a small subclass of BFR. As a consequence, these fixed-points
are computable in NC on this class.

174 A. Atserias

1.2 Main Results

The isomorphism mapping BIT to the membership relation ∈ constitutes a good
source of inspiration to obtain results that explain the expressive power of first-
order logic and fixed-point logic when strong built-in relations are available. The
results in [11] and [3] are good examples. Moreover, the set-theoretic framework
provides new concepts to consider, such as ∆0 formulas, and new techniques
to apply, such as absoluteness arguments. However, the complexity aspects of
LFP(∆0) were not completely studied in [3], and we feel that the results of the
present paper complete this study.

The first result of this paper is the extension of the last result in [3] to
arbitrary classes of finite structures with built-in membership (BIT) relation.
That is, we show that the closure functions of ∆0 formulas are bounded by a
polylogarithm of the cardinality of the universe of any arbitrary finite structure
with built-in membership relation. Moreover, we observe that this implies that
LFP(∆0) is computable in DPOLYLOGTIME (and not simply in NC) on any
arbitrary class of finite structures with built-in membership relation. Then we
focus back to the class BFR. We observe that on this particular class, LFP(∆0)
is even in (non-uniform) AC0 for some trivial reasons. The interesting question
is then: Which uniform version of AC0 is captured by FO+LFP(∆0), the first-
order closure of LFP(∆0)? Our second main result is the answer to this question:
on BFR, the logic FO+LFP(∆0) captures DPOLYLOGTIME-uniform AC0

which in turn, coincides with LHP; the logarithmic-time hierarchy of Sipser
with an oracle to P. As a corollary we obtain an exact characterization of the
complexity-theoretic difficulties of showing FO + LFP(∆0) = FO on BFR. We
show that the collapse is equivalent to P ⊆ LINH. Note that LINH coincides
with the rudimentary languages RUD [35] introduced by Smullyan [32].

We then consider the descriptive complexity of FO + LFP(∆0) on arbi-
trary classes of finite structures with built-in membership relation. Somewhat
surprisingly, we are only able to provide an exact answer in the case that
the underlying vocabulary of the class of structures is unary (on classes of
words with built-in membership relation). In that case, FO + LFP(∆0) still
captures DPOLYLOGTIME-uniform AC0. For higher arities, however, we
are only able to compare the relative expressive power of FO + LFP(∆0) and
FO with a complexity-theoretic question. We show that if P ⊆ RUDn1/r , then
FO + LFP(∆0) collapses to FO on any arbitrary class of finite structures with
built-in membership relation over a vocabulary of arity at most r. The class
RUDn1/r was introduced by Jones [21] as a natural subclass of the rudimen-
tary languages RUD = RUDn. A result of Allender and Gore [1] implies
that RUDnε coincides with ATIME(O(nε), O(1)) for every ε ∈ (0, 1]. Here,
ATIME(t(n), a(n)) is the class of languages accepted by alternating Turing ma-
chines in time t(n) and a(n) alternations. Moreover, as mentioned by Allender
and Gore, RUDnε contains complete problems of each level of the polynomial-
time hierarchy PH [33, 35].

It is interesting that DPOLYLOGTIME-uniform AC0 comes out of our
results as a natural complexity class (we note that polylogtime uniformity has

The Descriptive Complexity of the Fixed-Points of Bounded Formulas 175

been considered at least once in the past by Allender and Gore [2], although in
a completely different context). The reason amounts to a connection with the
problem of the uniformity of Boolean circuits for integer division, an interesting
issue that has received a good deal of attention [7, 28, 23, 19]. See the end of
Section 5 for more details. Finally, it is obvious that our objects of study are
intimately related to questions about the rudimentary languages, a well-studied
topic [32, 8, 20, 35, 27, 1]. We point out that the rudimentary languages, and the
techniques related to them, have been revisited very recently by Fortnow [14],
and Lipton and Viglas [24], to obtain significant progress in some important
open problems in Complexity Theory.

2 Preliminaries

Logic. Let σ = {R1, . . . , Rs} be a finite relational vocabulary, and let M =
(M,RM

1 , . . . , RM
s) be a finite structure over σ. We will always identify the uni-

verse of M, denoted M , with the initial segment of the natural numbers of
cardinality |M |; thus, M = {0, . . . , |M |−1}. Let R = (R1, R2, . . .) be a sequence
of k-ary relations such that Rn ⊆ {0, . . . , n − 1}k. Let C be a class of finite
structures for σ ∪ {R}, with R �∈ σ. We say that C is a class of finite structures
over σ with built-in R-relation if and only if, for every M ∈ C, we have that
RM = R|M |. Notice that the built-in relation only depends on the cardinality of
the structure.

Least fixed-point logic FO + LFP is the extension of first-order logic FO
obtained by augmenting the syntax with a new formula LFPx,Xϕ(x1, . . . , xk, X),
for every first-order formula ϕ positive in the k-ary relation variable X. The
meaning of M |= (LFPx,Xϕ)[a] is that a ∈ Iϕ(M), where Iϕ(M) is the least
fixed-point of the monotone operator defined by ϕ on M. We let Imϕ (M) be
the m-th stage, that is, Imϕ (M) = {a ∈ Mk : M |= ϕ[a,

⋃
m′<m Im

′
ϕ (M)]}. It is

known that FO+LFP is closed under nested applications of the least fixed-point
operator (see [17, 16]).

We let LFP(∆0) be the class of formulas of the form LFPx,Xϕ(x1, . . . , xk, X),
where ϕ is a ∆0 formula positive in k-ary relation variable X. Observe that
first-order parameters are not allowed, and neither is the nesting of fixed-point
operators. We let FO+LFP(∆0) denote the closure of LFP(∆0) under all first-
order connectives and quantification.

Complexity. For every natural number n, we let log n denote the length of
the shortest binary representation of n. If we wish to use the true base-two
logarithm, we use the notation log2(n); thus, log n = �log2(n)�+ 1. We identify
natural numbers with their shortest binary representation. However, for every
m ∈ {0, . . . , n − 1}, we let bn(m) denote the unique binary representation of
length log(n− 1) (padded with leading zeros if necessary).

Our model of computation is the oracle alternating multitape Turing ma-
chine with random access to the input. This model, originally defined by Ruzzo
[29] and used by Barrington, Immerman and Straubing [5], Buss [9], and Sipser

176 A. Atserias

[31] among others, is a modification of the model of Chandra, Kozen and Stock-
meyer [10] to allow sublinear time-bounds. These machines are equipped with
an address tape on which to write a number in binary. When the machine enters
a distinguished state with a number p written on its address tape, the head of
the input tape jumps, in one step, to the p-th leftmost cell of the tape. Strictly
speaking, the definition of Ruzzo [29] is slightly different from ours, but standard
simulation arguments show that both models have the same computing power
with only a constant factor loss in time or number of alternations (see [5] and [9]
for example). In the case of deterministic machines, our model is slightly more
robust, but this will not affect the generality of the results.

Finite structures are encoded as words over the alphabet {0, 1,#} according
to the following convention. For every relation symbol Ri ∈ σ of arity r, we let
χ(RM

i) be the characteristic sequence of RM
i . That is, χ(RM

i) = a0a1 . . . anr−1,
where am ∈ {0, 1}, and am = 1 if and only if (mr−1, . . . ,m0) ∈ RM

i where
(mr−1, . . . ,m0) is the n-ary representation of m. Then, the encoding of M is
just

〈M〉 = 1n#χ(RM
1)# . . .#χ(RM

s).

We extend the encoding to include individuals as follows. For every a1, . . . , ak ∈
M , let 〈M, a1, . . . , ak〉 = 〈M〉#bn(a1)# . . .#bn(ak). Let C be a class of finite
structures, and let Q be a k-ary query on C. We say that Q is computable in
a complexity class C on C if there exists a language L ∈ C such that for every
M ∈ C and a1, . . . , ak ∈ M , we have that (a1, . . . , ak) ∈ Q(M) if and only if
〈M, a1, . . . , ak〉 ∈ L. We say that a k-ary built-in relation R = (R1, R2, . . .) is
computable in a complexity class C if there exists a language L ∈ C such that
for every n and a1, . . . , ak ∈ {0, . . . , n − 1}, we have that (a1, . . . , ak) ∈ Rn if
and only if 1n#bn(a1)# . . .#bn(ak) ∈ L. When considering Boolean circuits,
we are forced to restrict ourselves to the binary alphabet {0, 1}. We fix then
an homomorphism h : {0, 1,#}∗ → {0, 1}∗ in a standard way: put h(0) = 00,
h(1) = 11 and h(#) = 01 (see Section 4 for more details).

3 General Facts about Bounded Formulas

Recall that the transitive closure of a set a, denoted by TC(a), is defined in-
ductively as follows: TC(a) =

⋃{TC(b) : b ∈ a}. The reflexive transitive closure
of a, denoted by RTC(a), is {a} ∪ TC(a). Our first Lemma says that the satis-
fiability of a ∆0 formula only depends on the reflexive transitive closure of its
arguments. Given a first-order formula ϕ(x1, . . . , xn) with free variables among
x1, . . . , xn, we let F (ϕ) be the set of indices of the free variables of ϕ.

Lemma 1. Let σ be a relational vocabulary, let M be a structure for σ ∪ {∈}
with built-in membership relation, and let ϕ(x1, . . . , xs, X) be a ∆0 formula over
σ ∪ {∈, X}, where X is a k-ary relation variable. For every A ⊆ Mk, and
every tuple a = (a1, . . . , as) ∈ Ms, we have that M |= ϕ[a,A] if and only if
M |= ϕ[a,A ∩ (⋃{RTC(ai) : i ∈ F (ϕ)})k].

The Descriptive Complexity of the Fixed-Points of Bounded Formulas 177

Proof : We proceed by induction on the construction of ϕ. The base cases are
trivial, and so is the case in which ϕ is of the form ¬ψ. Suppose that ϕ is of
the form ψ1 ∧ ψ2. Let B =

⋃{RTC(ai) : i ∈ F (ϕ)} and Bj =
⋃{RTC(ai) : i ∈

F (ψj)} for j = 1, 2. Then, M |= ϕ[a,A∩Bk] if and only if M |= ψj [a,A∩Bk] for
j = 1, 2. By induction hypothesis, this is equivalent to M |= ψj [a,A ∩Bk ∩Bk

j]
for j = 1, 2. Since F (ψj) ⊆ F (ϕ), this is equivalent to M |= ψj [a,A ∩ Bk

j] for
j = 1, 2. By induction hypothesis again, this is equivalent to M |= ψj [a,A] for
j = 1, 2, and therefore to M |= ϕ[a,A]. Suppose next that ϕ is of the form
(∃xi ∈ xj)ψ. Let B =

⋃{RTC(ai) : i ∈ F (ϕ)}. In this case, M |= ϕ[a,A∩Bk] if
and only if there is some a ∈M such that a ∈ aj and M |= ψ[b, A ∩Bk], where
b = (a1, . . . , ai−1, a, ai+1, . . . , as). Let B(b) =

⋃{RTC(bl) : l ∈ F (ψ)}. Therefore,
by induction hypothesis, M |= ϕ[a,A ∩ Bk] if and only if there is some a ∈ M
such that a ∈ aj and M |= ψ[b, A ∩ Bk ∩ B(b)k]. Since for every a ∈ aj we
have that RTC(a) ⊆ RTC(aj), it is the case that B(b) ⊆ B. Consequently,
M |= ϕ[a,A∩Bk] if and only if there is some a ∈M such that a ∈ aj and M |=
ψ[b, A∩B(b)k], and by induction hypothesis again, M |= ψ[b, A], as required. ��

For every first-order formula ϕ(x1, . . . , xk, X) positive in the k-ary relation
symbol X, we let clϕ(M) denote the closure ordinal of ϕ in M; that is, clϕ(M)
is the minimum ordinal α such that Iαϕ (M) =

⋃
α′<α Iα

′
ϕ (M) [26]. Since the

reflexive transitive closure of a finite set is relatively small, Lemma 1 allows us
to put polylogarithmic bounds on the closure functions of ∆0 formulas. This
result extends Theorem 4 in [3] to the case of BFR, and in fact, to arbitrary
classes of finite structures with built-in membership relation.

Theorem 1. Let σ be a relational vocabulary, and let ϕ(x1, . . . , xk, X) be a ∆0
formula over σ ∪ {∈, X} that is positive in the k-ary relation variable X. Then,

clϕ(M) ≤ (log(|M | − 1) + k)k

for every finite structure M over σ ∪ {∈} with built-in membership relation.

Proof : Put t = (log(|M |−1)+k)k, and assume for contradiction that clϕ(M) > t.
Let a0 = (a0,1, . . . , a0,k) ∈ Iϕ(M) be such that |a0| > t, where |a| denotes
the minimal m such that a ∈ Imϕ (M) if a ∈ Iϕ(M), and ∞ if a �∈ Iϕ(M).
In the following, let Im be an abbreviation for Imϕ (M). We build a sequence
a0, a1, . . . , at such that |ai| = |a0| − i, and ai ∈ Sk for every i = 0, . . . , t, where
S = {0, . . . , log(|M |−1)−1}∪{a0,1, . . . , a0,k}. This will prove the theorem since
the cardinality of Sk is at most t.

For every a = (a1, . . . , ak) ∈ Mk, let S(a) denote the set {0, . . . , log(|M | −
1)} ∪ {a1, . . . , ak}. Observe that

⋃{RTC(ai) : i ∈ F (ϕ)} ⊆ S(a) since every
element in TC(ai) is a bit position of an element in {0, . . . , |M | − 1}. Assuming
ai = (ai,1, . . . , ai,k) is already defined, we define ai+1 = (ai+1,1, . . . , ai+1,k). Let
m = |ai|. Then, M |= ϕ[ai, Im−1]. Lemma 1 and monotonicity imply that M |=
ϕ[ai, Im−1 ∩ S(ai)k]. Observe that since ai ∈ S(a0)k by assumption, we have
that S(ai) ⊆ S(a0). Now let us consider two cases: (i) Im−1 ∩ S(a0)k ⊆ Im−2,
or (ii) Im−1 ∩ S(a0)k �⊆ Im−2. In case (i) we have that M |= ϕ[ai, Im−2] by

178 A. Atserias

monotonicity. Hence, ai ∈ Im−1 which contradicts the minimality of m = |ai|.
In case (ii), there must exist some ai+1 ∈ Im−1 ∩ S(a0)k that does not belong
to Im−2. Observe that |ai+1| = |ai| − 1, and ai+1 ∈ S(a0)k as required. This
completes the proof of the theorem. ��

The polylogarithmic bounds on the closure functions, together with a result
of Immerman [18], imply that every query that is definable as the fixed-point of
a ∆0 formula is computable in NC, the parallel complexity class. However, we
can keep the machine sequential as noted in the following

Lemma 2. Let σ be a relational vocabulary, let C be a class of finite structures
over σ with built-in membership relation, and let ϕ(x1, . . . , xk, X) be a ∆0 for-
mula that is positive in the k-ary relation variable X. Then, the query on C
defined by the formula (LFPx,Xϕ) is computable in DPOLYLOGTIME on C.

Proof : The idea is that the standard fixed-point computation will only take
a polylogarithmic number of iterations by Theorem 1, and each iteration is
computable in polylogarithmic-time because ϕ is a ∆0 formula. More precisely,
on input 〈M, a1, . . . , ak〉, the polylogarithmic-time Turing machine will proceed
as follows. The machine first determines the cardinality of M , say n. To this
end, it determines the length m of the input in O(logm) steps using its random
access to the input (see [5] for this trick), and then it executes a straightforward
computation to extract n from m (here we use the fact that our encodings
are carefully chosen so that their length is determined by the cardinality of
M, the signature of σ, and k). Let B = {0, . . . , log(n − 1) − 1} ∪ {a1, . . . , ak}.
The machine will keep, in a separate tape, an encoding of a k-ary relation on
B; this will require O((log n)k) bits of information. Then, it starts a loop that
is to be repeated (log(n − 1) + k)k times. In each iteration, the machine cycles
through all k-tuples (b1, . . . , bk) in Bk, and evaluates M |= ϕ[b1, . . . , bk, R] where
R is the k-ary relation encoded in the separate tape. Atomic formulas from σ
are resolved by random access to the input, and atomic formulas of the form
X(u1, . . . , uk) are resolved by accessing the position of tuple (u1, . . . , uk) in the
encoding of R. Observe that each relevant tuple (u1, . . . , uk) will be available
since M |= ϕ[b1, . . . , bk, R] if and only if

M |= ϕ[b1, . . . , bk, R ∩ (
⋃{RTC(bi) : i ∈ F (ϕ)})k],

and
⋃{RTC(bi) : i ∈ F (ϕ)} ⊆ B for every (b1, . . . , bk) ∈ Bk, since every element

of TC(ai) is a bit position of an element in {0, . . . , n− 1}. For the same reason,
each quantifier is bounded by some bi, and therefore, the variable it bounds
ranges over at most log(n−1) elements of the universe. Hence, the computation
can be done in time O((log n)r) where r depends on the number of quantifiers of
ϕ. When the evaluation ofM |= ϕ[b1, . . . , bk, R] is complete, the machine updates
accordingly the position corresponding to tuple (b1, . . . , bk) in the encoding of
R. Finally, the machine will only have to check whether the tuple (a1, . . . , ak)
belongs to R at the end of the loop. ��

The Descriptive Complexity of the Fixed-Points of Bounded Formulas 179

4 Fixed-Points of Bounded Formulas on BFR
A closer examination of Lemma 2 in the case of BFR reveals that LFP(∆0)-
definable queries are also computable in (non-uniform) AC0; the reason is that
they only depend on O(log n) bits of the input (in fact, the relevant part of
the input is that short already). The interesting question at this point is the
following: which uniform version of AC0 is captured by FO+LFP(∆0) on BFR?
Our next theorem is the answer to this question. Before stating the result, we
need some definitions.

Let C = (C1, C2, . . .) be a sequence of boolean circuits, and let sn be a
bound on the size of Cn. Thus, gates in Cn may be numbered in {0, . . . , sn− 1}.
The direct connection language of C (see [5]) is the set of words of the form
1n#bsn(a)#bsn(b)#t, where gate b is an input to gate a, and the type of gate b
is t ∈ {0, 1, 2, 3}. Here, t = 0 means that b is an AND gate, t = 1 means that b
is an OR gate, t = 2 means that b is an positive input, and t = 3 means that b
is a negated input. If C is a complexity class, we say that C is C-uniform if there
exists a language in L ∈ C such that for every word w of the form 1n#a#b#t
we have that w ∈ L if and only if w ∈ DCL(C). The class C-uniform AC0

is the class of all languages that are accepted by a C-uniform, polynomial-size,
bounded-depth, family of circuits (for languages L ⊆ Σ∗ with Σ �= {0, 1}, we
say that L is accepted by a family of circuits C if h(L) is accepted by C for some
fixed homomorphism h : Σ∗ → {0, 1}∗ [5]).
Theorem 2. Let Q be a query on BFR. The following are equivalent:

1. Q is computable in LHP on BFR,
2. Q is computable in DPOLYLOGTIME-uniform AC0 on BFR,
3. Q is definable in FO+ LFP(∆0) on BFR.
Proof : We close a cycle of implications. We first show that (i) implies (ii). Assume
that Q is computable in LHA for some A ∈ P. We may assume A ⊆ {0, 1}∗. For
every n, let Fn(x1, . . . , xn) be the following DNF-formula

∨
a∈A∩{0,1}n

(∧
ai=1

xi ∧
∧
ai=0

¬xi
)

.

Observe that Fn(a1, . . . , an) is true if and only if the word a1 . . . an belongs to
A. The sequence (F1, F2, . . .), interpreted as a sequence of depth-two circuits, is
exponential-size in n, but P-uniform (the words of its direct connection language
are of the form 1n#a#b#t with a, b ∈ {0, 1}O(n), and deciding membership can
be done in polynomial-time since A ∈ P). We now build aDPOLYLOGTIME-
uniform family of AC0 circuits to compute Q. Let M be an oracle alternating
Turing machine witnessing that Q is computable in LHA, and assume that M
queries its oracle at most once in each computation path (this is a standard
trick in alternating machines; it consists of existentially guessing the answers,
write them down on a separate tape together with the nondeterministic branch
taken at each step, and at the end of the computation, universally branch to

180 A. Atserias

check the correctness of every guess by deterministically resimulating the com-
putation path until the challenged query is asked). Let c log n be a bound on the
running-time of M on inputs of length n. Observe that the length of each oracle
query is bounded by c log n too. As in [5], we may see the computation trees
of M as a DLOGTIME-uniform family of AC0 circuits, except for the oracle
queries, which may be resolved by DPOLYLOGTIME-uniform AC0 circuits;
namely, we let queries of length m ≤ c log n be resolved by the circuit Fm above
(exponential-size in m ≤ c log n is polynomial-size in n, and polynomial-time
uniformity for length m ≤ c log n is polylogarithmic-time uniformity for length
n). It follows that Q is computable in DPOLYLOGTIME-uniform AC0.

We see that (ii) implies (iii). Let Q be computable in DPOLYLOGTIME-
uniform AC0 (recall the convention established just before the statement of the
theorem). It is well-known [4, 25] thatQ is then first-order definable with an addi-
tional built-in relation R = (R1, R2, . . .) that is computable in polylogarithmic-
time. We show how to replace every occurrence of this built-in relation by a
formula of FO + LFP(∆0). For every n and a = (a1, . . . , ak) ∈ {0, . . . , n − 1}k,
let Ma = ({0, . . . , log(n − 1) − 1},∈, Pn

1 , . . . , Pn
k), where Pn

i = {m : m ∈ ai}.
Since R is a built-in relation computable in polylogarithmic-time, the language

{1n#bn(a1)# . . .#bn(ak) : (a1, . . . , ak) ∈ Rn, n ≥ 1}

is decidable in polylogarithmic-time on inputs of the appropriate form. A simple
unpadding argument shows then that the language {〈Ma〉 : a ∈

⋃
n≥1 Rn} is in

P (the length of 〈Ma〉 is logarithmic in the length of 〈{0, . . . , n−1}, a1, . . . , ak〉).
Hence, by the Immerman-Vardi Theorem, the boolean query Q = {Ma : a ∈⋃
n≥1 Rn} is definable in least fixed-point logic on the class of all structures of

the form Ma. We may even assume that Q is definable by a sentence of the form
(LFPx,Xϕ)(0) in which ϕ is a first-order formula, and 0 is a constant for zero. Let
ϕ′(y, z, p1, . . . , pk, x,X) be the first-order formula over the vocabulary {∈} that
results from the following substitution in ϕ: replace each occurrence of an atomic
formula of the form Pi(u) by u ∈ pi; replace each atomic formula of the form
X(u) by X(y, z, p1, . . . , pk, u); and replace each subformula of the form (∃u)(ψ)
by (∃u ∈ y)(ψ′)∨ (∃u ∈ z)(ψ′), where ψ′ is the result of applying recursively the
substitutions. Clearly, ϕ′ is a ∆0 formula. Moreover, it is not hard to see that
for every a1, . . . , ak ∈ {0, . . . , n − 1}, we have that Ma |= (LFPx,Xϕ)(0) if and
only if

({0, . . . , log(n− 1)− 1},∈) |= (LFPy,z,p,x,Xϕ′)(r, s, a1, . . . , ak, 0),

where s is the largest power of two in the universe, and r = s− 1 (observe that
the binary representations of s and r are dual words; that is, j ∈ s if and only
if j �∈ r for every j ≤ log(log(n− 1)− 1)). Since r and s are first-order definable
with ∈, we have shown that R is uniformly definable on BFR by a sentence of
FO + LFP(∆0).

It remains to see that (iii) implies (i). Let ϕ(x1, . . . , xs) be a formula wit-
nessing that Q is definable in FO+LFP(∆0). Without loss of generality, we may

The Descriptive Complexity of the Fixed-Points of Bounded Formulas 181

assume the following normal form for ϕ:

(Q1y1) · · · (Qryr)(
s∧
i=1

(ψi,1 ∨ . . . ∨ ψi,t ∨ ¬ψi,t+1 ∨ ¬ψi,u)),

where each Qi is ∃ or ∀, and each ψi,j is either an atomic formula, or a formula
of the form (LFPz,Zθ)(z1, . . . , zs), with θ a ∆0 formula. For every i, j, let Qi,j

be the query on BFR defined by ψi,j , and let A be the following language over
the alphabet {0, 1,#}:

{n#bn(b1)# . . .#bn(bs)#i#j : (b1, . . . , bs) ∈ Qi,j(BITn)}.

This language will be our oracle set (that it belongs to P will be shown later).
An alternating Turing machine with oracle A may simulate ϕ as indicated next.
On input 〈BITn, a1, . . . , ak〉 where a1, . . . , ak ∈ {0, . . . , n − 1}, the machine
behaves as follows. First, it computes n. To this end, it existentially guesses
the position of the leftmost # in the input, and universally branches to check
that every smaller position contains a symbol other than #. Then, following
the alternation pattern of the quantifier prefix of ϕ, the machine existentially or
universally guesses r words w1, . . . , wr of length log(n− 1) each. The i-th word
wi is meant to be the binary representation of an element bi ∈ {0, . . . , n−1} that
is to interpret the first-order variable yi. The machine proceeds then to evaluate
each atomic formula ψi,j as follows. Assume ψi,j = ψi,j(z1, . . . , zs), where each
variable zk is either an xl or a yl. The machine will write an oracle query of
the form n#d1# . . .#ds#i#j, where dk = bn(bl) if zk = yl, and dk = bn(al) if
zk = xl. Observe that the length of this query is O(log n), and is easy to recover
from the input (existentially guess each bn(al) and universally branch to check
that all guesses match the input). Clearly, the answer to this query is yes if and
only if BITn |= ψi,j [d1, . . . , ds] by the definition of the oracle set A.

All it remains to show is that the language A belongs to P. This is fairly
easy. If ψi,j is an atomic formula, there is almost nothing to see: equalities are
checked at once, and atomic formulas of the form zi ∈ zj are also straightforward
to check. If ψi,j is a formula of the form (LFPz,Zθ)(z1, . . . , zs) with θ being a
∆0 formula, then the query it defines is computable in DPOLYLOGTIME
on BFR by Lemma 2. Therefore, since the length of n#d1# . . .#ds#i#j is
logarithmic in the length of 〈BITn, d1, . . . , ds〉, a simple unpadding argument
puts A in P. ��

As a corollary, we obtain a characterization of the question on whether all
polynomial-time decidable languages are rudimentary. The relationship between
P and RUD remains unknown. It is known however that NL ⊆ RUD [27],
where NL is the class of languages accepted in nondeterministic logarithmic-
space.

182 A. Atserias

Corollary 1. The following are equivalent:

1. FO+ LFP(∆0) ⊆ FO on BFR,
2. P ⊆ RUD,
3. P ⊆ LINH.

Proof : Since RUD = LINH = ATIME(O(n), O(1)), it is enough to show that
(i) and (iii) are equivalent. The implication from (i) to (iii) follows from Theo-
rem 1 in [3]. For the other implication, assume that P ⊆ LINH, and let Q be
a query on BFR that is definable by a FO + LFP(∆0) formula. By Theorem 2
we have Q is computable in LHP, and so in LHLINH by hypothesis. Let M be
an oracle alternating Turing machine witnessing that Q is computable in LHA

for some A ∈ LINH, and let N be an alternating Turing machine witnessing
that A ∈ LINH. Since an oracle Turing machine running in logarithmic-time
can only ask logarithmically long queries, oracle queries of M may be answered
by N in logarithmic-time with respect to the input to M . The number of al-
ternations being constant, it follows that Q is computable in LH. Hence, Q is
first-order definable on BFR. ��

5 The Presence of Input Predicates

The natural question at this point is what happens when input predicates, in
addition to the membership (BIT) relation, are available. That is, we fix a re-
lational vocabulary σ, and we wonder what is captured by FO + LFP(∆0) on
classes of finite structures over σ with built-in membership relation. Somewhat
surprisingly, we are only able to provide an exact answer in the case that σ is a
unary vocabulary. In that case, the LFP(∆0)-definable queries still only depend
on O(log n) bits of the input, and a similar argument as before goes through.

Theorem 3. Let σ be a unary vocabulary, let C be a class of finite structures
over σ with built-in membership relation, and let Q be a query on C. Then, the
following are equivalent:

1. Q is computable in LHP on C,
2. Q is computable in DPOLYLOGTIME-uniform AC0 on C,
3. Q is definable in FO+ LFP(∆0) on C.

Proof : The proofs that (i) implies (ii), and that (ii) implies (iii), go through
as in Theorem 2 essentially without change. The proof that (iii) implies (i)
uses an argument similar to the one in the proof of Lemma 2. Recall from
Lemma 1 that if ϕ is a ∆0 formula, then M |= ϕ[a1, . . . , as, A] if and only if M |=
ϕ[a1, . . . , as, A ∩ (

⋃{RTC(ai) : i ∈ F (ϕ)})k]. Iterated application of this lemma
with each of the relation symbols of σ shows then that M |= ϕ[a1, . . . , as, A] if
and only if

M ∩B |= ϕ[a1, . . . , as, A ∩Bk],

where B =
⋃{RTC(ai) : i ∈ F (ϕ)}, and M∩B is the substructure of M gener-

ated by B. In turn, we remark that B ⊆ {0, . . . , log(|M | − 1)− 1} ∪ {a1, . . . , as}

The Descriptive Complexity of the Fixed-Points of Bounded Formulas 183

since each element of TC(ai) is a bit position of an element in {0, . . . , |M | − 1}.
Moreover, a straightforward argument reveals that M ∩ B′ is an end-extension
of M ∩ B, where B′ = {0, . . . , log(|M | − 1) − 1} ∪ {a1, . . . , as}. Hence, M |=
ϕ[a1, . . . , as, A] if and only if M ∩ B |= ϕ[a1, . . . , as, A ∩ Bk], and by absolute-
ness, if and only if M ∩B′ |= ϕ[a1, . . . , as, A ∩B′k]. With these observations in
hand, we claim that:

Claim. If Q is definable in FO+LFP(∆0) on C, then Q is definable by a formula
of FO+ LFP(∆0) in which no relation symbol from σ appears within the scope
of a fixed-point operator.

Proof : The main idea is that since every LFP(∆0) formula will only depend on
O(log n) bits of the input predicates by the remarks above (here is the crucial
point where we use the fact that the vocabulary is unary), we can existentially
quantify these bits outside the LFP(∆0)-formula, and pass them to it as input
variables. Formally, the argument is as follows. Assume for simplicity that σ
consists of a unique relation symbol R; the general case is as easy. Let ϕ be a
formula defining Q on C. Replace each occurrence in ϕ of a subformula of the
form (LFPx,Xθ)(x1, . . . , xk) with θ a ∆0 formula, by the formula

(∃v)((r ∈ v ↔ R(r)) ∧ (∀z ∈ s)(z ∈ v ↔ R(z)) ∧∨
w∈{0,1}k

(
∧
wi=1

R(xi) ∧
∧
wi=0

¬R(xi) ∧ (LFPv,x,X′θw)(v, x))),

where θw is the result of replacing each atomic formula of the form R(u), with
u a bound variable, by u ∈ v, each atomic formula of the form R(xi) by xi = xi,
if wi = 1, each atomic formula of the form R(xj) by xj �= xj , if wj = 0, and
each atomic formula of the form X(u) by X ′(v, u). Here, r and s are existentially
quantified variables set to the largest power of two of the universe, and r − 1
respectively (observe that the binary representations of r and s are dual words).
Observe that if v is a witness for the first-order variable of this formula, then its
binary representation is encoding the first log(n− 1) bits of R. By the remarks
preceding the claim, it is straightforward to check using standard absoluteness
arguments that the modified formula is defining Q on C, as required.

The rest of the proof that (iii) implies (i) is now almost identical to the
proof of Theorem 2. Namely, access to the input predicates is only required
when simulating the first-order part of the formula, and the simulation of the
LFP(∆0)-parts of the formula may be asked to an oracle set in P. ��

Observe that the argument of Theorem 3 does not go through for vocabularies
of higher arities. In the case of digraphs, for example, the reason is that there
are O((log |M |)2) significant bits (instead of O(log |M |)) in the substructure
M∩{0, . . . , log(|M |−1)} of any digraph M. Although we do not provide with an
exact characterization of FO+LFP(∆0) for vocabularies of higher arities, we are
able to compare the expressive power of FO+LFP(∆0) with a familiar complexity
class. Recall from the introduction that RUDn1/r = ATIME(O(n1/r), O(1)) (see
Corollary 5 in [1]).

184 A. Atserias

Theorem 4. Let σ be a relational vocabulary of maximum arity r, and let C
be the class of all finite structures over σ with built-in membership relation. If
P ⊆ RUDn1/r , then FO+ LFP(∆0) ⊆ FO on C.

Proof sketch: Assume P ⊆ RUDn1/r , and let Q be a query on C definable in
FO+LFP(∆0). It is enough to show that Q is computable in LH on C. Even eas-
ier, it is enough to show that each FO+LFP(∆0)-formula can be evaluated in LH
on the appropriate inputs. Let ϕ(x1, . . . , xk) be such a formula. Lemma 2 says
that deciding whether M |= ϕ[a1, . . . , ak] can be done in polylogarithmic-time
in |M |. Moreover, the same absoluteness argument as in the proof of Theorem 3
reveals that M |= ϕ[a1, . . . , ak] if and only if M ∩ B′ |= ϕ[a1, . . . , ak], where
B′ = {0, . . . , log(|M | − 1)− 1} ∪ {a1, . . . , ak}. Since only O((log |M |)r) bits are
relevant in M∩B′, the same computation can can be carried over an unpadded
input that only contains these bits. The computation time is now polynomial
in the length of the (unpadded) input, and therefore, by hypothesis, the same
language is decidable in ATIME(O(n1/r), O(1)) = RUDn1/r on the appropriate
inputs. Since the length of these inputs is O((log |M |)r), the alternating compu-
tation can be carried over the original inputs in time

O(((log |M |)r)1/r) = O(log |M |),
and still a constant number of alternations. That is, on the original inputs, the
evaluation of ϕ can be done in LH as required. ��

As mentioned in the introduction, Theorem 3 sets the link to an impor-
tant problem related to the uniformity of circuits for integer division. Beame,
Cook, and Hoover [7] showed that the problem of dividing two numbers can
be computed by P-uniform bounded fan-in, logarithmic-depth circuits (NC1).
The result was improved by Reif [28] (see also [19]) who showed that the prob-
lem could be computed by P-uniform unbounded fan-in, bounded-depth circuits
with majority gates (TC0). However, it is not known whether the uniformity
condition of their algorithm can be relaxed to DLOGTIME-uniformity, as it is
the case for the TC0 circuits for addition, subtraction, and multiplication (see
Barrington, Immerman and Straubing [5]).

On the other hand, it is known that majority gates of polylogarithmically-
many bits may be simulated by DLOGTIME-uniform AC0 circuits (see [34]
for a similar construction). A circuit THk(x1, . . . , xm) computing whether at
least k of the input bits x1, . . . , xm is recursively built as follows:

THk(x1, . . . , xm) :=
∨

i1+...+is≥k

ij≤m/s

s∧
j=1

THij (x(j−1)m/s+1, . . . , xjm/s),

where m = (log n)O(1), and s is suitably chosen so that the size of the circuit
is polynomial in n, and the depth is a constant independent of n (the choice
s = (log n)ε works for sufficiently small ε). It is not hard to see that these cir-
cuits are DLOGTIME-uniform (a clever numbering of gates will tell all the

The Descriptive Complexity of the Fixed-Points of Bounded Formulas 185

required information to the DLOGTIME algorithm that computes the direct
connection language). The well-known power of AC0 circuits to do arithmetic
on numbers with polylogarithmically-many significant bits follows from Reif’s
result, and the known algorithms for addition, subtraction and multiplication.
However, while addition, subtraction and multiplication of polylogarithmically-
long numbers admit DLOGTIME-uniform AC0 such circuits, the known algo-
rithms for division fall short since they only give DPOLYLOGTIME-uniform
AC0 circuits. We note that Theorem 3 implies that division of numbers with
polylogarithmically-many significant bits is definable in FO + LFP(∆0) on the
class of finite words with built-in membership relation. We do not know, however,
of a direct proof of this fact.

Acknowledgments

I am grateful to José L. Balcázar and Phokion Kolaitis for insightful comments,
and to Ricard Gavaldà for teaching me about the simulation of TC0 circuits
of polylogarithmically many bits by AC0 circuits. I am also grateful to Martin
Grohe who asked the question that led to Theorem 3.

References

[1] E. Allender and V. Gore. Rudimentary reductions revisited. Information Pro-
cessing Letters, 40:89–95, 1991.

[2] E. Allender and V. Gore. A uniform circuit lower bound for the permanent. SIAM
Journal of Computing, 23(5):1026–1049, 1994.

[3] A. Atserias and Ph. G. Kolaitis. First-order logic vs. fixed-point logic in finite set
theory. In 14th IEEE Symposium on Logic in Computer Science, pages 275–284,
1999.

[4] D. M. Barrington and N. Immerman. Time, hardware, and uniformity. In Com-
plexity Theory Retrospective II, pages 1–22. Springer-Verlag, 1997.

[5] D.M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.
Journal of Computer and System Sciences, 41(3):274–306, 1990.

[6] J. Barwise. Admissible Sets and Structures. Springer-Verlag, 1975.
[7] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and

related problems. SIAM Journal of Computing, 15(4):994–1003, 1986.
[8] J. H. Bennett. On Spectra. PhD thesis, Princeton University, 1962.
[9] S. R. Buss. The boolean function value problem is in ALOGTIME. In 28th Annual

IEEE Symposium on Foundations of Computer Science, pages 123–131, 1987.
[10] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the

ACM, 28:114–133, 1981.
[11] A. Dawar, K. Doets, S. Lindell, and S. Weinstein. Elementary properties of finite

ranks. Mathematical Logic Quarterly, 44:349–353, 1998.
[12] A. Dawar and L. Hella. The expressive power of finitely many generalized quan-

tifiers. Information and Computation, 123:172–184, 1995.
[13] A. Dawar, S. Lindell, and S. Weinstein. First order logic, fixed point logic and

linear order. In Computer Science Logic ’95, volume 1092 of Lecture Notes in
Computer Science, pages 161–177. Springer-Verlag, 1996.

186 A. Atserias

[14] L. Fortnow. Time-space tradeoffs for satisfiability. In 12th IEEE Conference in
Computational Complexity, pages 52–60, 1997. To appear in Journal of Computer
and System Sciences.

[15] Y. Gurevich, N. Immerman, and S. Shelah. McColm’s conjecture. In 9th IEEE
Symposium on Logic in Computer Science, pages 10–19, 1994.

[16] Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of
Pure and Applied Logic, 32(3):265–280, 1986.

[17] N. Immerman. Relational queries computable in polynomial time. Information
and Computation, 68:86–104, 1986.

[18] N. Immerman. Expressibility and parallel complexity. SIAM Journal of Comput-
ing, 18:625–638, 1989.

[19] N. Immerman and S. Landau. The complexity of iterated multiplication. Infor-
mation and Computation, 116(1):103–116, 1995.

[20] N. Jones. Context-free languages and rudimentary attributes. Mathematical Sys-
tems Theory, 3:102–109, 1969.

[21] N. D. Jones. Space-bounded reducibility among combinatorial problems. Jour-
nal of Computer and System Sciences, 11:68–85, 1975. Corrigendum: Journal of
Computer and System Sciences 15:241, 1977.

[22] Ph. G. Kolaitis and M. Y. Vardi. Fixpoint logic vs. infinitary logic in finite-model
theory. In 7th IEEE Symposium on Logic in Computer Science, pages 46–57, 1992.

[23] S. Lindell. A purely logical characterization of circuit uniformity. In 7th IEEE
Structure in Complexity Theory, pages 185–192, 1992.

[24] R. J. Lipton and A. Viglas. On the complexity of SAT. In 40th Annual IEEE
Symposium on Foundations of Computer Science, pages 459–464, 1999.

[25] J. A. Makowsky. Invariant definability and P/poly. To appear in Lecture Notes
in Computer Science, Proceedings of Computer Science Logic 1998, 1999.

[26] Y. N. Moschovakis. Elementary Induction on Abstract Structures. North-Holland,
1974.

[27] V. A. Nepomnjascii. Rudimentary predicates and Turing calculations. Soviet
Math. Dokl., 11:1462–1465, 1970.

[28] J. H. Reif. On threshold circuits and polynomial computation. In 2nd IEEE
Structure in Complexity Theory, pages 118–123, 1987.

[29] W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System
Sciences, 22:365–383, 1981.

[30] V. Y. Sazonov. On bounded set theory. In Logic and Scientific Methods, pages
85–103. Kluwer Academic Publishers, 1997.

[31] M. Sipser. Borel sets and circuit complexity. In 15th Annual ACM Symposium
on the Theory of Computing, pages 61–69, 1983.

[32] R. Smullyan. Theory of formal systems. In Annals of Mathematics Studies,
volume 47. Princeton University Press, 1961.

[33] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1–22, 1977.

[34] I. Wegener. The Complexity of Boolean Functions, pages 243–247. John Wiley &
Sons, 1987.

[35] C. Wrathall. Rudimentary predicates and relative computation. SIAM Journal
of Computing, 7(2):194–209, 1978.

Hypersequents and the Proof Theory
of Intuitionistic Fuzzy Logic�

Matthias Baaz1 and Richard Zach2

1 Institut für Algebra und Computermathematik E118.2,
Technische Universität Wien, A–1040 Vienna, Austria, baaz@logic.at

2 Institut für Computersprachen E185.2,
Technische Universität Wien, A–1040 Vienna, Austria, zach@logic.at

Abstract. Takeuti and Titani have introduced and investigated a logic
they called intuitionistic fuzzy logic. This logic is characterized as the
first-order Gödel logic based on the truth value set [0, 1]. The logic is
known to be axiomatizable, but no deduction system amenable to proof-
theoretic, and hence, computational treatment, has been known. Such a
system is presented here, based on previous work on hypersequent calculi
for propositional Gödel logics by Avron. It is shown that the system is
sound and complete, and allows cut-elimination. A question by Takano
regarding the eliminability of the Takeuti-Titani density rule is answered
affirmatively.

1 Introduction

Intuitionistic fuzzy logic IF was originally defined by Takeuti and Titani to be
the logic of the complete Heyting algebra [0, 1]. In standard many-valued termi-
nology, IF is [0, 1]-valued first-order Gödel logic, with truth functions as defined
below. The finite-valued propositional versions of this logic were introduced by
Gödel [8], and have spawned a sizeable area of logical research subsumed under
the title “intermediate logics” (intermediate between classical and intuitionistic
logic). The infinite-valued propositional Gödel logic was studied by Dummett
[6], who showed that it is axiomatized by LC, i.e., intuitionistic propositional
logic plus the linearity axiom (A ⊃ B) ∨ (B ⊃ A).

Takeuti and Titani [13] characterized IF by a calculus which extends the
intuitionistic predicate calculus LJ by several axioms as well as the density rule

Γ � A ∨ (C ⊃ p) ∨ (p ⊃ B)
Γ � A ∨ (C ⊃ B) tt′

This rule can be read as expressing the fact that the set of truth values is
densely ordered. In this sense, the Takeuti-Titani axiomatization is the natural
axiomatization of the [0, 1]-valued Gödel logic. The valid formulas of IF are

2000 Mathematics Subject Classification: Primary 03B50; Secondary 03B55, 03F05.
� Research supported by the Austrian Science Fund under grant P–12652 MAT

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 187–201, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

188 M. Baaz and R. Zach

also characterized as those formulas valid in every first-order Gödel logic based
on a linearly ordered set of truth-values (this is obvious for all logics based on
truth value sets ⊆ [0, 1], since a countermodel in such a truth-value set can be
straightforwardly embedded in [0, 1]. The general claim was established by Horn
[10]). In this characterization, the density rule is not a natural assumption, since
not every linearly ordered truth-value set is densely ordered. It follows from
this characterization that the density rule is redundant for the axiomatization
of IF, and completeness proofs without it have been given by Horn [10] and
Takano [11].1 Takano posed the question of whether a syntactic elimination of
the density rule is also possible.

More recently, another axiomatizable first-order extension of LC has been
studied by Corsi [4, 5] and Avellone et al. [1]. This extension is defined not via
many-valued semantics but as the class of formulas valid in all linearly ordered
intuitionistic Kripke models. It is different from IF; specifically, the formula
(∨∀) below is not valid in it. IF can, however, also be characterized as the set
of formulas valid in all linearly ordered Kripke models with constant domains
(this was first observed by Gabbay [7, §3]).

The interest of IF lies in the fact that it combines properties of logics for
approximate reasoning with properties of intuitionistic logic. On the one hand,
IF is one of the basic t-norm logics (see Hájek [9]), on the other, it is an extension
of intuitionistic logic which corresponds to concurrency (as has been argued by
Avron [2]). We present here a calculus for IF which is adequate for further proof-
theoretic study. The basic result in this regard is the cut-elimination theorem
for this calculus, from which a midhypersequent-theorem can be derived. This
theorem, in turn, corresponds to Herbrand’s Theorem in classical logic, and as
such is a possible basis for automated theorem proving in IF.

The calculus also allows us to investigate the proof-theoretic effects of the
Takeuti-Titani rule. We give a positive answer to Takano’s question, showing that
the density rule can be eliminated from IF-proofs. A simple example illustrates
the possible structural differences between proofs with and without the Takeuti-
Titani rule.

2 Syntax and Semantics of Intuitionistic Fuzzy Logic

The language L of IF is a usual first-order language with propositional variables
and where free (a, b, . . .) and bound (x, y, . . .) variables are distinguished.

Definition 1. An IF-interpretation � = 〈D, s〉 is given by the domain D and
the valuation function s. Let LD be L extended by constants for each element of
D. Then s maps atomic formulas in Frm(LD) into [0, 1], d ∈ D to itself, n-ary
function symbols to functions from Dn to D, and free variables to elements of D.

The valuation function s can be extended in the obvious way to a function
on all terms. The valuation for formulas is defined as follows:
1 Note that the corresponding axiom (∀p)((A ⊃ p) ∨ (p ⊃ B)) ⊃ (A ⊃ B) is not
redundant in quantified propositional [0, 1]-valued Gödel logic. See [3].

Proof Theory of Intuitionistic Fuzzy Logic 189

1. A ≡ P (t1, . . . , tn) is atomic: �(A) = s(P)(s(t1), . . . , s(tn)).
2. A ≡ ¬B:

�(¬B) =
{
0 if �(B) = 0
1 otherwise.

3. A ≡ B ∧ C: �(B ∧ C) = min(�(B),�(C)).
4. A ≡ B ∨ C: �(B ∨ C) = max(�(A),�(B)).
5. A ≡ B ⊃ C:

�(B ⊃ C) =
{�(C) if �(B) > �(C)
1 if �(B) ≤ �(C).

The set Distr�(A(x)) = {�(A(d)) : d ∈ D} is called the distribution of A(x). The
quantifiers are, as usual, defined by infimum and supremum of their distributions.

(6) A ≡ (∀x)B(x): �(A) = inf Distr�(B(x)).
(7) A ≡ (∃x)B(x): �(A) = supDistr�(B(x)).

� satisfies a formula A, � |= A, if �(A) = 1. A formula A is IF-valid if every
IF-interpretation satisfies it.

Note that, as in intuitionistic logic, ¬A may be defined as A ⊃ ⊥, where ⊥
is some formula that always takes the value 0.

3 Hypersequents and IF

Takeuti and Titani’s system IF is based on Gentzen’s sequent calculus LJ for
intuitionistic logic with a number of extra axioms

� (A ⊃ B) ∨ ((A ⊃ B) ⊃ B)
(A ⊃ B) ⊃ B � (B ⊃ A) ∨B

(A ∧B) ⊃ C � (A ⊃ C) ∨ (B ⊃ C)
(A ⊃ (B ∨ C)) � (A ⊃ B) ∨ (A ⊃ C)

(∀x)(A(x) ∨B) � (∀x)A(x) ∨B
(∀x)A(x) ⊃ C � (∃x)(A(x) ⊃ D) ∨ (D ⊃ C)

(Ax1)
(Ax2)
(Ax3)
(Ax4)
(∨∀)
(∀ ⊃)

(where x does not occur in B or D) and the following additional inference rule:

Γ � A ∨ (C ⊃ p) ∨ (p ⊃ B)
Γ � A ∨ (C ⊃ B) tt ′

where p is a propositional eigenvariable (i.e., it does not occur in the lower
sequent). It is known that the extra inference rule is redundant. In fact, the
system H of Horn [10] consisting of LJ plus the schemata

(∀x)(A(x) ∨B) ⊃ (∀x)A(x) ∨B
(A ⊃ B) ∨ (B ⊃ A)

(∨∀)
(D)

is complete for IF (see also [11]). Neither of these systems, however, has decent
proof-theoretic properties such as cut elimination, nor is a syntactic method for

190 M. Baaz and R. Zach

the elimination of the Takeuti-Titani rule (tt ′) known. Takano [11] has posed
the question of a syntactic elimination procedure of the Takeuti-Titani rule as
an open problem.

We present a system which has the required properties, and which allows
the syntactic elimination of the Takeuti-Titani rule. Our system is based on
Avron’s [2] cut-free axiomatization of LC using a hypersequent calculus.

Definition 2. A sequent is an expression of the form

Γ � ∆
where Γ and ∆ are finite multisets of formulas, and ∆ contains at most one
formula. A hypersequent is a finite multiset of sequents, written as

Γ1 � ∆1 | . . . | Γn � ∆n

The hypersequent calculus HIF has the following axioms and rules:
Axioms: A � A, for any formula A.
Internal structural rules:

G | Γ � ∆
G | A,Γ � ∆ iw � G | Γ �

G | Γ � A � iw
G | A,A, Γ � ∆
G | A,Γ � ∆ ic �

External structural rules:

G
G | Γ � ∆ ew

G | Γ � ∆ | Γ � ∆
G | Γ � ∆ ec

Logical rules:

G | Γ � A
G | ¬A,Γ � ¬ �

G | A,Γ �
G | Γ � ¬A � ¬

G | A,Γ � ∆ G | B,Γ � ∆
G | A ∨B,Γ � ∆ ∨ � G | Γ � A G | Γ � B

G | Γ � A ∧B � ∧
G | Γ � A

G | Γ � A ∨B � ∨1
G | A,Γ � ∆

G | A ∧B,Γ � ∆ ∧ �1
G | Γ � B

G | Γ � A ∨B � ∨2
G | B,Γ � ∆

G | A ∧B,Γ � ∆ ∧ �2
G | Γ1 � A G | B,Γ2 � ∆
G | A ⊃ B,Γ1, Γ2 � ∆ ⊃� G | A,Γ � B

G | Γ � A ⊃ B
�⊃

G | A(t), Γ � ∆
G | (∀x)A(x), Γ � ∆ ∀ �

G | Γ � A(a)
G | Γ � (∀x)A(x) � ∀

G | A(a), Γ � ∆
G | (∃x)A(x), Γ � ∆ ∃ �

G | Γ � A(t)
G | Γ � (∃x)A(x) � ∃

Cut:
G | Γ � A G | A,Π � Λ

G | Γ,Π � Λ cut

Proof Theory of Intuitionistic Fuzzy Logic 191

Communication:

G | Θ1, Θ
′
1 � Ξ1 G | Θ2, Θ

′
2 � Ξ2

G | Θ1, Θ
′
2 � Ξ1 | Θ′1, Θ2 � Ξ2

cm

Density:
G | Φ � p | p, Ψ � Σ

G | Φ, Ψ � Σ tt

The rules (� ∀), (∃ �), and (tt) are subject to eigenvariable conditions: the free
variable a and the propositional variable p, respectively, must not occur in the
lower hypersequent. We denote the calculus obtained from HIF by omitting the
cut rule by HIF−, and that obtained by omitting (tt) by HIF∗.

The semantics of IF can easily be extended to hypersequents by mapping a
hypersequent H

Γ1 � ∆1 | . . . | Γn � ∆n

to the formula H∗

(
∧

Γ1 ⊃
∨

∆1) ∨ . . . ∨ (
∧

Γn ⊃
∨

∆n)

where
∧
Γi denotes the conjunction of the formulas in Γi or � if Γi is empty,

and
∨
∆i the disjunction of the formulas in ∆i or ⊥ if ∆i is empty. Deriving a

formula A in HIF then is equivalent to deriving the sequent � A: the translation
of � A, i.e., � ⊃ A is equivalent to A.

Theorem 3 (Soundness). Every hypersequent H derivable inHIF is IF-valid.

Proof. By induction on the length of the proof. It will suffice to show that the
axioms are valid, and that the quantifier rules and (tt) preserve validity.

The soundness of the quantifier rules is established by observing that corre-
sponding quantifier shifting rules are intuitionistically valid. For instance, since

(∃x)(B ∨A(x)) ⊃ (B ∨ (∃x)A(x))
(∃x)(B ⊃ A(x)) ⊃ B ⊃ (∃x)A(x)

(∨∃)
(⊃∃)

are intuitionistically valid, it is easily seen that �∃ is a sound rule. The only
problematic rules are (�∀) and (∃�). Suppose G | Γ � A(a) is derivable in
HIF. By induction hypothesis, G∗ ∨ (

∧
Γ ⊃ A(a)) is valid. Then certainly

(∀x)(G∗ ∨ (
∧
Γ ⊃ A(x))) is IF-valid. Since a did not occur in G or Γ , we may

now assume that x does not either. Since the quantifier shift (∨∀), i.e.,
(∀x)(B ∨A(x)) ⊃ (B ∨ (∀x)A(x)),

is valid in IF, we see that G∗ ∨ (∀x)(∧Γ ⊃ A(x)) is valid. The result follows
since

(∀x)(B ⊃ A(x)) ⊃ B ⊃ (∀x)A(x)
is intuitionistically valid, and hence IF-valid.

192 M. Baaz and R. Zach

The communication rule is sound as well. Suppose the interpretation � sat-
isfies the premises of (cm). The only case where the conclusion is not obviously
also satisfied is if �(Θ′1) ≤ �(Ξ1) and �(Θ′2) ≤ �(Ξ2). If the left lower sequent
is not satisfied, we have �(Ξ1) < �(Θ′2), and hence �(Θ′1) ≤ �(Ξ2), and thus
the right lower sequent is satisfied. Similarly if the right lower sequent is not
satisfied.

For (tt) we may argue as follows: Suppose that the hypersequent

H = G | Φ � p | p, Ψ � Σ

is IF-valid. Let � be an interpretation, and let �r be just like � except that
�(p) = r. Since p does not occur in the conclusion hypersequent

H ′ = G | Φ, Ψ � Σ

we have �(H ′) = �r(H ′) and �(G) = �r(G). If � |= G we are done. Otherwise,
assume that � |= H ′, i.e.,

r1 = min{�(Φ),�(Ψ)} > �(Σ) = r2

Let r = (r1+r2)/2. Now consider �r: �r |= G by assumption; �r |= Φ � p, since
�r(Φ) > r; and �r |= p, Ψ � Σ, since �r(Ψ) > r > �r(Σ). Hence, �r |= H, a
contradiction. ��

Theorem 4 (Completeness). Every IF-valid hypersequent is derivable in
HIF.

Proof. Observe that a hypersequent H and its canonical translation � H∗ are
interderivable using the cut rule and the following derivable hypersequents

A ∨B � A | A ∨B � B A ⊃ B,A � B
A ∧B � A A � A ∨B

Thus it suffices to show that the characteristic axioms of IF are derivable; a
simple induction on the length of proofs shows that proofs in intuitionistic pred-
icate calculus together with the axioms (D) and (∨∀) can be simulated in HIF.
The formula (D) is easily derivable using the communication rule.

A � A B � B
A � B | B � A cm

� A ⊃ B | B � A �⊃
� A ⊃ B | � B ⊃ A

�⊃
� (A ⊃ B) ∨ (B ⊃ A) | � B ⊃ A

� ∨
� (A ⊃ B) ∨ (B ⊃ A) | � (A ⊃ B) ∨ (B ⊃ A) � ∨

� (A ⊃ B) ∨ (B ⊃ A)
ec

Proof Theory of Intuitionistic Fuzzy Logic 193

The formula (∨∀) can be obtained thus:

A(a) � A(a) B � B

B � A(a) | A(a) � B
cm B � B

B � A(a) | B � B
ew

B � A(a) | B ∨A(a) � B
∨ � A(a) � A(a)

A(a) � A(a) | B ∨A(a) � B
ew

B ∨A(a) � A(a) | B ∨A(a) � B
∨ �

(∀x)(B ∨A(x)) � A(a) | B ∨A(a) � B
∀ �

(∀x)(B ∨A(x)) � A(a) | (∀x)(B ∨A(x)) � B
∀ �

(∀x)(B ∨A(x)) � (∀x)A(x) | (∀x)(B ∨A(x)) � B
� ∀

(∀x)(B ∨A(x)) � B ∨ (∀x)A(x)
� ∨

The last line is obtained from the preceding by two (�∨) inferences, followed by
an external contraction. We indicate this with the double inference line. ��

Of course, the other axioms of Takeuti’s and Titani’s system are also deriv-
able. We will leave the propositional axioms 1–4 as an exercise to the reader,
and give the derivation on of (∀ ⊃) as another example:

A(a) � A(a) D � D
A(a) � D | D � A(a) cm

� A(a) ⊃ D | D � A(a) �⊃
� (∃x)(A(x) ⊃ D) | D � A(a) � ∃
� (∃x)(A(x) ⊃ D) | D � (∀x)A(x) � ∀

C � C
� (∃x)(A(x) ⊃ D) | C � C ew

� (∃x)(A(x) ⊃ D) | (∀x)A(x) ⊃ C,D � C ⊃�
� (∃x)(A(x) ⊃ D) | (∀x)A(x) ⊃ C � D ⊃ C

�⊃

(∀x)A(x) ⊃ C � (∃x)(A(x) ⊃ D) ∨ (D ⊃ C) � ∨

4 Cut Elimination and Midhypersequent Theorem

Theorem 5 (Cut Elimination). Any derivation of a hypersequent G in HIF
can be transformed into a derivation of G in HIF−.

This theorem is proved in the usual way by induction on the number of appli-
cations of the cut rule, using the following lemma.

Lemma 6. Suppose the hypersequents

H1 = G | Γ � A and H2 = G | Π � Λ
are cut-free derivable. Then

H = G | Γ,Π∗ � Λ
where Π∗ is obtained from Π by removing all occurrences of A, is cut-free prov-
able, and the number of applications of (ec) in the resulting proof is not more
than the sum of applications of (ec) in γ and δ.

194 M. Baaz and R. Zach

Proof. Let γ and δ be the cut-free proofs of G and H, respectively. We may
assume, renaming variables if necessary, that the eigenvariables in γ and δ are
distinct. The proof follows Gentzen’s original Hauptsatz. Define the following
measures on the pair 〈γ, δ〉: the rank r = len(γ)+ len(δ), the degree d = deg(A),
and the order o is the number of applications of the (ec) rule in γ, δ. We proceed
by induction on the lexicographical order of 〈d, o, r〉.

If either H1 or H2 is an axiom, then H can be derived from H1 or H2,
respectively, using only weakenings. (This includes the case where r = 2).

Otherwise, we distinguish cases according to the last inferences in γ and δ.
The induction hypothesis is that the claim of the lemma is true whenever the
degree is < d or is = d and either the order < o, or the order = o and the rank
< r.

(1) γ or δ ends in an inference which acts on a sequent in G. We may invoke
the induction hypothesis on the premises ofH1 orH2, andH2 orG2, respectively.

(2) γ or δ ends in (ec). For instance, γ ends in

.... γ
′

G | Γ � A | Γ � A
G | Γ � A ec

Apply the induction hypothesis to γ′ and δ. The resulting proof γ′′ of

G | Γ � A | Γ,Π∗ � Λ

has one less (ec) than γ (although it may be much longer), and so the induction
hypothesis applies again to γ′′ and δ.

(3) γ or δ end in another structural inference, (tt), or (cm): These cases are
unproblematic applications of the induction hypothesis to the premises, followed
by applications of structural inferences.

For example, assume γ ends in (cm), i.e.,

.... γ1
G | Θ1, Θ

′
1 � Ξ1

.... γ2
G | Θ2, Θ

′
2 � A

G | Θ1, Θ
′
2 � Ξ1 | Θ′1, Θ2 � A

cm

where Γ = Θ′1, Θ2. Apply the deduction hypothesis to the right premise and H2
to obtain a cut-free proof of

G | Θ2, Θ
′
2, Π

∗ � Λ

Using applications of (ew) and (cm), we obtain the desired result.
The case of (tt) may be of special interest. Suppose γ ends in(tt), with

G | Φ � p | p, Ψ � A
G | Φ, Ψ � A tt

Proof Theory of Intuitionistic Fuzzy Logic 195

Apply the induction hypothesis to the premises of H1 and H2, and apply (tt) to
obtain the desired proof:

G | Φ � p | p, Ψ,Π∗ � Λ
G | Φ, Ψ,Π∗ � Λ tt

The case of δ ending in (tt) is handled similarly.
(4) γ ends in a logical inference not involving the cut formula, or δ ends in

a logical inference not involving the cut formula. These cases are easily handled
by appeal to the induction hypothesis and application of appropriate logical and
structural inferences. We outline the case where γ ends in (⊃�):

.... γ1
G | C, Γ � A

.... γ2
G | Γ � B

G | B ⊃ C, Γ � A ⊃�

We apply the induction hypothesis to the left premise and H2, and apply (⊃�):
G | C, Γ,Π∗ � Λ G | Γ � B

G | B ⊃ C, Γ,Π∗ � Λ
(5) Both γ and δ end in logical inferences acting on a cut formula. For

instance, if A = B ⊃ C we have
.... γ1

G | B,Γ � C
G | Γ � B ⊃ C

�⊃

.... δ1
G | Π1 � B

.... δ2
G | C,Π2 � Λ

G | B ⊃ C,Π1, Π2 � Λ ⊃�

First we find proofs δ′1 and δ′2 of

G | Γ,Π∗1 � B and G | C, Γ,Π∗2 � Λ
either by applying the induction hypothesis to γ and δ1 or δ2 if Π1 or Π2,
respectively, contain B ⊃ C, or otherwise by adding (ic)-inferences to δ1 and
δ2. Now apply the induction hypothesis based on the reduced degree of the cut
formulas twice: first to δ′1 and γ1 to obtain G | Γ, Γ,Π∗1 � C, and then to the
resulting proof and δ′2 to obtain

G | Γ, Γ, Γ,Π∗1 , Π∗2 � Λ.
The desired result follows by several applications of (ic).

The other cases are similar and are left to the reader. ��
Cut elimination is a basic prerequisite for proof theoretic and computational

treatments of a logic. As an immediate consequence of cut elimination we have
the subformula property: every IF-valid formula has a proof which only contains
subformulas of the endformula (plus possibly propositional variables used in (tt)).
Another important corollary is the midhypersequent theorem. It corresponds to
Herbrand’s Theorem for classical logic and is thus the basis for any resolution-
style automated proof method.

196 M. Baaz and R. Zach

Theorem 7. Any hypersequent H with only prefix formulas has a proof where
no propositional inference follows a quantifier inference. Such a proof contains
one or more hypersequents M , called midhypersequents, so that M contains no
quantifiers, all the inferences above M are propositional or structural, and all
the inferences below M are either quantifier inferences of structural inferences.

Proof. This is proved exactly as for the classical and intuitionistic case (see
Takeuti [12]). First, observe that all axioms are cut-free derivable from atomic
axioms. The cut-elimination theorem thus provides us with a cut-free proof π
of H from atomic axioms. Next, observe that the (∨ �) rule can be simulated
without using cuts by the rule

G | A,Γ � ∆1 G | B,Γ � ∆2

G | A ∨B,Γ � ∆1 | A ∨B,Γ � ∆2
∨ �′

The rule can be derived as follows (we omit side sequents):

A,Γ � ∆1 B,Γ � ∆2

B,Γ � ∆1 | A,Γ � ∆2
cm

A,Γ � ∆1

A ∨B,Γ � ∆1 | A,Γ � ∆2
∨ �

B,Γ � ∆2

A ∨B,Γ � ∆1 | A ∨B,Γ � ∆2
∨ �

Of course, (∨ �′) together with (ec) simulates (∨ �). We replace all applications
of (∨ �) by applications of (∨ �′) in our cut-free proof.

Define the order of a quantifier inference in π to be the number of propo-
sitional inferences under it, and the order of π as the sum of the orders of its
quantifier inferences. The proof is by induction on the order of π. The only in-
teresting case is of (∨ �′) occurring below a quantifier inference, since this case
does not work for intuitionistic logic.

Suppose π contains a (� ∀) inference above a (∨ �′) inference, and so that
all the inferences in between are structural. We have the following situation:

....
G | A,Γ � ∆

.... δ
′

G′ | Γ ′ � A(a)
G′ | Γ ′ � (∀x)A(x) � ∀.... δ
G | B,Γ � (∀x)A(x)

G | A ∨B,Γ � ∆ | A ∨B,Γ � (∀x)A(x) ∨ �
′

where δ contains only structural inferences. We reduce the order of π by replacing
this part of π by:

....
G | A,Γ � ∆

.... δ
′

G′ | Γ ′ � A(a).... δ
G | B,Γ � A(a)

G | A ∨B,Γ � ∆ | A ∨B,Γ � A(a) ∨ �
′

G | A ∨B,Γ � ∆ | A ∨B,Γ � (∀x)A(x) � ∀ ��

Proof Theory of Intuitionistic Fuzzy Logic 197

5 Elimination of the Takeuti-Titani Rule

The Takeuti-Titani rule is the least understood feature of the original Takeuti-
Titani axiomatization of IF. We show below that the rule can be eliminated from
proofs in HIF. This had been posed as a problem by Takano [11]. The proof is
by induction on the number of applications of (tt) and the length of the proof.
The exact complexity of the elimination procedure is still to be investigated. The
(tt) rule can have significant effects on proof structure. For instance, one of the
calculi in Avron [2] uses the split rule

G | Γ, Γ ′ � ∆
G | Γ � ∆ | Γ ′ � ∆ split

If this rule is added to HIF, it is possible to transform proofs so that each
application of the communication rule has a premise which is a propositional
axiom. This is not possible without (tt). The transformation works by replacing
each occurrence of the communication rule by

q � q

p � p

G1 | Γ1, Γ
′
1 � A1

G1 | Γ1 � A1 | Γ ′
1 � A1

split

G1 | Γ1 � A1 � Γ ′
1 � p | p � A1

cm

G1 | Γ1 � A1 | Γ ′
1 � q | p � A1 | q � p

cm

G2 | Γ2, Γ
′
2 � A2

G2 | Γ2 � A2 | Γ ′
2 � A2

split
q � q

G2 | Γ2 � q | q � A2 | Γ ′
2 � A2

cm

G1 | G2 | Γ1 � A1 | Γ2 � q | p � A1 | Γ2 � p | q � A2 | Γ ′
2 � A2

cut

G1 | G2 | Γ1 � A1 | Γ2 � A2 | p � A1 | Γ2 � p | Γ ′
2 � A2

tt

G1 | G2 | Γ1 � A1 | Γ2 � A2 | Γ2 � A1 | Γ ′
2 � A2

tt

G1 | G2 | Γ1, Γ
′
2 � A1 | Γ ′

1, Γ2 � A2

Proposition 8. Let δ be a HIF∗-derivation of hypersequent H with length k,
where H is of the form

G | Γ1, Π1 � ∆1, Π
′
1 | . . . | Γn, Πn � ∆n, Π

′
n

and
⋃
Πi ⊆ {p}, Π ′i = ∅, and p does not occur in G, Γi or ∆i (

⋃
Π ′i = {p},

Πi = ∅, and p does not occur in G, Γi or ∆i).
Then the hypersequent G | Γi1 � ∆i1 | . . . | Γim � ∆im is derivable in length

≤ k.

Proof. Easy induction on k. Every occurrence of p must arise from a weakening,
simply delete all these weakenings.

Theorem 9. Applications of (tt) can be eliminated from HIF-derivations.

This follows from the following lemma by induction on the number of applica-
tions of (tt) in a given HIF−-derivation.

198 M. Baaz and R. Zach

Lemma 10. If δ is an HIF∗-derivation of

H = G | Φ1 � Π1 | . . . Φn � Πn | Π ′1, Ψ1 � Σ1 | . . . | Π ′m, Ψm � Σm,
where p does not occur in G, Φi, Ψi or Σi, and

⋃
Πi ∪

⋃
Π ′i ⊆ {p}, then there

is a HIF∗-derivation of

H∗ = G | Φ1, . . . , Φn, Ψ1 � Σ1 | . . . | Φ1, . . . , Φn, Ψm � Σm.
Proof. By induction on the length of δ. We distinguish cases according to the
last inference I in δ. For simplicity, we will write p in what follows below instead
of Πi or Π ′i with the understanding that it denotes an arbitrary multiset of p’s.

(1) The conclusion of of I is so that p only occurs on the right side of sequents,
or only on the left side. Then Prop. 8 applies, and the desired hypersequent can
be derived without (tt).

(2) I applies to sequents in G. Then the induction hypothesis can be applied
to the premise(s) of I and appropriate inferences added below.

(3) I is structural inference other than (cut) and (cm), or a logical inference
with only one premise, or a logical inference which applies to aΣi. These cases are
likewise handled in an obvious manner and are unproblematic. One instructive
example might be the case of (⊃�). Here the premises would be of the form, say,

G | Φ1 � p | Φ2 � p . . . | Φn � p | p, Ψ1 � Σ1 | . . . | p, Ψm � Σm | p, Γ1 � A
G | Φ1 � p | Φ2 � p . . . | Φn � p | p, Ψ1 � Σ1 | . . . | p, Ψm � Σm | B,Γ2 � p

Let Φ = Φ1, . . . , Φn. The induction hypothesis provides us with

G | Φ, Ψ1 � Σ1 | . . . | Φ, Ψm � Σm | Φ, Γ1 � A
G | B,Γ2, Φ, Ψ1 � Σ1 | . . . | B,Γ2, Φ, Ψm � Σm

We obtain the desired hypersequent by applying (⊃�) successively m times,
together with some contractions.

(4) I is a cut. There are several cases to consider, most of which are routine.
The only tricky case is when the cut formula is p and p occurs both on the left
and the right side of sequents in both premises of the cut. For simplicity, let us
consider the cut rule in its multiplicate formulation

G | Φ1 � p | . . . | Φn � p | p, Ψ1 � Σ1 | . . . | p, Ψm � Σm | Γ � p
G | Φ1 � p | . . . | Φn � p | p, Ψ1 � Σ1 | . . . | p, Ψm � Σm | p,Π � Λ

We want to find a derivation of

G | Φ, Ψ1 � Σ1 | Φ, Ψm � Σm | Γ,Π � Λ
where Φ = Φ1, . . . , Φn. The induction hypothesis applied to the premises of the
cut gives us

G | Γ,Φ, Ψ1 � Σ1 | . . . | Γ,Φ, Ψm � Σm
G | Φ, Ψ1 � Σ1 | . . . | Φ, Ψm � Σm | Φ,Π � Λ

Proof Theory of Intuitionistic Fuzzy Logic 199

We obtain the desired hypersequent by m successive applications of (cm).
(5) I is (∨ �), or (∃ �) applying to Φi or Ψi. Consider the case of (∨ �), the

others are treated similarly. The premises of I are, for example,

G | A,Φ1 � p | Φ2 � p . . . | Φn � p | p, Ψ1 � Σ1 | . . . | p, Ψm � Σm
G | B,Φ1 � p | Φ2 � p . . . | Φn � p | p, Ψ1 � Σ1 | . . . | p, Ψm � Σm

By induction hypothesis, we obtain

G | A,Φ1, . . . , Φn, Ψ1 � Σ1 | . . . | A,Φ1, . . . , Φn, Ψm � Σm
G | B,Φ1, . . . , Φn, Ψ1 � Σ1 | . . . | B,Φ1, . . . , Φn, Ψm � Σm

It is not straightforwardly possible to derive the desired hypersequent from these.
If Ψi = {Pi1, . . . , Piki

}, let Qi = Pi1 ⊃ . . . Piki
⊃ Σi. Then we do easily obtain,

however, the following by repeated application of (�⊃), (� ∨) and (ec):

G | A,Φ1, . . . , Φn � Q1 ∨ . . . ∨Qm
G | B,Φ1, . . . , Φn � Q1 ∨ . . . ∨Qm

Now a single application of (∨ �), plus (ec) gives us
K = G | A ∨B,Φ1, . . . , Φn︸ ︷︷ ︸

Γ

� Q1 ∨ . . . ∨Qm

Then we derive, using m− 1 cuts:

K

.... δ1
Q1 ∨Q � Q1 | Q1 ∨Q � Q

Γ � Q1 | Γ � Q2 ∨ . . . ∨Qm︸ ︷︷ ︸
Q....

Γ � Q1 | . . . | Γ � Qm−1 ∨Qm

.... δm−1
Qm−1 ∨Qm � Qm−1 | Qm−1 ∨Qm � Qm

Γ � Q1 | . . . | Γ � Qm
where δi is the derivation

Qi � Qi

Q � Q Qi � Qi
Q � Qi | Qi � Q

cm
Q � Q

Q � Qi | Qi ∨Q � Q ∨ �
Qi ∨Qi+1 ∨ . . . ∨Qm︸ ︷︷ ︸

Q

� Qi | Qi ∨ . . . ∨Qm � Qi+1 ∨ . . . ∨Qm︸ ︷︷ ︸
Q

∨ �

The desired hypersequent is obtained by m cuts with

Qi, Pi1, . . . , Piki � Σi

200 M. Baaz and R. Zach

(6) I is a communication rule. This is the most involved case, as several
subcases have to be distinguished according to which of the two communicated
sequents contains p. Neither of these cases are problematic. We present two
examples:

(a) One of the communicated sequents contains p on the right. Then the
premises of I are

G | Φ1 � p | . . . | Φn � p | p, Ψ1 � Σ1 | . . . | p, Ψm � Σm | Θ1, Θ
′
1 � p

G | Φ1 � p | . . . | Φn � p | p, Ψ1 � Σ1 | . . . | p, Ψm � Σm | Θ2, Θ
′
2 � Ξ2

where. The induction hypothesis applies to these two hypersequents. If we write
Φ = Φ1, . . . , Φn, we have

G | Θ1, Θ
′
1, Φ, Ψ1 � Σ1 | . . . | Θ1, Θ

′
1, Φ, Ψm � Σm

G | Θ2, Θ
′
2 � Ξ | Φ, Ψ1 � Σ1 | . . . | Φ, Ψm � Σm

We obtain the desired result by applying m instances of (cm), internal weaken-
ings and external contractions as necessary, to obtain, in sequence

G | Θ1, Θ
′
2, Φ, Ψ1 � Σ1 | . . . | Θ1, Θ

′
1, Φ, Ψm � Σm | Θ′1, Θ2 � Ξ

. . .

G | Θ1, Θ
′
2, Φ, Ψ1 � Σ1 | . . . | Θ1, Θ

′
2, Φ, Ψm � Σm | Θ′1, Θ2 � Ξ

The sequents participating in the application of (cm) are marked by boxes. The
original end hypersequent follows from the last one by internal weakenings.

(b) The communicated sequents both contain p, once on the right, once on
the left. The premises of I are

G | Φ1 � p | . . . | Φn � p | p, Ψ1 � Σ1 | . . . | p, Ψm � Σm | Θ1, Θ
′
1 � p

G | Φ1 � p | . . . | Φn � p | p, Ψ1 � Σ1 | . . . | p, Ψm � Σm | p,Θ2, Θ
′
2 � Ξ

We have proofs of

G | Θ1, Θ
′
1, Φ, Ψ1 � Σ1 | . . . | Θ1, Θ

′
1, Φ, Ψm � Σm

G | Φ, Ψ1 � Σ1 | . . . | Φ, Ψm � Σm | Θ2, Θ
′
2, Φ � Ξ

Again, a sequence of m applications of (cm), together with internal weakenings
and external contractions produces the desired end sequent. ��

Note that in case (5), several new cuts are introduced. As a consequence, the
elimination procedure does not directly work for cut-free proofs. If a proof with
neither cut nor communication is required, the elimination procedure has to be

Proof Theory of Intuitionistic Fuzzy Logic 201

combined with the cut-elimination procedure of Thm. 5. The additional cuts can
be avoided by replacing (∨ �) and (∃ �) by the following generalized rules:

G | A,Γ1 � ∆1 | . . . | A,Γn � ∆n G | B,Γ1 � ∆1 | . . . | B,Γn � ∆n

G | A ∨B,Γ1 � ∆1 | . . . | A ∨B,Γn � ∆n
∨ �∗

G | A(a), Γ1 � ∆1 | . . . | A(a), Γn � ∆n

G | (∃x)A(x), Γ1 � ∆1 | . . . | (∃x)A(x), Γn � ∆n
∃ �∗

These rules, however, cannot be simulated by the ordinary rules without using
cut (the simulation with cut is given in case (5)). By changing case (5) accord-
ingly, the elimination procedure will transform a cut-free HIF-derivation into a
cut-free one without (tt), but with (∨ �∗) and (∃ �∗).

References

[1] A. Avellone, M. Ferrari, P. Miglioli, and U. Moscato. A tableau calculus for
Dummett predicate logic. In W. A. Carnielli and I. M. L. D’Ottaviano, editors,
Advances in Contemporary Logic and Computer Science, Contemporary Mathe-
matics 235, 135–151. American Mathematical Society, Providence, 1999.

[2] A. Avron. Hypersequents, logical consequence and intermediate logics for concur-
rency. Ann. Math. Artificial Intelligence, 4:225–248, 1991.

[3] M. Baaz and H. Veith. An axiomatization of quantified propositional Gödel logic
using the Takeuti-Titani rule. In S. Buss, P. Hájek, and P. Pudlák, editors, Logic
Colloquium ’98. Proceedings, LNL 13, 74–87. ASL, 2000.

[4] G. Corsi. A cut-free calculus for Dummett’s LC quantified. Z. Math. Logik
Grundlag. Math., 35:289–301, 1989.

[5] G. Corsi. Completeness theorem for Dummett’s LC quantified and some of its
extensions. Studia Logica, 51:317–335, 1992.

[6] M. Dummett. A propositional calculus with denumerable matrix. J. Symbolic
Logic, 24:97–106, 1959.

[7] D. M. Gabbay. Decidability of some intuitionistic predicate theories. J. Symbolic
Logic, 37:579–587, 1972.

[8] K. Gödel. Zum intuitionistischen Aussagenkalkül. Anz. Akad. Wiss. Wien, 69:65–
66, 1932.

[9] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
[10] A. Horn. Logic with truth values in a linearly ordered Heyting algebra. J. Symbolic

Logic, 34:395–408, 1969.
[11] M. Takano. Another proof of the strong completeness of the intuitionistic fuzzy

logic. Tsukuba J. Math, 11:101–105, 1987.
[12] G. Takeuti. Proof Theory. North-Holland, Amsterdam, 2nd ed., 1987.
[13] G. Takeuti and S. Titani. Intuitionistic fuzzy logic and intuitionistic fuzzy set

theory. J. Symbolic Logic, 49:851–866, 1984.

Continuous Functionals
of Dependent Types and Equilogical Spaces

Andrej Bauer1 and Lars Birkedal2

1 School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh PA 15213, USA

Andrej.Bauer@cs.cmu.edu
2 The IT University of Copenhagen

Glentevej 67, DK-2400 København NV, Denmark
birkedal@it-c.dk

Abstract. We show that dependent sums and dependent products of
continuous parametrizations on domains with dense, codense, and nat-
ural totalities agree with dependent sums and dependent products in
equilogical spaces, and thus also in the realizability topos RT(Pω).

Keywords: continuous functionals, dependent type theory, domain the-
ory, equilogical spaces.

1 Introduction

Recently there has been a lot of interest in understanding notions of totality for
domains [3,23,4,18,21]. There are several reasons for this. Totality is the seman-
tic analogue of termination, and one is naturally interested in understanding not
only termination properties of programs but also how notions of program equiv-
alence depend on assumptions regarding termination [21]. Another reason for
studying totality on domains is to obtain generalizations of the finite-type hier-
archy of total continuous functionals by Kleene and Kreisel [11], see [8] and [19]
for good accounts of this subject. Ershov [7] showed how the Kleene-Kreisel
functionals arise in a domain-theoretic setting as the total elements of domains
of partial continuous functionals. This work has been pursued further by Nor-
mann, Berger and others, who have studied both inductive types and dependent
types with universe operators [3,23,4,18,12,26]. The aims of their work include
both finding models of Martin-Löf type theory [16,26] and also extending the
density theorems to transfinite hierarchies. The density theorems are used in the
study of higher-type recursion theory and in order-theoretic characterizations of
extensionality for total objects [4,17]

It is important to understand how different models of computation relate. In-
deed, a number of results demonstrate that the Kleene-Kreisel functionals arise
in various computational models [7,10,15,3,13], which is good evidence that this
class of functionals is an important and robust model of higher-type computa-
tion. We proved one such result in [2], where we related domains with totality
to equilogical spaces, introduced by Dana Scott [2]: the so-called dense and co-
dense totalities on domains [3] embed fully and faithfully into the category of

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 202–216, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Continuous Functionals of Dependent Types and Equilogical Spaces 203

equilogical spaces and the embedding preserves the cartesian-closed structure
implicit in the totalities for products and function spaces. From this it follows
easily that the Kleene-Kreisel functionals of finite type can be constructed in
the category Equ of equilogical spaces by repeated exponentiation, starting from
the natural numbers object. In this paper we extend these results to dependent
types.

We build on Berger’s Habilitationsschrift [4], in which Berger generalized
density and codensity on domains from simple types to dependent types with
universe operators and proved the corresponding Density Theorems. We show
that, in a precise sense, the dependent types of dense, codense, and natural
totalities on consistent parametrizations coincide with the dependent types of
equilogical spaces. It follows that the dependent type hierarchies over the natural
numbers and the booleans coincide in four settings: equilogical spaces, domains
with totality, limit spaces [20], and filter spaces [22,9]. We also note recent work
by Menni and Simpson [14], which relate locally cartesian closed subcategories
of equilogical spaces, sequential spaces, and limit spaces. All these results taken
together provide a satisfactory “goodness of fit” picture, at the level of dependent
type structures.

More precisely, domains here are algebraic, countably based, consistently-
complete dcpos. Since the domains are countably based, we only need to consider
countably based equilogical spaces, which form a full locally cartesian closed sub-
category of the category of all equilogical spaces. The category of countably based
equilogical spaces is equivalent to the category of modest sets Mod(Pω) over the
graph model Pω of the untyped λ-calculus, and since the modest sets form a full
locally cartesian closed subcategory of the realizability topos RT(Pω) over the
graph model, it follows that the domain-theoretic total continuous functionals
of dependent types are the same as the ones in the realizability topos RT(Pω).

The plan of the paper is as follows. In the following section we present an
overview of the technical work, and explain the main idea of the proof of our
main theorem, Theorem 1. In Sect. 3 we recall the definition of the category
of equilogical spaces and the construction of dependent sums and products of
equilogical spaces. In Sect. 4 we briefly review domains with totality, and refer
you to [4] for more details. Sect. 5 contains the Main Theorem and its proof,
which relates dependent types in Equ to dependent types in domains with total-
ity. As an example of how the Main Theorem can be used, we translate Berger’s
Continuous Choice Principle for dependent totalities [4] into a choice principle
expressed in the internal logic of Equ. Finally, Sect. 7 contains some concluding
remarks and suggestions for future work.

Acknowledgments

This work is part of our Ph.D. research, carried out under the guidance of Dana
Scott, whom we thank. We are also grateful to Ulrich Berger, Dag Normann,
Pino Rosolini, and Alex Simpson for stimulating discussions about the subject.

204 A. Bauer and L. Birkedal

2 Overview of Technical Work

In this section we give a brief overview of the rather technical theorems and
proofs from Sect. 5. We do not provide any proofs or references for the claims
made in this overview, because they are repeated in more detail in the rest of
the paper. Please consult Sects. 3 and 4 for basic definitions and explanation of
the notation. Berger [4,5] contains material on totalities for parametrizations on
domains, and [2] can serve as a reference on equilogical spaces.

The category of countably based equilogical spaces, as defined originally
by Dana Scott, is equivalent to PER(ωALat), the category of partial equiva-
lence relations on countably based algebraic lattices. We work exclusively with
PER(ωALat) and so we set Equ = PER(ωALat).

If M ⊆ D is a codense subset of a domain D, then the consistency relation ↑
(which relates two elements when they are bounded) restricted to M is a partial
equivalence relation on D. Thus, a codense subset of a domain D can be viewed
as a partial equivalence relation, induced by the consistency relation on M , on
the algebraic lattice D�, the domain D with a compact top element � added to
it.

Let F = (|F |, ‖F‖) be a dense, codense and consistent totality on D =
(|D|, ‖D‖), i.e., (|F |, |D|) is a consistent parametrization on the domain |D|,
‖D‖ ⊆ |D| is a dense and codense totality on |D|, and (‖D‖, ‖F‖) is a dense and
codense dependent totality for |F |. We can explain the main point of the proof
that the dependent types in domains with totality agree with dependent types
in equilogical spaces by looking at how the dependent products are constructed
in both setting. In the domain-theoretic setting a total element of the dependent
product P = Π(D,F) is a continuous map f = 〈f1, f2〉 : |D| → |Σ(D,F)| that
maps total elements to total elements and satisfies, for all x ∈ ‖D‖, f1x = x. In
PER(ωALat) a total element of the dependent product Q =

∏
D F is a continuous

map g = 〈g1, g2〉 : |D|� → |Σ(D,F)|� that preserves the partial equivalence
relations and satisfies, for all x ∈ ‖D‖, g1x ↑D x. Here ↑D is the consistency
relation on domain |D|, restricted to the totality ‖D‖. In order to prove that P
and Q are isomorphic we need to be able to translate an element f ∈ ‖P‖ to
one in ‖Q‖, and vice versa. It is easy enough to translate f ∈ ‖P‖ since we can
just use f itself again. This is so because f1x = x implies f1x ↑D x. However,
given a g ∈ ‖Q‖, it is not obvious how to get a corresponding function in ‖P‖.
We need a way of continuously transporting ‘level’ ‖F (g1x)‖ to ‘level’ ‖Fx‖. In
other words, we need a continuous map t such that whenever x, y ∈ ‖D‖, x ↑ y,
and u ∈ ‖Fy‖ then t(y, x)u ∈ ‖Fx‖ and 〈x, t(y, x)u〉 ↑ 〈y, u〉 in |Σ(D,F)|. Given
such a map t, the element of ‖P‖ corresponding to g ∈ ‖Q‖ is the map

x �→ 〈x, t(g1x, x)(g2x)〉.

The theory of totality for parametrizations on domains provides exactly what
we need. Every consistent parametrization F has a transporter t, which has the
desired properties. In addition, we must also require that the parametrization F
be natural, which guarantees that t(y, x) maps ‖Fy‖ to ‖Fx‖ whenever x and y

Continuous Functionals of Dependent Types and Equilogical Spaces 205

are total and consistent. Berger [4] used the naturality conditions for depen-
dent totalities to show that the consistency relation coincides with extensional
equality. As equality of functions in equilogical spaces is defined extensionally, it
is not surprising that naturality is needed in order to show the correspondence
between the equilogical and domain-theoretic settings.

Finally, let us comment on the significance of the density and codensity the-
orems [4] for the results presented in this paper. We define a translation from
dependent totalities to equilogical spaces, and show that it preserves dependent
sums and products. The density theorems for dependent totalities ensure that
the translation is well defined in the first place. Thus, density plays a funda-
mental role, which is further supported by the observation that the category of
equilogical spaces is equivalent to the category of dense partial equivalence rela-
tions on Scott domains, see [2]. The effect of codensity is that the translation of
domain-theoretic totalities into equilogical spaces gives a rather special kind of
totally disconnected equilogical spaces, which we comment on further in Sect. 7.

3 Equilogical Spaces

In this paper, we take an equilogical space A = (|A|,≈A) to be a partial equiva-
lence relation ≈A on an algebraic lattice |A|. The category PER(ωALat) of such
objects and equivalence classes of equivalence preserving continuous maps be-
tween them is equivalent to the original definition of equilogical spaces [2].

The support of an equilogical space A is the set

‖A‖ =
{
x ∈ |A| ∣∣ x ≈A x

}
.

We explicitly describe the locally cartesian closed structure of PER(ωALat).
Let r : J → I be a morphism in PER(ωALat). The pullback along r∗ is the

functor

r∗ : PER(ωALat)/I → PER(ωALat)/J

that maps an object a : A → I over I to an object r∗a : r∗A → J over J , as in
the pullback diagram

r∗A

r∗a

��

��
�� A

a

��
J r

�� I

The pullback functor r∗ has left and right adjoints. The left adjoint is the de-
pendent sum along r

∑
r : PER(ωALat)/J → PER(ωALat)/I

206 A. Bauer and L. Birkedal

that maps an object b : B → J over J to the the object
∑
r b = r◦b : B → I over

I. The right adjoint to the pullback functor r∗ is the dependent product along r
∏
r : PER(ωALat)/J → PER(ωALat)/I,

defined as follows. Let b : B → J be an object in the slice over J . Let ∼ be a
partial equivalence relation on the algebraic lattice |I| × (|J | → |B|) defined by

〈i, f〉 ∼ 〈i′, f ′〉
if and only if

i ≈I i′ ∧ ∀ j, j′ ∈ |J | . (j ≈J j′ ∧ r(j) ≈I i =⇒ f(j) ≈B f ′(j′) ∧ b(f(j)) ≈J j)
The dependent product

∏
r b is the object (|∏r b|,∼), where

|∏r b| = |I| × (|J | → |B|) . (1)

The map ∏
rb :

∏
r b → I is the obvious projection 〈i, f〉 �→ i. See [2] for more

details about the locally cartesian closed structure of PER(ωALat).
For background material on domain theory we suggest [24] or [1]. A Scott

domain is a countably based, algebraic, consistently-complete dcpo. Let ωDom
be the category of Scott domains and continuous maps between them. This
category is cartesian closed and contains the category ωALat as a full cartesian
closed subcategory. We define the ‘top’ functor �� : ωDom → ωALat by setting
D� to be the domain D with a new compact top element added to it. Given a
map f : D → E, let f� : D� → E� be defined by

f�x =

{
fx if x �= �D
�E if x = �D .

It is is easily checked that f� is a continuous map. We are going to use the
following two lemmas and corollary later on. The easy proofs are omitted.

Lemma 1. Let C, D, and E be Scott domains and f : C → (D → E�) a
continuous map. Then the map f ′ : C → (D� → E) defined by

f ′xy =

{
fxy if y �= �D
�E if y = �D

is also continuous.

Corollary 1. Let D, and E be Scott domains and f : D → E� a continuous
map. Then the map f ′ : D� → E defined by

f ′y =

{
fy if y �= �D
�E if y = �D

is also continuous.

Continuous Functionals of Dependent Types and Equilogical Spaces 207

Lemma 2. Suppose D and E are Scott domains, S ⊆ D is an open subset, and
f : D\S → E� is a continuous map from the Scott domain D\S to the algebraic
lattice E�. Then the map f ′ : D → E� defined by

f ′x =

{
fx if x �∈ S
�E if x ∈ S

is also continuous.

4 Domains and Totality

We review some basic definitions about domains with totality from Berger [3,4].
Let B⊥ be the flat domain on the Booleans B = {false, true}. Given a domain D
and a subset M ⊆ D, let ED(M) be the family

ED(M) =
{
p : D → B⊥

∣∣ ∀x∈M .px �= ⊥} .
In words, ED(M) is the set of those continuous predicates on D which only take
on values true and false on elements of M . The family ED(M) is separating when
for every unbounded finite set {x0, . . . , xn} ⊆ D, there exist p0, . . . , pn ∈ ED(M)
such that pixi = true for i = 0, . . . , n and p∗0(true) ∩ · · · ∩ p∗n(true) = ∅.

A totality on a domain is a pair D = (|D|, ‖D‖) where |D| is a domain and
‖D‖ is a subset of |D|. Often the set ‖D‖ itself is called a totality as well. A
totality is dense when ‖D‖ is a topologically dense subset of |D|. A totality
is codense when the family E|D|(‖D‖) is separating. The consistency relation ↑
restricted to a codense totality ‖D‖ is symmetric and transitive.

To each dense and codense totality D we assign an equilogical space

QD = (|D|�, ↑D) (2)

where ↑D is the consistency relation restricted to the totality ‖D‖, i.e., x ↑D y
if, and only if, x, y ∈ ‖D‖ ∧ x ↑ y. We consider only dense and codense totalities
from now on.

A parametrization on a domain |D| is a co-continuous functor F : |D| →
ωDomep from |D|, viewed as a category, to the category ωDomep of Scott domains
and good embeddings. Recall from [4] that an embedding-projection pair is good
when the projection preserves arbitrary suprema. Whenever x, y ∈ |D|, x ≤ y,
there is an embedding F (x ≤ y)+ : Fx→ Fy and a projection F (x ≤ y)− : Fy →
Fx. We abbreviate these as follows, for u ∈ Fx and v ∈ Fy:

u[y] = F (x ≤ y)+(u) ,

v[x] = F (x ≤ y)−(v) .

A parametrization F on |D| is consistent when it has a transporter. A transporter
is a continuous map t such that for every x, y ∈ |D|, t(x, y) is a map from Fx to
Fy, satisfying:

208 A. Bauer and L. Birkedal

(1) if x ≤ y then F (x ≤ y)+ ≤ t(x, y) and F (x ≤ y)− ≤ t(y, x),
(2) t(x, y) is strict,
(3) t(y, z) ◦ t(x, y) ≤ t(x, z).

Let D be a totality. A dependent totality on D is a pair F = (|F |, ‖F‖)
where |F | : |D| → ωDomep is a parametrization and (‖D‖, ‖F‖) is a totality
for the parametrization (|D|, |F |). Just like for totalities on domains, there are
notions of dense and codense dependent totalities. See Berger [4] for definitions
of these and also for definitions of dependent sum Σ(D,F) and dependent product
Π(D,F). From now on we only consider dense and codense dependent totalities
on consistent parametrizations.

A dependent totality F on D is natural if ‖D‖ is upward closed in |D|, ‖Fx‖
is upward closed in |Fx| for all x ∈ ‖D‖, and whenever x ≤ y ∈ ‖D‖ then

∀ v ∈ |Fy| . (v ∈ ‖Fy‖ ⇐⇒ v[x] ∈ ‖Fx‖
)
.

Note that the above condition implies

∀u∈ |Fx| .
(
u ∈ ‖Fx‖ ⇐⇒ u[y] ∈ ‖Fy‖

)
.

Lemma 3. Let F be a natural dependent totality on D. Since F is consistent, it
has a transporter t. Let x, y ∈ ‖D‖, x ↑ y, and u ∈ ‖Fy‖. Then t(y, x)u ∈ ‖Fx‖
and 〈y, u〉 ↑ 〈x, t(y, x)u〉 in |Σ(D,F)|.

Proof. By naturality of F we have (u[x∨y])[x] ∈ ‖Fx‖, and since

(u[x∨y])[x] ≤ t(x ∨ y, x)(t(y, x ∨ y)u) ≤ t(y, x)u

also t(y, x)u ∈ ‖Fx‖. Furthermore, 〈y, u〉 ↑ 〈x, t(y, x)u〉 in |Σ(D,F)| because
x ↑ y and u[x∨y] ↑ (t(y, x)u)[x∨y], which follows from the common upper bound

u[x∨y] ≤ t(y, x ∨ y)u,

(t(y, x)u)[x∨y] ≤ (t(x, x ∨ y) ◦ t(y, x))u ≤ t(y, x ∨ y)u .

This completes the proof.

Let F be a dependent totality on D and let G be a dependent totality on
Σ(D,F). Define a parametrized dependent totality G̃, i.e., a co-continuous func-
tor from D to the category of parametrizations [4], by

G̃x = λu∈Fx .G(x, u) .

More precisely, for each x ∈ D, G̃x is a dependent totality on Fx, defined by
the curried form of G as above. In [4], which provides more details, G̃ is called
the large currying of G. Given such a G̃, there are parametrized versions of

Continuous Functionals of Dependent Types and Equilogical Spaces 209

dependent sum Σ(F,G) and dependent product Π(F,G), which are dependent
totalities on D, defined for x ∈ D by

Π(F,G)x = Π(Fx, G̃x) ,

Σ(F,G)x = Σ(Fx, G̃x) .

To each natural dependent totality F on D we assign an equilogical space

q(D,F) : Q(D,F) → QD

in the slice over QD by defining

Q(D,F) = Q(Σ(D,F)) (3)

q(D,F) = π�1 , (4)

where π1 is the first projection π1 : |Σ(D,F)| → |D|, π1 : 〈x, u〉 �→ x.

5 Comparison of Dependent Types

We show that dependent sums and products on totalities coincide with those on
equilogical spaces.

Theorem 1 (Main Theorem). Let F be a dependent totality on D, and let G
be a dependent totality on Σ(D,F). The construction of dependent sum Σ(F,G)
and dependent product Π(F,G) agrees with the construction of dependent sum
and dependent product in PER(ωALat), i.e.,

Q(D,Σ(F,G)) ∼= ∑q(D,F) q(Σ(D,F), G) ,

Q(D,Π(F,G)) ∼= ∏q(D,F) q(Σ(D,F), G)

in the slice over QD.

The rest of this section constitutes a proof of the Main Theorem, but be-
fore we embark on it, let us explain its significance. We have defined a trans-
lation Q from domain-theoretic dependent totalities to equilogical spaces. The
Main Theorem says that this translation commutes with the construction of
dependent sums and products. Thus, Q preserves the implicit local cartesian
closed structure of totalities Σ(F,G) and Π(F,G). It may seem odd that we
did not define a functor Q that would embed the dependent totalities into
PER(ωALat) and preserve the locally cartesian closed structure. This can be
done easily enough, by defining the morphisms (D,F) → (E,G) to be (equiv-
alence classes of) equivalence-preserving continuous maps Q(D,F) → Q(E,G),
i.e., essentially as the morphisms in PER(ωALat). Note that this is different from
the definition of morphisms between parametrizations, as defined in Berger [4],
where the motivation was to build the hierarchies in the first place, rather than to
study an interpretation of dependent type theory. Thus, a notion of morphism

210 A. Bauer and L. Birkedal

suitable for the interpretation of dependent type theory was never explicitly
given, although it is fairly obvious what it should be. In this manner we triv-
ially obtain a full and faithful functor Q. The crux of the matter is that with
such a choice of morphisms, the domain-theoretic constructions Σ(F,G) and
Π(F,G) indeed yield the category-theoretic dependent sums and products. This
is the main purpose of our work—to show that the domain theoretic construc-
tions of dependent functionals, which has at times been judged arcane and ad
hoc, is essentially the same as the dependent functionals arising in the realiz-
ability topos RT(Pω), which is much smoother and better understood from the
category-theoretic point of view. The benefits of this correspondence go both
ways. On the one hand, the domain-theoretic construction, which was conceived
through a sharp conceptual analysis of the underlying domain-theoretic notions,
is more easily understood and accepted by a category theorist. On the other
hand, we can transfer the domain-theoretic results about the dependent func-
tionals to Equ and RT(Pω), e.g., the Continuous Choice Principle from Sect 6.
It is not clear how to obtain the Continuous Choice Principle directly in the
realizability setting.

Lastly, we note that the Main Theorem is formulated for dependent sums and
products with parameters, i.e., for parametrizations of parametrizations on do-
mains; a parameter-free formulation states only that Q(Π(D,F)) ∼= ∏ q(D,F).
We need the theorem with parameters in order to establish the full correspon-
dence between the lccc structures. We now proceed with the proof of the Main
Theorem.

Dependent Sums. Dependent sums are easily dealt with because all we have to do
is unravel all the definitions. For this purpose, let X = Q(D,Σ(F,G)) and Y =∑

q(D,F) q(Σ(D,F), G). In order to simplify the presentation we assume that
ordered pairs and tuples satisfy the identities 〈x, y, z〉 = 〈〈x, y〉, z〉 = 〈x, 〈y, z〉〉.
This does affect the correctness of the proof, since it just amounts to leaving out
the appropriate canonical isomorphisms. In particular, this assumption implies
the equality |Σ(Σ(D,F), G)| = |Σ(D,Σ(F,G))|. From this it follows that the
underlying lattices |X| and |Y | agree because

|Y | = |Σ(Σ(D,F), G)|� = |Σ(D,Σ(F,G))|� = |X| .
It remains to show that the partial equivalence relations on X and Y agree as
well. We omit the straightforward verification of this fact.

Dependent Products. Dependent products are more complicated. There seems
to be no way around it, since we are dealing with rather heavy domain-theoretic
machinery. Let

U = Q(D,Π(F,G)) ,

V =
∏

q(D,F) q(Σ(D,F), G) .

Let us explicitly describe U and V . The underlying lattice of U is

|U | = |Σ(D,Π(F,G))|� . (5)

Continuous Functionals of Dependent Types and Equilogical Spaces 211

The partial equivalence relation on U relates 〈x, f〉 ∈ |U | and 〈y, g〉 ∈ |U | if, and
only if,

x ↑D y ∧
(∀u∈‖Fx‖ . fu ∈ ‖G(x, u)‖) ∧ (∀ v ∈‖Fy‖ . gv ∈ ‖G(y, v)‖) ∧
∀w∈ |F (x ∨ y)| .

(
(f(w[x]))[〈x∨y,w〉] ↑ (g(w[y]))[〈x∨y,w〉]

)
.

By (1), the underlying lattice of V is

|V | = |D|� × (|Σ(D,F)|� → |Σ(Σ(D,F), G)|�) . (6)

Elements 〈x, y〉 ∈ |V | and 〈y, g〉 ∈ |V | are related if, and only if, the following
holds: x ↑D y, and for all z, z′ ∈ |D| such that z ↑D x and z′ ↑D x, and for all
w ∈ |Fz|, w′ ∈ |Fz′| such that w[z∨z′] ↑F (z∨z′) w

′[z∨z′],

f〈z, w〉 ↑Σ(Σ(D,F),G) g(z′, w′) ∧
π1(f〈z, w〉) ↑Σ(D,F) 〈z, w〉 ∧ π1(g〈z′, w′〉) ↑Σ(D,F) 〈z′, w′〉 .

We define maps φ : |U | → |V | and θ : |V | → |U |, and verify that they represent
isomorphisms between U and V . Let t be a transporter for the parametrization F .
Define the map φ : |U | → |V | by

φ� = � , φ(x, f) = 〈x, φ2(x, f)〉 ,
where φ2(x, f) : |Σ(D,F)|� → |Σ(Σ(D,F), G)|� is

φ2(x, f)� = � , φ2(x, f)(y, u) = 〈x, t(y, x)u, f(t(y, x)u)〉 .
Let s be a transporter for the parametrization G on Σ(D,F). Define the map
θ : |V | → |U | by

θ(�, g) = �
θ(x, g) = if ∃u∈ |Fx| . g(x, u) = �

then �
else 〈x, λu∈ |Fx| . s(g1(x, u), 〈x, u〉)(g2(x, u))〉

where g = 〈g1, g2〉 : |Σ(D,F)| → |Σ(Σ(D,F), G)|.
It is easy and tedious to verify that φ and θ have the intended types. Conti-

nuity of φ follows directly from Corollary 1 and Lemma 1. Continuity of θ follows
from Lemmas 1 and 2. We can apply Lemma 2 because the set
{〈x, g〉 ∣∣ ∃u∈ |Fx| . g(x, u) = �} ⊆ |D| × (|Σ(D,F)|� → |Σ(Σ(D,F), G)|�)

is open, as it is a projection of the open set
{〈x, u, g〉 ∣∣ g(x, u) = �} ⊆ |Σ(D,F)| × (|Σ(D,F)|� → |Σ(Σ(D,F), G)|�) .

212 A. Bauer and L. Birkedal

Next we verify that φ and θ represent morphisms and that they are inverses
of each other. Since we only work with total elements from now on, we do not
have to worry about the cases when � appears as an argument or a result of an
application.

(1) φ represents a morphism U → V in the slice over QD. Let 〈x, f〉, 〈x′, f ′〉 ∈
‖U‖ and suppose 〈x, f〉 ↑ 〈x′, f ′〉. This means that x ↑ x′ and f [x∨x

′] ↑ f ′[x∨x′],
i.e., for every w ∈ |F (x ∨ x′)|

(f(w[x]))[〈x∨x
′,w〉] ↑ (f ′(w[x′]))[〈x∨x

′,w〉] .

We prove that φ(x, f) ≈V φ(x′, f ′). Clearly, x ↑D x′ since x ↑ x′ and x, x′ ∈ ‖D‖.
Let

g = π2(φ(x, f)) = λ〈y, u〉 ∈ |Σ(D,F)| . 〈x, t(y, x)u, f(t(y, x)u)〉
g′ = π2(φ(x′, f ′)) = λ〈y, u〉 ∈ |Σ(D,F)| . 〈x′, t(y, x′)u, f ′(t(y, x′)u)〉 .

Let y, y′ ∈ ‖D‖ such that y ↑ y′ and y ↑ x. Let u ∈ ‖Fy‖ and u′ ∈ ‖Fy′‖ such
that u[y∨y

′] ↑ u′[y∨y′]. We need to show the following:

(a) 〈y, u〉 ↑ 〈x, t(y, x)u〉
(b) g(y, u) ∈ ‖Σ(Σ(D,F), G)‖
(c) g′(y′, u′) ∈ ‖Σ(Σ(D,F), G)‖
(d) (g(y, u))[〈y,u〉∨〈y

′,u′〉] ↑ (g′(y′, u′))[〈y,u〉∨〈y
′,u′〉].

Proof of (a): by assumption y ↑ x, and u[x∨y] ↑ t(y, x)(u)[x∨y] holds because of
the common upper bound:

u[x∨y] ≤ t(y, x ∨ y)u

(t(y, x)u)[x∨y] ≤ (t(x, x ∨ y) ◦ t(y, x))u ≤ t(y, x ∨ y)u .

Proof of (b): by assumption x ∈ ‖D‖, and also t(y, x)u ∈ ‖Fx‖ because x, y ∈
‖D‖, x ↑ y and u ∈ ‖Fy‖. Finally, f(t(y, x)u) ∈ ‖G(x, t(y, x)u)‖ because f ∈
‖Π(Fx, G̃x)‖. The proof of (c) is analogous to the proof (b).
Proof of (d): by assumption x ↑ x′, and (t(y, x)u)[x∨x

′] ↑ (t(y′, x′)u′)[x∨x
′] holds

because

(t(y, x)u)[x∨x
′] ≤ t(y, x ∨ x′)u ≤ t(y ∨ y′, x ∨ x′)(u[y∨y′])

(t(y′, x′)u′)[x∨x
′] ≤ t(y′, x ∨ x′)u′ ≤ t(y ∨ y′, x ∨ x′)(u′[y∨y′])

and u[y∨y
′] ↑ u′[y∨y′]. Let z = t(y, x)u and z′ = t(y′, x′)u′, and let w = z[x∨x

′] ∨
z′[x∨x

′]. We claim that

(fz)[〈x∨x
′,w〉] = (fz)[〈x,z〉∨〈x

′,z′〉] ↑ (f ′z′)[〈x,z〉∨〈x
′,z′〉] = (f ′z′)[〈x∨x

′,w〉] .

From z ≤ w[x] it follows that fz ≤ f(w[x]), hence

(fz)[〈x∨x
′,w〉] ≤ (f(w[x]))[〈x∨x

′,w〉] ,

Continuous Functionals of Dependent Types and Equilogical Spaces 213

and similarly,

(f ′z′)[〈x∨x
′,w〉] ≤ (f ′(w[x′]))[〈x∨x

′,w〉] .

The claim holds because f(w[x])[〈x∨x
′,w〉] ↑ f ′(w[x′])[〈x∨x

′,w〉].

(2) θ represents a morphism V → U in the slice over QD. The proof goes along
the same lines as the proof of (1) and is omitted.

(3) θ ◦ φ ≈U→U 1U . Let 〈x, f〉 ∈ ‖U‖. We need to show that θ(φ(x, f)) ↑ 〈x, f〉.
The first component is obvious since π1(θ(φ(x, f))) = x. As for the second
component, for any v ∈ ‖Fx‖,

(π2(θ(φ(x, f))))v = s(〈x, t(x, x)v〉, 〈x, v〉)(f(t(x, x)v))
≥ s(〈x, v〉, 〈x, v〉)(fv)
≥ fv ,

hence π2(θ(φ(x, f))) ↑ f .

(4) φ◦θ ≈V→V 1V . Let 〈x, g〉 ∈ ‖V ‖. We need to show that φ(θ(x, g)) ≈V 〈x, g〉.
Again, the first component is obvious since π1(φ(θ(x, g))) = x. For the second
component, given any 〈y, u〉 ∈ ‖Σ(D,F, ‖) such that x ↑ y, what has to be shown
is

〈x, t(y, x)u, s(g1(x, t(y, x)u), 〈x, t(y, x)u〉)(g2(x, t(y, x)u))〉 ↑ g(y, u) .

First, we have

〈x, t(y, x)u〉 ↑ 〈y, u〉 and 〈y, u〉 ↑ g1(y, u),

and since these are elements of a codense totality, we may conclude by transitivity
that 〈x, t(y, x)u〉 ↑ g1(y, u). Let z = g1(y, u) and w = 〈x, t(y, x)u〉. The relation

(g2(y, u))[z∨w] ↑ (s(g1w,w)(g2w))[z∨w]

holds because

(g2(y, u))[z∨w] ≤ s(z, z ∨ w)(g2(y, u))

s(g1w,w)(g2w)[z∨w] ≤ s(g1w, z ∨ w)(g2w) ,

and (y, u) ↑ w together with monotonicity of the function s(g1�, z ∨ w)(g2�)
imply that

s(z, z ∨ w)(g2(y, u)) ↑ s(g1w, z ∨ w)(g2w) .

This concludes the proof of the Main Theorem.
Let B be the full subcategory of Equ on objects QD where D is a natural

totality, i.e., ‖D‖ is a dense, codense, and upward closed subset of |D|. It is
the case that B is a cartesian closed subcategory of Equ, see [2]. However, note
that the Main Theorem does not imply that B is a locally cartesian closed
subcategory of Equ. We only showed that B is closed under those dependent
sums and products that correspond to parametrizations on domains. In order to
resolve the question whether B is locally cartesian closed it would be useful to
have a good characterization of B in terms of the categorical structure of Equ.

214 A. Bauer and L. Birkedal

6 Continuous Choice Principle

As an application of the Main Theorem, we translate Berger’s Continuous Choice
Principle for dependent totalities [4] into a Choice Principle expressed in the
internal logic of Equ. The internal logic of Equ is a predicative version of intu-
itionistic first-order logic with dependent types, subset types, and regular quo-
tient types. It is the logic that Equ inherits as a subcategory of the realizability
topos RT(Pω), see [6] for details. In this section we use obvious and customary
notational simplifications for dependent products and sums.

Let (D,F) be a dependent totality. By [4, Proposition 3.5.2] there is a con-
tinuous functional

choose ∈ |Π(x :D, (Fx→ B⊥) → Fx)|

such that for all x ∈ ‖D‖ and p ∈ ‖Fx→ B‖, if p∗(true) �= ∅, then (choosex)p ∈
p∗(true) ∩ ‖Fx‖. Let X = QD, Y = Q(D,F) and 2 = Q(B⊥). By looking at
the proof of [4, Proposition 3.5.2], we see that choose is not a total functional
of type ‖Π(x :D, (Fx→ B⊥) → Fx)‖ because choose applied to the constant
function λx. false yields ⊥, which is not total. This means that choose does not
represent a morphism in Equ. Nevertheless we can use it to construct a realizer
for the following Choice Principle, stated in the internal logic of Equ:

∀ p∈ (
∑
x :X Y x) → 2 .

((∀x∈X .¬¬∃ y ∈Y x . (p(x, y) = true)
)

=⇒
(∃h∈∏x :X Y x .∀x∈X . p(x, hx) = true

))
(7)

We omit the proof. Suffice it to say that (7) is realized using choose in much the
same way as in the proof of [4, Corollary 3.5.3].

If we specialize (7) by setting X = 1 and Y = N, we obtain

∀ p∈N → 2 .
((¬¬∃ y ∈N . py = true

)
=⇒ ∃ z ∈N . pz = true

)

This is a form of Markov’s Principle, see for example [25, Vol. 1, Chap. 4, Sect. 5].
Thus, (7) is a generalization of Markov’s Principle. This view is in accordance
with the construction of the choose functional in [4], which works by searching
for a witness.

7 Concluding Remarks

We have shown that dependent sums and dependent products of continuous
parametrizations on domains with dense, codense, and natural totalities agree
with dependent sums and dependent products in Equ. This subsumes our result
from [2] and gives further support to Dana Scott’s remark that Equ is a theory
of total functions. Our result can be combined with the result by Normann and
Waggbø, who related dependent types in domains with totality and dependent
types in limit spaces [20], and with the results by Rosolini, who related dependent

Continuous Functionals of Dependent Types and Equilogical Spaces 215

types in Equ to dependent types in various categories of filter spaces [22]. The
conclusion is that the dependent-type hierarchies over the natural numbers agree
in four settings: domains with totality, equilogical spaces, and thus also in the
realizability topos RT(Pω), limit spaces, and filter spaces.

Once the Main Theorem was established, we could use the Continuous Choice
Principle of Berger from the setting of domains with totality to show the validity
of a Choice Principle in Equ. The Choice Principle in Equ is most concisely stated
in the internal logic of Equ, and it would be interesting to prove it directly
in Equ. It is likely that such a proof requires better understanding of what
codensity corresponds to in Equ. It is not clear how to express codensity in
terms of the categorical or the internal logical structure of Equ. We remark
that every dense and codense totality D translates into a totally disconnected
equilogical space QD. An equilogical space X is totally disconnected when the
curried form of the evaluation map X → 22X

is monic, or equivalently, when the
topological quotient ‖X‖/≈X is a totally disconnected space. There are totally
disconnected equilogical spaces that do not arise as dense and codense totalities.
The subcategory of totally disconnected equilogical spaces is a locally cartesian
closed subcategory of Equ. Perhaps the notion of total disconnectedness, or some
refinement of it, can be useful for this purpose.

The Main Theorem can be used to infer another consequence about equilog-
ical spaces. Berger [4,5] showed that extensional equality on the dependent-type
hierarchy over the natural numbers coincides with the partial equivalence re-
lation induced by the consistency relation on the underlying domains. This is
important because the logical complexity of extensional equality is as compli-
cated as the type at which it is defined, whereas consistency can be expressed as
a Π0

1 statement and has bounded logical complexity. The Main Theorem implies
an analogous result for equality in Equ.

References

1. R.M. Amadio and P.-L. Curien. Domains and Lambda-Calculi, volume 46 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

2. A. Bauer, L. Birkedal, and D.S. Scott. Equilogical spaces. Preprint submitted to
Elsevier, 1998.

3. U. Berger. Total sets and objects in domain theory. Annals of Pure and Applied
Logic, 60:91–117, 1993.

4. U. Berger. Continuous Functionals of Dependent and Transitive Types. Habilita-
tionsschrift, Ludwig-Maximilians-Universität München, 1997.

5. U. Berger. Continuous functionals of dependent
and transitive types. Short version. Available at
http://www.mathematik.uni-muenchen.de/˜berger/habil/lc.dvi.Z., 1997.

6. L. Birkedal. Developing Theories of Types and Computability. PhD thesis, School
of Computer Science, Carnegie Mellon University, December 1999. Available as
CMU Technical Report: CMU-CS-99-173.

7. Y.L. Ershov. Model C for partial continuous functionals. In Logic Colloquium
1976, pages 455–467. North-Holland, 1977.

http://www.mathematik.uni-muenchen.de/~berger/habil/lc.dvi.Z

216 A. Bauer and L. Birkedal

8. R.O. Gandy and J.M.E. Hyland. Computable and recursively countable functions
of higher type. In R.O. Gandy and J.M.E. Hyland, editors, Logic Colloquium 1976,
pages 407–438, Amsterdam, Holland, 1977. North-Holland.

9. R. Heckmann. On the relationship between filter spaces and equilogical spaces.
Available at http://www.cs.uni-sb.de/RW/users/heckmann/domains.html.

10. J.M.E. Hyland. Filter spaces and continuous functionals. Annals of Mathematical
Logic, 16, 1979.

11. S.C. Kleene. Countable functionals. In Constructivity in Mathematics, pages 81–
100, 1959.

12. L. Kristiansen and D. Normann. Total objects in inductively defined types. Arch.
Math. Logic, 36:405–436, 1997.

13. G. Longo and E. Moggi. The heredetarily partial effective functionals and recursion
theory in higher types. Journal of Symbolic Logic, 40:1319–1332, 1984.

14. M. Menni and A. Simpson. Topological and limit-space subcategories of countably-
based equilogical spaces. Submitted to Math. Struct. in Comp. Science. Available
at http://www.dcs.ed.ac.uk/home/als/Research/, November 1999.

15. D. Normann. Recursion on the Countable Functionals. Number 811 in Lecture
Notes in Mathematics. Springer Verlag, 1980.

16. D. Normann. A hierarchy of domains with totality, but without density. In S.B.
Cooper, T.A. Slaman, and S.S. Wainer, editors, Computability, Enumerability, Un-
solvability, pages 233–257. Cambridge University Press, 1996.

17. D. Normann. Closing the gap between the continuous functionals and recursion in
3E. Arch. Math. Logic, 36:269–287, 1997.

18. D. Normann. Categories of domains with totality. Available at
http://www.math.uio.no/˜dnormann/, June 1998.

19. D. Normann. The continuous functionals. In E.R. Griffor, editor, Handbook of
Computability Theory. Elsevier, Amsterdam, Holland, 1998.

20. D. Normann and G. Waagbø. Limit spaces and transfinite types. Available at
http://www.math.uio.no/˜dnormann/, 1998.

21. G. Plotkin. Full abstraction, totality, and PCF. Mathematical Structures in Com-
puter Science, 1998.

22. G. Rosolini. Equilogical spaces and filter spaces. Available at
ftp://ftp.disi.unige.it/pub/person/RosoliniG/papers/equsfs.ps.gz,
1999.

23. H. Schwichtenberg. Density and choice for total continuous functionals. In
P. Odifreddi, editor, Kreiseliana. About and Around George Kreisel, pages 335–
365. A K Peters, 1996.

24. V. Stoltenberg-Hansen, I. Lindström, and E.R. Griffor. Mathematical Theory of
Domains. Number 22 in Cambridge Tracts in Computer Science. Cambridge Uni-
versity Press, 1994.

25. A.S. Troelstra and D. van Dalen. Constructivism in Mathematics. North-Holland,
1988. 2 volumes.

26. G. Waagbø. Domains-with-totality Semantics for Intuitionistic Type Theory.
Dr. scient. thesis, The University of Oslo, 1997.

http://www.cs.uni-sb.de/RW/users/heckmann/domains.html
http://www.dcs.ed.ac.uk/home/als/Research/
http://www.math.uio.no/~dnormann/
http://www.math.uio.no/~dnormann/
ftp://ftp.disi.unige.it/pub/person/RosoliniG/papers/equsfs.ps.gz

Definability over Linear Constraints

Michael Benedikt1 and H. Jerome Keisler2

1 Bell Laboratories, 263 Shuman Blvd., Naperville, IL 60566, USA,
benedikt@research.bell-labs.com

2 University of Wisconsin, Madison Wisconsin 53706, USA,
keisler@math.wisc.edu

Abstract. We settle a number of questions concerning definability in
first order logics with an extra predicate symbol ranging over semi-linear
sets. These questions are motivated by the constraint database model
for representing spatial data. We give new results both on the positive
and negative side: we show that in first-order logic one cannot query a
semi-linear set as to whether or not it contains a line, or whether or
not it contains the line segment between two given points. However, we
show that some of these queries become definable if one makes small
restrictions on the semi-linear sets considered.

1 Introduction

Much recent work in the foundations of spatial databases concerns the model-
ing of spatial information by constraint sets: Boolean combinations of linear or
polynomial inequalities. Constraint sets can be effectively queried using variants
of first-order logic; this is the basic idea behind constraint query languages ([9],
[7]). The most well-studied languages in this family are the first-order linear
constraint language FOLIN and the first-order polynomial constraint language
FOPOLY . By a semi-linear set we mean a subset of a Euclidean space Rn which
is definable by a linear constraint, that is, a quantifier-free first order formula
in the real ordered group 〈R,+,−, < 〉. (Here and throughout this paper, for-
mulas may have parameters from R). By quantifier elimination, each first order
formula is equivalent to a linear constraint in the real ordered group. FOLIN
is the first-order language with the vocabulary of the real ordered group plus
an extra predicate symbol S which ranges over semi-linear sets. Every FOLIN
sentence defines a collection of semi-linear sets. In FOPOLY , the product sym-
bol × is added to the vocabulary, and the extra predicate symbol S ranges over
the semi-algebraic sets— the subsets of Rn which are definable by polynomial
constraints, i.e. quantifier-free (or first order) formulas in the ordered field of
reals.

A basic question, then, concerns the expressive power of these languages.
Which families of definable sets (semi-linear sets for FOLIN , semi-algebraic sets
for FOPOLY) can be defined by a sentence in the language of the real ordered

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 217–232, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

218 M. Benedikt and H.J. Keisler

group (respectively field) with an extra predicate symbol ranging over the defin-
able sets? More generally, given a family of sets F in Euclidean space, one can
ask: Which subfamilies of F can be defined by a sentence in FOLIN or FOPOLY
with an extra predicate symbol ranging over F . Recent work has clarified many
questions about the expressive power of FOLIN and FOPOLY with an extra
predicate symbol ranging over the finite subsets of Euclidean space ([3], [9]).
There are also a number of recent results about the expressiveness of FOPOLY
with an extra predicate symbol ranging over the semi-algebraic sets ([5], [8]).
However, the expressiveness of FOLIN with an extra predicate symbol ranging
over the semi-linear sets is much less understood. Let’s consider the following
examples in the Euclidean plane:

Colinear = {A ⊂ R2 : all points in A are colinear }

Is.Line = {A ⊂ R2 : A is the graph of some line }
Cont.Line = {A ⊂ R2 : A contains the graph of some line }

Lin.Reach =
{
(A,a, b) :

A ⊂ R2,a, b ∈ R2,
A contains the line segment from a to b

}

In the last example, FOLIN has extra constant symbols ranging over R, in
addition to the extra predicate symbol S. Each of the four examples is easily
seen to be definable by a sentence in FOPOLY , since there one can quantify over
lines. Are they also definable in FOLIN? It is fairly straightforward to show that
Colinear is not definable by a sentence in FOLIN (see [1] and remark 1 below).
However Is.Line is definable in FOLIN [2]. A semi-linear set A belongs to the
collection Is.Line iff it is either a vertical line or is the graph of a function and
has the property that if x,y,z ∈ A then x+ (y − z) ∈ A.

It was asked in [1] whether Cont.Line is definable in FOLIN . This and
related questions were also considered in [2]. The general question is: under
what circumstances can we ask questions about the existence of lines or line-
segments in FOLIN? If it appears that a query cannot be expressed in FOLIN ,
how can we prove this? There is a need for techniques to show that a family of
semi-linear sets is or is not definable in FOLIN . In this paper we introduce such
techniques, particularly methods from nonstandard analysis, and use them to
resolve numerous questions about the definability of sets such as Cont.Line and
Lin.Reach. We also show some positive results, giving that over certain classes
of sets queries with quantification over lines are expressible. For example, we
show that Cont.Line is undefinable over arbitrary semi-linear sets, but we also
show that Cont.Line is definable if the extra predicate symbol ranges over an
interesting subclass, the thin semi-linear sets. We also investigate several natural
languages between FOLIN and FOPOLY . We give game characterizations of
definability in these languages, and extend several of the undefinability results.
Organization: Section 2 introduces the notation and basic definitions. Section
3 gives the basic negative results showing that a number of queries are undefin-
able in FOLIN . Section 4 gives positive results showing that certain queries are

Definability over Linear Constraints 219

definable when the extra predicate S ranges over restricted classes of semi-linear
sets. Section 5 is about the definability of the property that any two points are
n-linked (connected by a polygonal path with at most n segments). Conclusions
are given in Section 6.

2 Notation

2.1 The Language FOLIN

We start with a signature S consisting of predicate and constant symbols. For
simplicity we will confine our attention to the case where S = 〈S, c 〉 has only
one binary predicate symbol S, and a sequence c of constant symbols of length
l. The sequence c of constant symbols may be empty, that is, l = 0.

We let FOLIN (S) be the first-order language over the vocabulary S∪{+,−, <
}. When S is clear from context we refer simply to FOLIN . The first order
structures for this vocabulary have the form 〈R,+,−, <,A,a 〉 where A ⊂ R2

interprets S and a ∈ Rl interprets c. Since all the structures under consideration
have the same 〈R,+,−, < 〉 part, we concentrate on the other part and define an
S-structure to be an object A = 〈A,a 〉 where A ⊂ R2 interprets S and a ∈ Rl
interprets c.

An S-structure A = 〈A,a 〉 satisfies a sentence φ ∈ FOLIN (S), in symbols
A |= φ, exactly when the corresponding first order structure 〈R,+,−, <,A〉 =
〈R,+,−, <,A,a 〉 satisfies φ. If the relation A is semi-linear, we say that A is a
semi-linear structure, or semi-linear instance. Semi-algebraic and semi-analytic
structures are defined similarly. Any collection of S-structures is called a (Eu-
clidean) query. By a semi-linear query, we will mean a collection of semi-linear
structures. We say that a query X is FOLIN -definable if there is an FOLIN
sentence φ such that:

for every semi-linear structure A, A |= φ if and only if A ∈ X.

We will sometimes consider the following generalization where the family of all
semi-linear structures is replaced by another family of structures. Given a “base”
query F (not necessarily semi-linear), we say that a query X is FOLIN -definable
over F if there is a sentence φ of FOLIN such that:

for every A ∈ F, A |= φ if and only if A ∈ X.

Thus when a base F is not mentioned, it is understood to be the family of all
semi-linear structures. Some examples of base queries F that will arise in this
paper are the families of semi-linear structures A = 〈A,a 〉 such that the relation
A is:

220 M. Benedikt and H.J. Keisler

• finite;
• thin, that is, has an empty interior;
• 1-bounded, that is, is contained in a unit square [0, 1]2;
• has at most n singular points (a singular point is a vertex of the boundary
of A).

We note that if a query is FOLIN definable over F then it is FOLIN definable
over any subcollection E ⊆ F . Thus definability results are stronger when F
is larger, while undefinability results are stronger when F is smaller. We will
study the definability of some natural queries in FOLIN and its extensions. As
a starting point, we recall a known fact, which is a consequence of the classical
result that the product function cannot be defined in the first order theory of
〈R,+,−, < 〉.

Remark 1. The query Colinear is not FOLIN definable over the collection of
subsets of the plane of cardinality three.

2.2 Nonstandard Analysis and Undefinability

We will use notions from nonstandard analysis as a tool in many of our proofs.
However, all of our results are statements about the standard reals.

The main place where nonstandard notions will be used is in characteriza-
tions of definability in query languages (as in, e.g., [4]). We assume familiarity
with basic notions of nonstandard analysis (see [6]), but give a briefer-than-brief
review here.

N denotes the set of positive integers. For any set U , the superstructure
V (U) with base set U is defined as V (U) =

⋃
n∈N Vn(U) where V1(U) = U , and

Vn+1(U) = Vn(U)∪{X : X ⊂ Vn(U)}. Note in particular that U ∈ V (U). We will
work with the superstructure 〈V (U),∈ 〉 considered as a structure for the first-
order language with the binary relation ∈. A bounded quantifier formula in this
language is a formula built up from atomic formulas by the logical connectives
and the bounded quantifiers: ∀X ∈ Y , ∃X ∈ Y , where X and Y are variables.
Almost all of “classical” mathematics can be done within the superstructure
V (R) based on the set R of reals.

A nonstandard universe (based on R) consists of a pair of superstructures
V (R) and V (∗R) and a mapping ∗ : V (R)→ V (∗R) such that:

1. ∗R is a proper extension of R
2. For each r ∈ R, ∗r = r
3. (Transfer Principle) For any bounded quantifier formula φ(v1, . . . , vn) and

any list a1, . . . , an of elements from V (R), φ(a1, . . . , an) is true in V (R) if
and only if φ(∗a1, . . . , ∗an) is true in V (∗R).

We will fix a nonstandard universe once and for all.

Definability over Linear Constraints 221

Note that ∗R is the image of the element R ∈ V (R), and ∗R ∈ V (∗R). An
element B ∈ V (∗R) is standard if it is in the image of the ∗-map, that is, B = ∗A
for some A ∈ V (R), and internal if it is an element of a standard set, that is,
B ∈ ∗A for some A ∈ V (R).

Some examples of standard sets are ∗R, the usual order relation and arith-
metic operations on ∗R, and the sets ∗Z, ∗Q, and ∗N . To improve readability, we
ordinarily drop the ∗ from the order relation and arithmetic operations of ∗R.

All standard sets are internal, all elements of internal sets internal, and any
finite subset of an internal set is internal. Other examples of internal sets are the
closed intervals ∗[a, b] where a, b ∈ ∗R, and more generally the sets and relations
which are first-order definable in the structure 〈 ∗R, ∗N,<,+,−,×〉.

An element r ∈ ∗R is finite if |r| < n for some n ∈ N , and infinitesimal if
|r| < 1/n for all n ∈ N . For r, s ∈ ∗R, we write r ≈ s if |r − s| is infinitesimal.
For each finite r ∈ ∗R, there is a unique standard real number or ∈ R, called the
standard part of r, such that or ≈ r.

Three important consequences of the definition are:

• N is a proper initial segment of ∗N in the natural ordering.
• Every nonempty internal subset of ∗R which has an upper bound has a least
upper bound.
• Every infinite internal set is uncountable (and has cardinality at least the
continuum).

It follows that infinite and positive infinitesimal elements of ∗R exist. In fact,
there are uncountably many infinite K ∈ ∗N , and uncountably many infinitesi-
mals in ∗Q.

Some examples of sets in V (∗R) which are not internal are: any nonempty
subset of ∗R which has an upper bound but no least upper bound (such as R,
the set of finite elements, or the set of infinitesimals), any countably infinite set,
the set of all finite subsets of ∗R, and the standard part function o.

By the Transfer Principle, the mapping ∗ is an elementary embedding of the
ordered ring 〈Z,+,−,×, < 〉 into 〈 ∗Z,+,−,×, < 〉, and similarly for R and ∗R.
Many of the facts we need from nonstandard analysis can be derived from these
elementary embedding results.

When a set A ∈ V (R) has a name, say the set of widgets, the elements of
∗A are called ∗widgets, or hyperwidgets. For example, ∗R is the set of hyperreal
numbers, and the image of the collection of semi-linear sets is the collection of
hypersemi-linear sets. Thus every hypersemi-linear set is internal. Hypersemi-
linear sets will appear in many of our proofs. When discussing properties of
a hypersemi-linear set, we will often drop the “hyper” prefix; for example, we
will usually write “line” rather than “hyperline”, and “connected” rather than
“hyperconnected”.

222 M. Benedikt and H.J. Keisler

By the Transfer Principle, any set which is definable by a first order formula
in 〈 ∗R,+,−, < 〉 is hypersemi-linear. In fact, any set which is definable by a
first order hyperformula with parameters in 〈 ∗R,+,−, < 〉 (or, equivalently, by a
hyperfinite Boolean combination of linear constraints) is still hypersemi-linear.

The following proposition will be useful in proving undefinability results. In
this proposition, ≡ stands for the elementary equivalence relation between first
order structures.

Proposition 1. Suppose X and F are Euclidean queries. Then the following
are equivalent:

1. X is not FOLIN -definable over F .
2. There are hyperstructures A,B ∈ ∗F such that A ∈ ∗X and B /∈ ∗X, but

〈 ∗R,+,−, <,A〉 ≡ 〈 ∗R,+,−, <,B 〉.

Proof: We will only use the direction from 2 to 1 in this paper, so we prove that
direction here and leave the converse as an exercise. Assume that 1 fails but 2
holds. Let φ be an FOLIN sentence which defines X over F . By the Transfer
Principle, since A ∈ ∗X, we have A |= φ and 〈 ∗R,+,−, <,A〉 |= φ. Similarly,
since B /∈ ∗X, we have B |= ¬φ and 〈 ∗R,+,−, <,B 〉 |= ¬φ. This contradicts
2. ��

3 Undefinability in First-Order Logic

Theorem 1. The query Lin.Reach is not definable in FOLIN .

Proof: To do this we construct a hypersemi-linear set A as follows. Let δ be a
positive infinitesimal and m be an element of ∗(0, 1) which satisfy requirements
to be given below. Let B be the set of parallel lines y = Kδ+mx, with K ∈ ∗Z,
and let A be the intersection of B with the hyperreal unit square ∗[0, 1]2. Thus
δ will be the vertical distance between line segments, and m will be the slope of
any of the lines. See Figure 1.

Let D = {K : K/n ∈ ∗Z for all n ∈ N}. D is the largest divisible subgroup
of 〈 ∗Z,+,−〉. D is nontrivial, since K! ∈ D for any infinite K ∈ ∗N . Choose
hyperrational numbers m, δ ∈ ∗Q ∩ ∗[0, 1] so that:

• m = J/L ∈ ∗Q where J, L ∈ ∗N and J ≤ L
• The standard part ◦m (which belongs to [0, 1]) is irrational
• H = 1/δ is in D and is such that H/L ∈ D (i.e. H is L times something in
D)

Our aim is to find a function f satisfying the following requirements. Let
∆(x) = f(x)−x. We say that a function f : ∗R→ ∗R is good if for all x, y ∈ ∗R :

Definability over Linear Constraints 223

Fig. 1. The Basic Construction

• f is a bijection
• f is order preserving
• f is linear, i.e. f(x+ y) = f(x) + f(y)
• f(ε) = ε for all infinitesimal ε
• f(z) = z for all z ∈ ∗Z
• f(x) ≈ x (hence ∆(x) ≈ 0)
• ∆(x)/δ ∈ D and ∆(x)m/δ ∈ D
• f(m) �= m

For any function f on the hyperreal line, we let f2 be the map on the plane
defined by f2((x, y)) = (f(x), f(y)).

Claim 1 For any good function f , f2 maps any point lying on a line of the form
y = Kδ +mx, with K ∈ ∗Z, to a point on another line of this form.

Proof: Given y = Kδ +mx, we show that (f(x), f(y)) is of the required form:
i.e. (f(y)−mf(x))/δ ∈ ∗Z. We have

f(y)−mf(x) = f(Kδ) + f(mx)−mf(x) = Kδ +∆(Kδ) +mx+∆(mx)−
m(x+∆(x)).

This is Kδ + ∆(Kδ) + ∆(mx) −m∆(x). But each of these four terms is a
multiple of δ, because for every z, ∆(z)/δ ∈ D ⊂ ∗Z, and similarly, m∆(x)/δ ∈
∗Z. ��

Lemma 1. There is a good function f .

224 M. Benedikt and H.J. Keisler

The proof of this lemma will take some time. Let R0 be the smallest divisible
subgroup of 〈 ∗R,+,−〉 that contains both ∗Z and the set of all infinitesimals.
Note that R0 is just the set of all x ∈ ∗R such that the standard part of the
fractional part of x is rational.

Claim 2 R0 is equal to the set of all x ∈ ∗R such that x = p + n + ε for some
p ∈ Q ∩ [0, 1), n ∈ ∗Z, and ε ≈ 0. Moreover, for each x ∈ R0, the decomposition
x = p+ n+ ε is unique.

Proof: The first statement is clear. To prove uniqueness, suppose p + n + ε =
p′+n′+ε′. Then n−n′ = (p′−p)+(ε′−ε). The left side of this equation belongs
to ∗Z, and the right side is finite and has standard part in (−1, 1). Therefore
both sides of the equation are equal to 0. Therefore n = n′ and p′ ≈ p. It follows
that p′ = p and hence ε′ = ε. ��

Now let c be the cardinality of the continuum. As usual, we identify c with the
set of all ordinals of cardinality less than c. Let {rα : α < c} be an enumeration
of the set of all reals in [0, 1). Starting with R0 defined above, we build an
increasing chain of sets Rα, α < c by the following transfinite recursion. For
limit ordinals γ < c, put Rγ =

⋃
β<γ Rβ . For successor ordinals α+ 1, let Rα+1

be the smallest divisible subgroup of 〈 ∗R,+,−〉 that contains both Rα and rα.
We then have ∗R =

⋃
α<cRα. Note that in the case that rα ∈ Rα, Rα+1 is just

Rα.

Claim 3 Rα+1 is equal to the set of all x ∈ ∗R such that x = prα + n + y for
some p ∈ Q, n ∈ ∗Z, and y ∈ ∗[0, 1) ∩ Rα. Moreover, if rα /∈ Rα, then for each
x ∈ Rα+1 the decomposition x = prα + n+ y is unique.

Proof: To prove uniqueness, suppose prα+n+ y = p′rα+n′+ y′. If p �= p′, then
rα = ((n − n′) + (y − y′))/(p′ − p) ∈ Rα. On the other hand, if p = p′, then
n + y = n′ + y′, so n − n′ = y′ − y. The left side of this equation belongs to
∗Z and the right side belongs to ∗(−1, 1). Therefore both sides are equal to 0, so
n = n′ and y = y′. ��

Claim 4 For each α < c, Rα contains fewer than c real numbers.

Proof: We will prove by transfinite induction that for each α < c, |Rα ∩ R| ≤
ℵ0 + |α| < c. By Claim 2, R0 ∩R = Q, so |R0 ∩R| = ℵ0. If α is a limit ordinal,
then by inductive hypothesis, |Rα ∩R| ≤

∑
β<α(ℵ0 + |β|) = ℵ0 + |α|.

Now assume the result for α. By Claim 3 we have |Rα+1∩R| ≤ |Q|×|Rα∩R| ≤
ℵ0 + |α|. Thus the result holds for α+ 1, and the induction is complete. ��

Claim 5 There exist infinitely many positive infinitesimal ε ∈ ∗Q such that
ε/δ ∈ D and εm/δ ∈ D.

Proof: By hypothesis, 1/δ = H whereH ∈ D andH/L ∈ D, somH = J(H/L) ∈
D. Thus for all n ∈ N , H/n ∈ ∗Z and mH/n ∈ ∗Z. Using the Transfer Principle,

Definability over Linear Constraints 225

there is a least n ∈ ∗N \ N such that H/n /∈ ∗Z or mH/n /∈ ∗Z. Therefore for
all sufficiently small infinite K ∈ ∗N we have H/K ∈ D and mH/K ∈ D. Thus
ε = 1/K has the required property. ��

With another transfinite recursion, we build an increasing chain of functions
f � Rα : Rα → ∗R, α < c. Let f � R0 be the identity function on R0, take
unions at limit ordinals, and define f � Rα+1 as follows when rα /∈ Rα: By
Claim 5 we may choose a positive infinitesimal εα ∈ ∗Q such that εαH ∈ D
and εαmH ∈ D. For x ∈ Rα+1, put x = prα + n + y as in Claim 3, and define
f(x) = p(rα + εα) + f(n+ y). When x ∈ Rα, we have p = 0, so the new value of
f(x) agrees with the old. Taking the union, we have a function f : ∗R→ ∗R.

We now add one more requirement in the construction which will insure
that f(m) �= m. Consider the first β such that m ∈ Rβ . Since om is irrational,
m /∈ R0, so β > 0. Then β must be a successor ordinal, β = α+1. Since m /∈ Rα
we have Rα+1 �= Rα and thus rα /∈ Rα. We then have a unique decomposition
m = prα + n + y with p �= 0. Any two different choices of the infinitesimal εα
will result in different values for f(m), so we can choose εα in such a way that
f(m) �= m.

Claim 6 The function f is good.

Proof: We verify the requirement that ∆(x)/δ ∈ D and ∆(x)m/δ ∈ D for all x ∈
∗R. Let β = α+1 be the first ordinal such that x ∈ Rβ , and put x = prα+n+y.
We argue by induction on α. We have ∆(x) = f(x)−x = pεα+∆(n+ y), where
n + y ∈ Rα and p ∈ Q. By definition, εα/δ ∈ D, and by inductive hypothesis,
∆(n + y)/δ ∈ D. Since D is a divisible group, it follows that ∆(x)/δ ∈ D. The
proof that ∆(x)m/δ ∈ D is similar. The other requirements on f are easily
proved by induction on α. ��

This completes the proof of Lemma 1.
We now use the good function f to complete the proof of Theorem 1. Consider

the hypersemi-linear structures A = 〈A, 0, 0, 1,m 〉 and B = 〈A, 0, 0, 1, f(m) 〉.
The two points (0, 0), (1,m) are on the same line segment in A, so Lin.Reach
holds in A. But f(m) �= m, so Lin.Reach fails in B. Since f is good, it is
an automorphism of the hyperreal ordered group that maps the relation and
constants in A to those in B. Hence
〈 ∗R,+,−, <,A〉 ≡ 〈 ∗R,+,−, <,B 〉. By Proposition 1, Lin.Reach is not FOLIN
definable. ��

The above proof shows more. Let Conn be the query

Conn = {(A,a, b) : A ⊂ R2,a, b ∈ R2, a is connected to b in A}.

Corollary 1. Lin.Reach is not FOLIN -definable over the collection F of 1-
bounded thin semi-linear sets. In fact, there is no sentence ψ of FOLIN (S) such
that (Lin.Reach→ ψ) ∧ (ψ → Conn) holds in all A ∈ F .

226 M. Benedikt and H.J. Keisler

Proof: The graph A is 1-bounded and thin. The points (0, 0), (1,m) are on
the same line segment in the structure A, but the corresponding points (0, 0),
(1, f(m)) are not even connected in the structure B. Thus ψ would have to hold
in A but fail in B, so ψ cannot be a sentence of FOLIN . ��

The proof of Theorem 1 can be modified to show that Lin.Reach is FOLIN
undefinable over other families. For example, the preceding proof uses hypersemi-
linear sets with infinitely many parallel line segments, which corresponds to a
family of semi-linear sets with unboundedly many parallel line segments, and
thus unboundedly many singular points. The next result has a finite bound on
the number of singular points but a nonempty interior.

Theorem 2. Lin.Reach is not FOLIN -definable over the collection of 1-bounded
semi-linear sets with ten singular points.

Proof: We modify the set A to form two new sets T and U (see Figure 2). To
form T , we first replace the unit square by the “unit right triangle” with vertices
(0, 0), (1, 0), (1, 1). Then we add all of the interior of the unit right triangle except
for two similar infinitesimal triangular windows around the points (0, 0) and
(1,m) with height < δ. These windows are so small that they miss all of the
original family of parallel lines of slope m except for the line segment through
(0, 0), (1,m). The set T formed in this way is a 1-bounded hypersemi-linear set
with ten singular points. The set U is similar except that the second triangular
window is around the point (1, f(m)). We use the same function f as before. f
is an isomorphism between the structures 〈T, 0, 0, 1,m 〉 and 〈U, 0, 0, 1, f(m) 〉.
The points (0, 0), (1,m) are on a line segment contained in T but the points
(0, 0), (1, f(m)) are not on a line segment contained in U . ��

We will now show that the query Cont.Line is not first order definable. Here
the signature has a binary predicate symbol but no constants.

Theorem 3. The query Cont.Line is not definable in FOLIN . In fact, it’s not
even FOLIN -definable over the collection of semi-linear sets with ten singular
points.

Proof: We modify the construction in the previous theorem. Let T,U, and f be
as in the proof of Theorem 2. We will add two infinite cones to T as follows. Let
C1 be the cone heading towards −∞ with apex (0, 0) and bounded by two rays
having standard rational slopes r and s where 0 < r < ◦m < s < 1. See Figure
3.

C1 is a standard cone defined by rational numbers, and hence will be fixed
by f . Let C2 be the cone with apex (1,m) and bounded by two lines having
rational slopes r′ and s′ with 0 < r′ < ◦m < s′ < 1. The base of C2 will be
moved by f , and the rationality of the slopes will guarantee that the boundary
lines map to boundary lines. Thus C2 maps under f to the cone C ′2 with apex
(1, f(m)) and boundary rays having slopes s′ and t′. Let T1 = T ∪ C1 ∪ C2 and
U1 = U ∪ C1 ∪ C ′2. These sets again have ten singular points. T1 contains a

Definability over Linear Constraints 227

Fig. 2. Modified Construction

line and T2 does not. It is clear that f maps T1 to T2, which shows that the
corresponding structures are equivalent in FOLIN . ��

4 Definability over Thin Sets

There is an intuition that queries such as Lin.Reach and Cont.Line are “almost”
first-order definable. We will give two positive results showing that Cont.Line
and Lin.Reach are FOLIN definable over restricted classes of semi-linear struc-
tures.

We note that in Theorem 3 we made use of examples that had nonempty, and
in fact unbounded, interiors. We show here that this is essential. We show that
Cont.Line is definable over thin semi-linear instances: i.e. there is an FOLIN
sentence φ such that for each thin semi-linear structure A, A |= φ ↔ A ∈
Cont.Line.

Theorem 4. Cont.Line is FOLIN definable over the family of thin semi-linear
sets.

Proof: A point is called regular in S if it is not singular in S. If U(y,z) denotes
the open rectangle with corners y,z, then x ∈ U(y,z) can be expressed by the
formula y1 < x1 < z1 ∧ y2 < x2 < z2. Thus if S is thin one can say that x is
regular in S with the formula Reg(x):

∃y∃z∃u[u �=0∧(S∩U(y,z)) contains x+u,x−u and is closed under midpoints].

228 M. Benedikt and H.J. Keisler

Fig. 3. Contains a line

Let Cong(x,y) (for congruence) say that x and y are regular in S, and the line
segments in S containing x and y are parallel (that is, for all sufficiently small
z, x+ z ∈ S ↔ y + z ∈ S).

Let MinSame(x, t, y) say that y is minimal such that Cong(x, t, y), that is,
Cong(x, t, y) ∧ ∀u(Cong(x, t, u)→ y ≤ u).

Let Far(t) say that there are no singular points of S with horizontal coor-
dinate ≥ t. Let V ert be the sentence asserting that S contains a vertical line.
Finally, let φ be the sentence

V ert ∨ ∃x (Reg(x) ∧ ∀t ∀t′ [Far(t) ∧ Far(t′)→
∃y ∃y′[MinSame(x, t, y) ∧MinSame(x, t′, y′) ∧ (x+ (t′, y′)− (t, y)) ∈ S]]).

We claim that φ is the required sentence. Suppose S is a thin semi-linear
set in Cont.Line. If S contains a vertical line then it satisfies φ. Suppose S
contains a nonvertical line L, and let x be any regular point on L. Let t and
t′ be points beyond any singular point of S with 0 < t < t′. To the right of
t, S can only consist of finitely many rays that never intersect, including the
part of L beyond t. Among these rays is a lowest ray L′ which is parallel to L.
There exist y, y′ such that (t, y) and (t′, y′) are on L′. Then MinSame(x, t, y)
and MinSame(x, t′, y′). Since L′ is parallel to L, the sum of x and the vector
between (t, y) and (t′, y′) is on L, and hence is in S.

Conversely, suppose that S satisfies φ. Suppose V ert does not hold, and let
x be any witness for the rest of φ. Locally, S looks like a line L through x, since
x is a regular point and S is thin. We show that L is actually contained in S. Let
m be the slope of L. For any d we can find t and t′ satisfying Far(t) ∧ Far(t′)
with t − t′ = d. Since S satisfies φ, there are minimal y and y′ such that in
neighborhoods of both (t, y) and (t′, y′), S is a line with slope m. Since t and t′

are far out, the only possibility is that (t, y) and (t′, y′) actually are on the same

Definability over Linear Constraints 229

line of S, which means that the slope of the line segment between them must
be m. Hence when we add the vector between (t, y) and (t′, y′) to x, we get the
point on L at horizontal distance d away from x. By assumption, this point is
in S. Since d was arbitrary, this shows that S contains L. ��

The above argument also shows somewhat more.

Corollary 2. Cont.Line is FOLIN definable over the family of semi-linear sets
with 1-bounded interior.

5 Definability of n-Linked

We say a semi-linear set A is n-linked if for any two points x and y in A, there is
a polygonal path from x to y consisting of at most n line segments. n-linkedness
is a natural connectivity property of semi-linear sets, and in this section we will
give a fairly complete description of the definability of n-linkedness for n ∈ N
(summarized at the end of the section). Somewhat surprisingly, the answer will
be “yes” for some values of n and “no” for others.

Theorem 5. 1-linked is FOLIN definable. 2-linked is FOLIN definable over the
family of thin semi-linear sets.

Proof: 1-linked is definable by the statement: For any two points in S, their
midpoint is in S.

For 2-linked, let Parallel(x,y) say that y is regular and there is a line seg-
ment of S containing x that has the same slope as the line segment through y.
Since S is thin, this can be expressed by the formula:

x ∈ S∧Reg(y)∧(∀u sufficiently close to 0)[y+u ∈ S → (x+u ∈ S∨x−u ∈ S)].

As before, we letMid(x,y) denote the midpoint between x and y. Now consider
the sentence φ:

∀x∀y (Reg(x) ∧Reg(y)→ [Parallel(x,y)→Mid(x,y) ∈ S] ∧
[¬Parallel(x,y)→ ∃z (¬Reg(z) ∧

Parallel(z,x) ∧ Parallel(z,y) ∧Mid(z,y) ∈ S ∧Mid(z,x) ∈ S)])

This sentence says that any two regular points either have the same slope and
their midpoint is in S, or they have different slopes and there is a singular point
realizing both slopes whose midpoint with each of the original points is in S.

We assume φ, and show that S is 2-linked. Note that it suffices to show that
every two regular points are connected by a path consisting of two line segments
(since for two singular points x and y we can find regular points x′ and y′ nearby
such that any path from x′ to y′ extends to a path from x to y with the same
number of segments). Suppose x and y are in S and are regular. Case 1: The

230 M. Benedikt and H.J. Keisler

slope of S at x is the same as the slope at y. In this case the line segment L
between x and y must be in S; if not, we can find regular points p and q on L
such that the midpoint of p and q is not in S, which contradicts φ. Case 2: The
slopes at x and y are different. Choose z as given by φ. Reasoning as before, we
see that the line segment between z and y must be in S, and the same for the
segment between z and x. But this shows that S is 2-linked.

Conversely suppose that S is two-linked. For any regular x and y in S, either
they are one-linked — in which case they satisfy the Parallel(x,y) clause — or
they are (minimally) two-linked – in which case they satisfy the ¬Parallel(x,y)
clause. ��

We now show that the assumption that A is thin is necessary:

Corollary 3. 2-linked is not FOLIN definable, even over the family of 1-bounded
semi-linear sets with ten singular points.

Proof: This follows from the proof of Theorem 2. That proof uses a pair of
1-bounded hypersemi-linear structures with ten singular points which are ele-
mentarily equivalent in FOLIN , but one structure is 2-linked and the other is
not. ��

The following results can be proved by modifying the constructions in this
paper. The proofs will be given in the full paper.

Theorem 6. 3-linked is not FOLIN definable over the family of thin semi-linear
sets.

Theorem 7. There is no FOLIN sentence φ such that

(4-linked→ φ) ∧ (φ→ Conn)

holds in all thin semi-linear sets A. In particular, for each k ≥ 4, k-linked is not
FOLIN definable over the family of thin semi-linear sets.

We do not know whether the above theorem can be improved by replacing
4-linked by 3-linked.

Putting together all of the above results we have:

Summary of Definability for n-linked
n Semi-linear ... and Thin ... and Boundedly Many Singularities
1 Yes Yes Yes
2 No Yes Yes
≥ 3 No No Yes

Here ‘Yes’ in a box for integer n and class C means that n-linked is definable
over C.

Definability over Linear Constraints 231

6 Conclusions and Future Work

Questions concerning definability with an extra predicate, even for a well-under-
stood structure such as the real ordered group, turn out to be surprisingly com-
plex. The answers are also a bit counterintuitive: the results here show that
seemingly slight modifications of either the query definition or the class of de-
finable sets can make or break definability. It would clearly be desirable to find
general topological conditions on a family of sets that guarantee definability and
include the interesting definable examples here. Our results, however, indicate
that this will be a difficult (perhaps impossible) task.

Given the undefinability results, it seems natural to look for intermediate
languages between the first-order linear and polynomial query languages, which
can define the queries considered here. In the full version of this paper we will
introduce such intermediate languages, but space does not permit us to present
the results in this extended abstract.

References

1. F. Afrati, S. Cosmadakis, S. Grumbach and G. Kuper. Linear vs. polynomial
constraints in database query languages. In Proceedings of the Second Interna-
tional Workshop on Principles and Practice of Constraint Programming pp. 181-
192. Springer LNCS 874, 1995.

2. F. Afrati, T. Andronikos,and T. Kavalieros. On the Expressiveness of Query Lan-
guages with Linear Constraints; Capturing Desirable Spatial Properties. In Pro-
ceedings of the Second International Workshop on Constraint Database Systems,
CDB ’97, pp. 105-115. Springer LNCS, Vol. 1191, 1997.

3. M. Benedikt, G. Dong, L. Libkin and L. Wong. Relational expressive power of
constraint query languages. J. ACM, 45 (1998), pp. 1–34.

4. M. Benedikt and H. J. Keisler. Expressive Power of Unary Counters In Structures
in Logic and Computer Science, Mycielski, Rozenberg, and Salomaa (eds.) Springer
LNCS 1261 1997.

5. O. Chapuis and P. Koiran. Definability of Geometric properties in algebraically
closed fields. To appear in Mathematical Logic Quarterly.

6. C.C. Chang and H.J. Keisler. Model Theory. North Holland, 1990.
7. P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. JCSS, 51

(1995), 26–52.
8. B. Kuijpers, J. Paredaens and J. Van den Bussche. On topological elementary

equivalence of spatial databases. In Proceedings of the Sixth International Confer-
ence on Database Theory , pp. 432–446. Springer LNCS 1186, 1997.

9. G. Kuper, L. Libkin and J. Paredaens, eds. Constraint Databases. Springer Verlag,
2000.

Bounded Arithmetic and Descriptive Complexity

Achim Blumensath

Mathematische Grundlagen der Informatik
RWTH Aachen, D-52056 Aachen

blume@i7.informatik.rwth-aachen.de

Abstract. We study definability of languages in arithmetic and the free
monoid by bounded versions of fixed-point and transitive-closure logics.
In particular we give logical characterisations of complexity classes C by
showing that a language belongs to C if and only if it is definable in either
arithmetic or the free monoid by a formula of a certain logic. We investi-
gate in which cases the bounds of fixed-point operators may be omitted.
Finally, a general translation of results from descriptive complexity to
the approach described in this paper is presented.

Keywords: descriptive complexity, definability, arithmetic

1 Introduction

Descriptive complexity theory studies the connections between definability and
complexity classes (see [1,4,5] for an overview). The most common approach orig-
inates in finite model theory and yields characterisations of the following form:
“Some class K of finite structures belongs to the complexity class C if and only
if K is the class of finite models of some sentence of the logic L.” More formally,
K ∈ C iff K = Mod(ϕ) for some ϕ ∈ L. Starting with Fagin’s famous char-
acterisation of Nptime descriptions of most of the common complexity classes
have been obtained in this way.

Another equally well developed method is based on function algebras and
recursion schemes (see [3] for an overview, or [6] for a formulation in terms of
proof theory). It originated in recursion theory with characterisations of the
recursive and primitive recursive functions and later on was applied by Cobham
to describe the class of polynomial time computable functions.

In the present article we will follow a third approach. We fix a model with
universe {0, 1}∗, N, or some other countable set with canonical encoding in
{0, 1}∗, and investigate which languages are definable within this model using
different logics. This approach has mainly been used in recursion theory so far,
for instance to define the arithmetic and analytic hierarchy. To the author’s
knowledge there are only few characterisations of decidable complexity classes
using this method. The Büchi-Bruyère Theorem (see [2] for an overview) states
that the p-adic encoding of a set of natural numbers is regular if and only if the set
is first-order definable in (N,+, Vp) where Vp(x) := pk for the greatest k such that
pk |x. Wrathall [7] showed that the class of languages definable by ∆0

0-formulae in

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 232–246, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Bounded Arithmetic and Descriptive Complexity 233

(N,+, ·) is equal to the linear hierarchy. As mentioned in [6], a characterisation of
the polynomial hierarchy is obtained if one adds the operator x#y = 2log2 x log2 y.

Below we will show that by adding fixed-point or transitive-closure opera-
tors those results can be extended to characterise many of the usual complexity
classes. The results themselves are unsurprising and mirror those of finite model
theory. Indeed, the similarity between both approaches enables us to present
a translation from the formalism of finite model theory to definability in the
binary tree and vice versa. So, what are the differences between them? First,
our formalism seems to be more general since by using other structures than the
binary tree—e.g., arithmetic—we can capture different classes such as Exptime
or Expspace for which there is no “classical” characterisation. A second point
is that depending on the circumstances one approach might be more convenient
to work with. For instance, from an an algorithmic point of view the classi-
cal approach seems to be more suitable since one can speak about, say, graphs
directly instead of having to encode them as words. On the other hand when
dealing with languages, e.g., in structural complexity, or when thinking of appli-
cations in feasible model theory, our formalism might be of advantage. Finally,
by changing the formalism a different set of logical and algebraic methods for
the investigation of complexity classes becomes available (although whether this
is of any help remains to be seen).

The paper is organised as follows. In the next section we give a short overview
of classical descriptive complexity theory and list some results for comparison.
Furthermore, we introduce the logics used in the rest of the article.

Section 3 considers various structures of natural numbers and investigates
which complexity classes can be characterisations within them. We show how
to generalise these results to arbitrary linear orderings of type ω, and study in
which cases the bounds of fixed-point operators are really needed.

In Section 4 we turn to the free monoid and show that many classical results
can be translated to our approach, and vice versa.

2 Preliminaries

We recall the basic definitions of descriptive complexity theory. For simplicity
we will consider only languages over a binary alphabet. In the classical approach
each word w ∈ {0, 1}+ is represented by the word model

w :=
({0, . . . , |w| − 1}, <, S,min,max, P

)
where S is the successor relation of <, min and max are the first and last
elements, and P is the set of positions carrying the symbol 1. While in descriptive
complexity theory one usually allows classes of arbitrary finite models we will
only consider word models in the following.

Let C be a complexity class. We say that the logic L captures C (on word
models) iff C = {L(ϕ) | ϕ ∈ L }, where L(ϕ) := {w ∈ {0, 1} | w |= ϕ }.

Logics capturing complexity classes include first-order logic FO and its ex-
tensions by transitive-closure or fixed-point operators, and fragments of second-
order logic (see Table 1).

234 A. Blumensath

Table 1. Logics capturing complexity classes

Class Logic

AC0 FO
Logspace FO(DTC)
Nlogspace FO(TC)

Class Logic

Ptime FO(LFP)
— ” — Σ1

1-Horn
— ” — SO-Horn

Class Logic

Nptime Σ1
1

PH SO
Pspace FO(PFP)

(Deterministic) transitive-closure logic FO((D)TC) is obtained from FO by
adding the operator

[(D)TCx̄,ȳ ϕ(x̄, ȳ, z̄)](ū, v̄).

The semantics is defined as follows (where for notational convenience we omitted
all references to the structure in question). [TCx̄,ȳ ϕ](ā, b̄) holds iff there are
tuples ā0 = ā, ā1, . . . , ān = b̄, n > 0, such that ϕ(ai, ai+1) holds for all i < n.
The deterministic version is defined by

[DTCx̄,ȳ ϕ(x̄, ȳ, z̄)](ū, v̄)

≡ [TCx̄,ȳ ϕ(x̄, ȳ, z̄) ∧ ∀ȳ′(ϕ(x̄, ȳ′, z̄) → ȳ′ = ȳ)
]
(ū, v̄)

Similarly, in least and partial fixed-point logic FO(LFP) and FO(PFP) one
adds the operator

[L/PFPR,x̄ ϕ(R, x̄, z̄)](ū)

where in the case of LFP, R occurs only positive in ϕ. To define the semantics
consider the operator

F (R) := { ā | ϕ(R, ā) holds }.
[LFPR,x̄ ϕ](ā) holds iff ā is in the least fixed-point of F , and [PFPR,x̄ ϕ](ā) holds
iff there is some n such that Fn+1(∅) = Fn(∅) and ā ∈ Fn(∅).

Finally, denote full second-order logic by SO, existential second-order logic by
Σ1
1, and (existential) second-order horn logic by SO-Horn and Σ1

1-Horn, respec-
tively. Here, SO-Horn consists of second-order formulae in prenex-normalform
where the first-order part is universal, in conjunctive normalform, and each
clause contains at most one positive literal Xx̄ for second-order variables X.

In this article we want to ask which languages can be defined within some
fixed structure A. Of course, in order to do so the universe of A should either
consists of {0, 1}∗ or we have to choose some encoding of the elements of A by
words.

Definition 1. Let A be a countable structure and suppose e : A → {0, 1}∗ is
bijective. Let C be a complexity class. We say that the logic L captures C on A
iff

C = { e(ϕA) | ϕ(x) ∈ L },
where ϕA := { a ∈ A | A |= ϕ(a) }.

Bounded Arithmetic and Descriptive Complexity 235

Obviously this definition may be generalised to relations of arbitrary arity.
As there are pairing functions definable in all structures considered below the
arity can w.l.o.g. assumed to be one. So, for simplicity, we will only deal with
this case.

Below we will investigate which classes are captured on several variants of
arithmetic and the free monoid. Since the first-order theory of arithmetic is
highly undecidable, we can only hope to capture decidable complexity classes by
fragments of FO. In particular we will try to ensure that all variables only range
over finite sets. The following definition was motivated by the observation that
in recursion theory “bounded quantifiers come for free.”

Definition 2. Fix some structure A. A bounded guard on A is a quantifier-free
formula α(x̄; ȳ) such that for all b̄ ∈ Am the set { ā ∈ An | A |= α(ā; b̄) } is finite.
Here, x̄ are called the bounded variables of α, and ȳ are the free variables or
parameters of α.

The bounded fragment BFO on A is defined like FO where all quantifiers
are guarded, i.e., of the form (Qx̄.α)ϕ for Q ∈ {∃,∀} and some bounded guard α
with bounded variables x̄.

For O ∈ {DTC,TC,LFP,PFP} we define the bounded version BO by re-
stricting the syntax to

[(D)TCx̄,ȳ α(ȳ; z̄) ∧ ϕ(x̄, ȳ, z̄)] and [L/PFPR,x̄ α(x̄; z̄) ∧ ϕ(R, x̄, z̄)]

for some bounded guard α. Let BFO(O) be the logic obtained by adding the
operator O to BFO. Similarly, bounded second-order logic BSO is obtained by
adding (unrestricted) second-order quantifiers to BFO.

Definition 3. Let ϕ(x̄) be a formula of some bounded logic, and let y be a
variable appearing bound in ϕ (w.l.o.g. assume that no variable is quantified
twice). For values c̄ of x̄, the domain of y at c̄ is defined inductively as follows.
Let (Qy.α(y; x̄, z̄))ψ be the subformula where y is bound.

dom(y) := { a | there are b̄ in the domains of z̄ such that α(a; c̄, b̄) holds }.
Intuitively, the domain contains all values y may have. Note that, by induction
the domains of bound variables are finite.

Remark 4. Regarding the expressive power the following inclusions hold:

FO ⊆ FO(DTC) ⊆ FO(TC) ⊆ FO(LFP) ⊆ FO(PFP)
∪| ∪| ∪| ∪| ∪|

BFO ⊆ BFO(BDTC) ⊆ BFO(BTC) ⊆ BFO(BLFP) ⊆ BFO(BPFP)

3 Arithmetic and High Complexity Classes

In this section we will consider (N, <,F), the natural numbers with order and
some additional functions f ∈ F where F is allowed to be empty. Note that in
this case we can w.l.o.g. assume that all guards are of the form

x̄ < t(ȳ) := x0 < t(ȳ) ∧ · · · ∧ xn−1 < t(ȳ)

236 A. Blumensath

for some F -term t. The expressive power of bounded logics mainly depends on
the growth-rate of the bounds. In order to compare such rates we define F0 ≤ F1
for classes F0 and F1 of functions on N iff for all f0 ∈ F0 there is some f1 ∈ F1
such that f0(n, . . . , n) ≤ f1(n, . . . , n) for all n ∈ N, and we write F0 ≡ F1 iff
both F0 ≤ F1 and F1 ≤ F0.

Let TF be the set of terms built from functions of F . We will see that
it mainly depends on the growth-rate of TF which complexity classes can be
captured on (N, <,F).

In order to define the complexity of a set of natural numbers it is assumed
that numbers are coded by their binary encoding in reversed order, i.e., with
the least significant bit first. Note that the number of bits of n is �log2(n + 1)�.
Thus, given a monotone function f : Nk → N and a tuple n̄ ∈ Nk where ni has
li bits, the number of bits of f(n̄) is

(Bf)(l̄) :=
⌈
log2

(
f(2l0−1, . . . , 2lk−1−1) + 1

)⌉
.

Our first result is preceeded by some two lemmas. Let f : Nk → N be a
function such that f(ā) ≥ ai for all i < k. We call a formula ϕ(x̄) f-bounded iff
for all ā ∈ Nk and every term t(x̄, ȳ) in ϕ(x̄) the inequality t(ā, b̄) ≤ f(ā) holds
for values b̄ in the domains of ȳ. Note that for all formulae ϕ(x̄) of bounded
logics defined above there is some F -term t(x̄) such that ϕ is t-bounded.

Lemma 5. Let F be a set of functions whose graphs are decidable in linear
space, and let ϕ(x̄) ∈ BFO be f-bounded. The question whether (N, <,F) |=
ϕ(ā) can be decided in space O(|ϕ| log2 f(ā)).

Proof. Since ϕ is f -bounded we need to consider only values less than f(ā). These
can be stored in space O(log2 f(ā)). The claim is proved by induction on ϕ. To
evaluate a function h(b̄) we can enumerate all numbers c and check if the tuple
(b̄, c) belongs to the graph. Thus, since both the arguments and the values of
functions are less than f(ā), atoms can be evaluated in space O(log2 f(ā)). The
induction step for boolean connectives is trivial. So consider a formula of the
form (Qy < t(x̄))ψ(y, x̄). To decide whether it holds we can iterate over all
values for y. The only space needed to do so is the storage of y. Thus, it is
sufficient to have space O(log2 f(ā)) for each variable appearing in ϕ. ��

The second lemma shows that in many cases we can assume that addition
and multiplication is available.

Lemma 6. The graphs of addition and multiplication are BFO(BDTC)-defin-
able in (N, <).

Proof. Clearly, 0 and the successor relation S are definable. + and · are defined
via the usual recurrence.

x + y = z := (y = 0 ∧ x = z)
∨ [DTCuv,u′v′ u′ < y ∧ v′ < z ∧ Su′u ∧ Sv′v](yz, 0x)

x · y = z := (y = 0 ∧ z = 0)
∨ [DTCuv,u′v′ u′ < y ∧ v′ < z ∧ Su′u ∧ v′ + x = v](yz, 00) ��

Bounded Arithmetic and Descriptive Complexity 237

The previous lemma indicates that it does not matter much which functions
are present since many of them are definable if the logic is at least as expressible
as BFO(BDTC). In deed, for such logics, our next result shows that the only
thing which matters is the growth-rate of the available functions.

Theorem 7. Let R and F be sets of functions such that R ≡ BTF , the graphs
of functions in F are computable in linear space, O(n) ⊆ R, and OR ⊆ R. Let
X ⊆ N.

(i) X ∈ Dspace[R] iff X is BFO(BDTC)-definable in (N,F , <).
(ii) X ∈ Nspace[R] iff X is BFO(BTC)-definable in (N,F , <).

(iii) X ∈ Dtime[2R] iff X is BFO(BLFP)-definable in (N,F , <)

iff X is BΣ1
1-Horn-definable in (N,F , <)

iff X is BSO-Horn-definable in (N,F , <).

(iv) X ∈ Ntime[2R] iff X is BΣ1
1-definable in (N,F , <).

(v) X ∈ Dspace[2R] iff X is BFO(BPFP)-definable in (N,F , <).

Proof. In the formulae defined below we will use addition and multiplication
whose graphs are definable in all logics mentioned above. In order to keep them
readable we will use not only their graphs but also the functions themselves. This
can be done since we only use equations of the form x = t for some variable x
and term t. Thus all intermediate results are less than or equal to x and we can
reduce t by introducing new variables y by bounded quantification (∃y ≤ x).

Below the following model of Turing machine is used. A k-tape Turing ma-
chine M is given by a tuple (Q,Σ,∆, q0, F) where Q is the set of states, Σ =
{0, 1} is both the input and the working alphabet, q0 is the initial state, F is
the set of final states, and

∆ ⊆ Q×Σ ×Σk ×Σk ×Q× {−1, 0, 1}k+1

is the transition relation with components: old state, symbol on the input tape,
symbols on the working tapes, symbols to write on the working tapes, new state,
and movement of the heads.

We prove only two items. The other proofs are similar.
(i) (⇒) Let M = (Q,Σ,∆, q0, F) be an f space-bounded k-tape Turing

machine recognising X. W.l.o.g. assume that Q = {0, . . . , n}, Σ = {0, 1}, and
q0 = 0. Choose some F -term r(x) such that f(x) ≤ Br(x) for all x ∈ N.
Configurations of M can be stored in tuples (q, w̄, p̄) where each component is less
than 2r(x). If there is a formula TRANS(c̄, c̄′) expressing that the configuration
stored in c̄′ is the successor of c̄, we can determine whether a final configuration
can be reached from the initial one using an DTC-operator.

ϕX(x) := (∃w1 · · ·wkp0 · · · pk < 2r(x))∨
qf∈F

[DTCqw̄p̄,q′w̄′p̄′ q‘w̄′p̄′ < 2r(x) ∧ TRANS(qw̄p̄, q′w̄′p̄′)]
(0 0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k+1

, qfw1 · · ·wkp0 · · · pk).

238 A. Blumensath

TRANS is defined by

TRANS(qw̄p̄, q′w̄′p̄′) :=

∨
(i,a0ā,b̄,j,m̄)∈∆

(
q = i ∧ q′ = j ∧ bita0(x, p0) ∧

k∧
l=0

MOVEml
(pl, p′l)

∧
k∧
l=1

(∃s < wl)(∃s′ < pl) (wl = (2s + al)pl + s′ ∧
w′l = (2s + bl)pl + s′)

)
,

where

bitd(x, p) := (∃s < x)(∃s′ < p)(x = (2s + d)p + s′),

MOVEm(p, p′) :=

p = 2p′ if m = −1,
p′ = p if m = 0,
p′ = 2p if m = 1.

(⇐) Let X be defined by ϕ(x), and let ϕ(x) be t(x)-bounded. Since R ≡
BTF there is some r ∈ R with log2 t(2n) ≤ r(n) for all n ∈ N. Thus it is
sufficient to prove that X ∈ Dspace[O(log2 t(2n))]. For BFO-formulae this was
proved in the above lemma. It remains to consider the evaluation of a DTC-
operator [DTCx̄,ȳ z̄ < s(z̄) ∧ ψ(x̄, ȳ, z̄)] which can be done by calculating the
sequence x̄0, x̄1, x̄2, . . . of tuples such that ψ(x̄i, x̄i+1, z̄) holds for all i. By induc-
tion we can assume that this condition can be checked in Dspace[O(log2 t(2n))].
In order to compute x̄i+1 we only need to remember x̄i. Thus the space to store
two such tuples is sufficient.

(iii) (⇒) Let M = (Q,Σ,∆, q0, F) be an f time-bounded k-tape Turing
machine recognising X. W.l.o.g. assume that Q = {0, . . . , n}, Σ = {0, 1}, and
q0 = 0. Choose some F -term t(x) such that f(x) ≤ Bt(x) for all x ∈ N, and let
r(x) = 2t(x) + n. Using least-fixed points we inductively define relations Q, W̄ ,
P̄ containing the whole run of M on input x. For instance, (q, t) ∈ Q means that
M is in state q at time t. W.l.o.g. we define those relations by a simultaneous
fixed-point which can always be transformed into a normal one.

ϕX(x) := (∃t < r(x))
∨
qf∈F

[LFPQ,qt;W̄ ,apt;P̄ ,pt qt < r(x) ∧ ψQ

apt < r(x) ∧ ψW1

. . .

apt < r(x) ∧ ψWk

pt < r(x) ∧ ψP0

. . .

pt < r(x) ∧ ψPk
]0(qf t)

Bounded Arithmetic and Descriptive Complexity 239

where

CONFq,a0ā(t) :=
Qqt ∧ (∃p < r(x))(∃s < x)(∃s′ < p)(P0pt ∧ x = (2s + a0)p + s′)

∧
k∧
l=1

(∃p < r(x))(Plpt ∧Wlalpt)

ψQ(q, t) := (q = 0 ∧ t = 0) ∨
∨

(i,a0ā,b̄,j,m̄)∈∆
(CONFi,a0ā(t− 1) ∧ q = j)

ψWl
(a, p, t) := (a = 0 ∧ t = 0)

∨
∨

(i,a0ā,b̄,j,m̄)∈∆
[CONFi,a0ā(t− 1) ∧

(∃p′ < r(x))(Plp′(t− 1) ∧ [(p �= p′ ∧Wlap(t− 1))
∨ (p = p′ ∧ a = bl)])]

ψPl
(p, t) := (p = 1 ∧ t = 0)

∨
∨

(i,a0ā,b̄,j,m̄)∈∆
[CONFi,a0ā(t− 1) ∧

(∃p′ < r(x))(Plp′(t− 1) ∧MOVEml
(p, p′))]

(⇐) Let X be defined by ϕ(x), and let ϕ(x) be t(x)-bounded. Since R ≡
BTF there is some r ∈ R with log2 t(2n) ≤ r(n) for all n ∈ N. Thus, it is
sufficient to prove that X ∈ Dtime[2O(log2 t(2

n))] = Dtime[O(t(2n)O(1))]. To
evaluate a fixed-point operator [LFPR,x̄ x̄ < t(ȳ) ∧ ψ(x̄, ȳ)] we calculate its
stages R0, R1, R2, . . . where by boundedness we only need to consider the part
R̃i := Ri ∩ {0, . . . , t(a)− 1}n. Thus, R̃i+1 can be computed in t(a)n steps from
R̃i each of which takes time O(t(a)O(1) (by induction). Since the fixed-point is
reached after at most t(a)n stages we obtain a bound of O(t(a)O(1) ·t(a)n ·t(a)n).

��
To apply this theorem we need to define functions of appropriate growth. Let

x # y := 2�log2 x��log2 y�. (Note that # is associative and commutative.) Since

BT {+, ·} ≡ O(n),

BT {+, ·,#} ≡ O(nO(1)),

BT {+, ·, 2n} ≡ T {2n
}

we obtain the results in Table 2. What happens when no functions are present?

Theorem 8. Let X ⊆ N. The results of the previous theorem also hold for
F = ∅ and R = O(n).

Proof. The only place where the proofs above fail is the existence of a term r(x)
providing a bound large enough to store either the complete contents of a tape
or the position of a cell on the tape. For R = O(n) this term would be r(x) := xc

240 A. Blumensath

Table 2. Logics capturing complexity classes on arithmetic

Class Logic Structure

Dspace[O(n)] BFO(BDTC) (N, <,+, ·)
Nspace[O(n)] BFO(BTC) (N, <,+, ·)
Pspace BFO(BTC) (N, <,+, ·,#)
Dtime[2O(n)] BFO(BLFP) (N, <,+, ·)
Ntime[2O(n)] BΣ1

1 (N, <,+, ·)
Exptime BFO(BLFP) (N, <,+, ·,#)
Nexptime BΣ1

1 (N, <,+, ·,#)
Dspace[2O(n)] BFO(BPFP) (N, <,+, ·)
Expspace BFO(BPFP) (N, <,+, ·,#)
Elementary BFO(BDTC) (N, <,+, ·, 2n)

for some c. Though such an r is not available we can handle values of this size
by storing each in c variables. Using the (BFO-definable) lexicographic order on
c-tuples we can then define addition and multiplication as above. ��

The only property of (N, <,F) used in the proofs above was the order type
and the growth-rate of F -terms. This enables us to generalise the results to ar-
bitrary structures as follows. Let A = (A,<,R0, . . . , Rr, f0, . . . , fs) be a linearly
ordered structure of order type ω. For a ∈ A let |a| := { b ∈ A | b < a }. If we
identify elements a ∈ A by the natural number |a| we get the isomorphic struc-
ture (N, <,R′0, . . . , R

′
r, f
′
0, . . . , f

′
s) to which we can apply our capturing results.

If the complexity of subsets X ⊆ A is measured with regard to the encoding
a �→ |a| we obtain

Theorem 9. Let A = (A,<,R0, . . . , Rr, f0, . . . , fs) be a linearly ordered struc-
ture of order type ω such that Ri, i ≤ r, and the graphs of fi, i ≤ s, are
computable in linear space. Let F := {f0, . . . , fs} and let R be a set of functions
such that if F is empty then R = O(n), otherwise R ≡ BTF , O(n) ⊆ R, and
OR ⊆ R. Let X ⊆ A.

(i) X ∈ Dspace[R] iff X is BFO(BDTC)-definable in A.
(ii) X ∈ Nspace[R] iff X is BFO(BTC)-definable in A.

(iii) X ∈ Dtime[2R] iff X is BFO(BLFP)-definable in A

iff X is BΣ1
1-Horn-definable in A

iff X is BSO-Horn-definable in A.

(iv) X ∈ Ntime[2R] iff X is BΣ1
1-definable in A.

(v) X ∈ Dspace[2R] iff X is BFO(BPFP)-definable in A.

So far, we only considered extensions of first-order logic. Next we look at the
expressive power of BFO. An old result provides an answer in the case of the
structure (N, <,+, ·).

Bounded Arithmetic and Descriptive Complexity 241

Theorem 10 (Wrathall [7]). X belongs to the linear hierarchy iff X is BFO-
definable in (N, <,+, ·).

As mentioned in [6], by adding the operator # characterisation of PH is
obtained.

Theorem 11. X ∈ PH iff X is BFO-definable in (N, <,+, ·,#).

Proof. (⇐) Let X be defined by

ϕ(x) = (Q0y0 < t0) · · · (Qn−1yn−1 < tn−1)ψ(x, ȳ)

where ψ is quantifier-free. There is some k ∈ N such that ϕ(x) is (2log
k
2 x)-

bounded. Hence each yi (i < n) can be encoded in (log2 x)k bits. Obviously,
quantifier-free formulae ψ(ā) can be evaluated in polynomial time with respect
to the length of ā. Thus,

X := {x | Qp
0y0 · · ·Qp

n−1yn−1R(x, ȳ) }
where all quantifiers are polynomial bounded and

R(x, ȳ) := y0 < t0 ∧ · · · ∧ yn−1 < tn−1 ∧ ψ(x, ȳ)

is a Ptime-predicate. Hence, X ∈ PH.
(⇒) By a corollary to Fagin’s characterisation of Nptime, there is some

ϕ ∈ SO such that x ∈ X iff x |= ϕ for all x ∈ {0, 1}+ where x is the word
model of x. We construct a formula ϕ̃(x) ∈ BFO with

x |= ϕ iff (N, <, 0, 1,+, ·,#) |= ϕ̃(val(x1))

where val(y) is the number whose binary encoding in reversed order is y. Define

ϕ̃(x) := (∃p < x + 1)(P2p ∧ x < 2p ∧ ϕ∗(x, p))

where p denotes the position of the final digit,

P2x := x = 1 ∨ (∀y < x + 1)(y | x ∧ y �= 1 → 2 | y)]

defines the powers of 2, and ϕ∗ is constructed such that

x |= ψ(U0, . . . , Un−1, y0, . . . , ym−1)
iff (N, <, 0, 1,+, ·,#) |= ψ∗(x, p, u0, . . . , un−1, 2y0 , . . . , 2ym−1)

where ui :=
∑{

2l0+l1|x|+···+lk−1|x|k−1 ∣∣ (l0, . . . , lk−1) ∈ Ui
}
. Define

(y0 = y1)∗ := y0 = y1

(y0 < y1)∗ := y0 < y1

(Py)∗ := bit(x, y)
(Uy0 . . . yk−1)∗ := bit(u, y0(y1 # p) · · · (yk−1 # p # · · ·# p))
(¬ψ)∗ := ¬ψ∗
(ψ ∨ ϑ)∗ := ψ∗ ∨ ϑ∗

(∃yψ)∗ := (∃y < p)(P2y ∧ ψ∗)
(∃Uψ)∗ := (∃u < p # · · ·# p)ψ∗

242 A. Blumensath

where bit(x, y) expresses that the bit of x at position y is 1

bit(x, y) := (∃s < x)(∃s′ < y)(x = (2s + 1)y + s′). ��

Theorem 12. X ⊆ N is of elementary complexity iff X is BFO-definable in
(N, <,+, ·, 2n).

The proof is done by directly coding computations of Turing machines. In this
case fixed-points are not needed since numbers large enough to code whole runs
are available.

Remark 13. The results of Theorems 7 (i), (ii), and 10–12 also hold for oracle
machines if one adds the orcale set as unary predicate to the structure.

Unbounded fixed-points. Above we met the boundedness requirement for the
logics considered by an ad hoc definition of bounded fixed-points. Next we will
investigate under which conditions this can be avoided by using normal (un-
bounded) operators instead. The first result shows that in many situations it
can not.

Proposition 14. Any relation which is FO(DTC)-definable in (N, <,+, ·) (in
particular any arithmetic relation) is already BFO(DTC)-definable in (N, <).

Proof. Since addition and multiplication are FO(DTC)-definable it is sufficient
to show how to emulate unbounded quantifiers by DTC-operators. To simulate
∃xϕ we can enumerate all numbers until some n with ϕ(n) is found. Formally,

∃xϕ ≡ [DTCx,x′ (¬ϕ(x) ∧ x′ = x + 1) ∨ (ϕ(x) ∧ x′ = 0)](0, 0). ��
In contrast, for purely relational structures a positive result is obtained. Note

that the proof above shows that it does not hold for transitive-closure operators.

Proposition 15. Let A = (A,<,R0, . . . , Rm) be a relational structure of order
type ω, and let X ⊆ Ak.

(i) X is BFO(LFP)-definable if and only if it is BFO(BLFP)-definable.
(ii) X is BFO(PFP)-definable if and only if it is BFO(BPFP)-definable.

Proof. (⇐) is trivial. For (⇒) consider the stages R0, R1, . . . of the fixed-point
induction of ψ(ȳ, z̄) := [LFPR,x̄ ϕ(x̄, ȳ)](z̄). Since all bounds are of the form
u < v for variables u and v the decision whether x̄ ∈ Ri+1 depends only on
values of Ri for arguments less than

t := max{x0, . . . , xn, y0, . . . ym, z0, . . . , zl}.
In particular, the value at position z̄ only depends on lower positions. Therefore
we can replace the operator by an bounded one.

ψ(ȳ, z̄) ≡
∨
i

(
max(yi, ȳ, z̄) ∧ χ(yi)

) ∨∨
i

(
max(zi, ȳ, z̄) ∧ χ(zi)

)

Bounded Arithmetic and Descriptive Complexity 243

Table 3. Logics capturing complexity classes on arithmetic

Class Logic Structure

LinH BFO (N, <,+, ·)
PH BFO (N, <,+, ·,#)
Dspace[O(n)] BFO(BDTC) (N, <)
Nspace[O(n)] BFO(BTC) (N, <)
Pspace BFO(BTC) (N, <,#)
Dtime[2O(n)] BFO(BLFP) (N, <)
Ntime[2O(n)] BΣ1

1 (N, <)
Exptime BFO(BLFP) (N, <,#)
Nexptime BΣ1

1 (N, <,#)
Dspace[2O(n)] BFO(BPFP) (N, <)
Expspace BFO(BPFP) (N, <,#)
Elementary BFO (N, <,+, ·, 2n)

where max(u, ȳ, z̄) :=
∧
k yk ≤ u ∧∧k zk ≤ u says that u is a maximal element,

and

χ(u) := [LFPR,x̄ x0 ≤ u ∧ · · · ∧ xn ≤ u ∧ ϕ(x̄, ȳ)](z̄)

is the bounded version of the LFP-operator. The proof for BFO(PFP) is identi-
cal. ��

The characterisations of standard complexity classes we have obtained is
summarised in the table above. The results remain valid if we add any relations
or functions computable in the respective class. In particular we may add 0, 1,
+, and ·. Also the structure (N, <) may be replaced by any linear order (A,<)
of the same order type. Similarly, (N, <,#) may be replaced by (A,<, f) where
2log

c
2|a| ≤ |f(a)| ≤ 2log

d
2 |a| for some c, d > 1.

4 The Free Monoid and Low Complexity Classes

So far, we have obtained only characterisations of high (above Ptime) complexity
classes. Intuitively, this was caused by the fact that, in arithmetic with the usual
order, numbers of n bits have about 2n predecessors. If we are interested in
low complexity classes we thus have to choose a different order. In the classical
approach variables can range over n positions in a word model of length n.
Therefore, we next consider the free monoid with prefix-ordering where words
of length n have n predecessors.

Definition 16. Let T := ({0, 1}∗, σ0, σ1,≺) where

σixy : iff y = xi, and x ≺ y : iff y = xz for some z �= ε.

It turns out that this choice enables us to translate many of the classical
results to our setting and vice versa. Let L consists of the following logics: FO,

244 A. Blumensath

FO(DTC), FO(TC), FO(LFP), FO(PFP), Σ1
1-Horn, Σ1

1, SO-Horn, and SO.
For L ∈ L denote by BL the corresponding bounded version.

Theorem 17. Let X ⊆ {0, 1}+ and L ∈ L . The following statements are
equivalent:

(i) There is some ϕ ∈ L such that w ∈ X iff w |= ϕ.
(ii) There is some ϕ(x) ∈ BL such that w ∈ X iff T |= ϕ(w).

The familiar results of descriptive complexity theory can thus be stated as

Corollary 18. Let X ⊆ {0, 1}∗.
(i) X ∈ Logspace iff X is BFO(BDTC)-definable in T

(ii) X ∈ Nlogspace iff X is BFO(BTC)-definable in T

(iii) X ∈ Ptime iff X is BFO(BLFP)-definable in T

iff X is BΣ1
1-Horn-definable in T

iff X is BSO-Horn-definable in T.

(iv) X ∈ Nptime iff X is BΣ1
1-definable in T

(v) X ∈ PH iff X is BSO-definable in T

(vi) X ∈ Pspace iff X is BFO(BPFP)-definable in T

The proof of Theorem 17 is divided into two propositions.

Lemma 19. For every ϕ ∈ L there is some ϕ∗(x) ∈ BL such that, for all
w ∈ {0, 1}+, w |= ϕ iff T |= ϕ∗(w).

Proof. We construct ϕ∗(x) such that for all subformulae ψ the following condi-
tion is satisfied:

x |= ψ(X0, . . . , Xn, y0, . . . , ym) iff T |= ψ∗(x,X∗0 , . . . , X
∗
n, y
∗
0 , . . . , y

∗
m)

where y∗i is the prefix of x of length yi, and X∗i contains a tuple of prefixes of x
iff the tuple of their lengths is in Xi. In the following definition variables named
y, y0, etc. are bounded, whereas x is the only free variable.

(y0 = y1)∗ := y0 = y1 (¬ψ)∗ := ¬ψ∗
(Py)∗ := (∃y′ x)σ1yy′ (ψ ∨ ϑ)∗ := ψ∗ ∨ ϑ∗

(y0 < y1)∗ := y0 ≺ y1 (∃yψ)∗ := (∃y ≺ x)ψ∗

(Xȳ)∗ := Xȳ (∃Xψ)∗ := (∃X)ψ∗

(
[(D)TCū,v̄ ψ](t̄, t̄′)

)∗ := [(D)TCū,v̄ v0 ≺ x ∧ · · · ∧ vk−1 ≺ x ∧ ψ∗](t̄, t̄′)(
[XFPR,ū ψ](t̄)

)∗ := [XFPR,ū ū ≺ x ∧ · · · ∧ uk−1 ≺ x ∧ ψ∗](t̄) ��

Lemma 20. For every ϕ(x) ∈ BL there is some ϕ′ ∈ L such that, for all
w ∈ {0, 1}+, T |= ϕ(w) iff w |= ϕ′.

Bounded Arithmetic and Descriptive Complexity 245

Proof. Note that, since ϕ(x) has only one free variable x, all bounded variables
are prefixes of x. Thus, it again is sufficient to ensure that

T |= ψ(x,X0, . . . , Xn, y0, . . . , ym) iff x |= ψ′(X ′0, . . . , X
′
n, |y0|, . . . , |ym|)

where the definition of X ′i is slightly more involved since there are |x|+1 prefixes
of x, but only |x| elements in x. Therefore, we double the arity of Xi and define

X ′i := { (u′00u
′
01, . . . , u

′
k0u
′
k1) | (u0, . . . , uk) ∈ Xi }

where

(u′j0, u
′
j1) :=

{
(0, uj) if uj ≺ x

(|x| − 1, |x| − 1) if uj = x.

In the following definition variables named y, y0, etc. are bounded, whereas
x is the only free variable. t stands for an arbitrary term which can either be on
of y, x, or one of y, min, max. Furthermore, P it is Pt for i = 1, and ¬Pt for
i = 0.

(y0 = y1)′ := y0 = y1 (σiy0y1)′ := Sy0y1 ∧ P iy0

(y = x)′ := false (σixt)′ := false

(x = x)′ := true (σiyx)′ := y = max ∧ P iy

(y0 ≺ y1)′ := y0 < y1 (y ≺ x)′ := true
(x ≺ t)′ := false
(¬ψ)′ := ¬ψ′ ((∃y0 ≺ y1)ψ)′ := ∃y0(y0 < y1 ∧ ψ′)
(ψ ∨ ϑ)′ := ψ′ ∨ ϑ′ ((∃y ≺ x)ψ)′ := ∃yψ′
(∃Xkψ)′ := ∃X2kψ′ (Xt0 . . . tk−1)′ := Xt̃0 . . . t̃k−1

where

t̃ :=

{
min y if t = y,

max max if t = x.(
[(D)TCū,v̄ v0 ≺ t0 ∧ · · · ∧ vn−1 ≺ tn−1 ∧ ψ](t̄′, t̄′′)

)′ :=
[(D)TCū,v̄ v0 < t0 ∧ · · · ∧ vn−1 < tn−1 ∧ ψ′](t̄′, t̄′′)(

[XFPR,ū u0 ≺ t0 ∧ · · · ∧ un−1 ≺ tn−1 ∧ ψ](t̄′)
)′ :=

[XFPR,ū u0 < t0 ∧ · · · ∧ un−1 < tn−1 ∧ ψ′](t̄′) ��

Remark 21. (i) The preceding results can be generalised to formulae with several
free variables.

(ii) Nothing changes if we replace σ0, σ1 by the corresponding functions or
even add concatenation. For the last part note that for all variables y appearing
in a formula ϕ(x) there is some k such that y ranges over values of the form
y0 · · · yj , j < k, where the yi are prefixes of x. Hence the value of each y can be

246 A. Blumensath

Table 4. Logics capturing complexity classes on the free monoid

Class Logic Structure

AC0 BFO (T, bit)
Logspace BFO(BDTC) T

Nlogspace BFO(BTC) T

Ptime BFO(LFP) T

Nptime BΣ1
1 T

PH BSO T

Pspace BFO(PFP) T

stored in a fixed number of variables and we can eliminate concatenation by its
BFO(BDTC)-definition.

(iii) Since T is relational bounded LFP- and PFP-operators can be replaced
by unbounded ones as in the case of arithmetic.

(iv) If one adds to T either the relations |x| + |y| = |z| and |x| · |y| = |z|,
or the relation bit(x, y) saying that the |y|th bit of |x| is 1, and considers word
models with analogous predicates, we also can characterise the class AC0, i.e.,
X ⊆ {0, 1}∗ is in AC0 iff X is BFO-definable in (T,bit).

References

1. S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison-
Wesley, 1995.

2. V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire, Logic and p-
recognizable sets of integers, Bull. Belg. Math. Soc., 1 (1994), pp. 191–238.

3. P. Clote, Computation models and function algebras, in Handbook of Computabil-
ity Theory, E. R. Griffor, ed., North-Holland, 1999.

4. H.-D. Ebbinghaus and J. Flum, Finite Model Theory, Springer, 1995.
5. N. Immerman, Descriptive Complexity, Springer, New York, 1998.
6. J. Kraj́iček, Bounded Arithmetic, Propositional Logic, and Complexity Theory,

Cambridge University Press, 1995.
7. C. Wrathall, Rudimentary predicates and relative computation, SIAM Journal on

Computing, 7 (1978), pp. 194–209.

Independence: Logics and Concurrency

J.C. Bradfield

Laboratory for Foundations of Computer Science, Division of Informatics,
King’s Bldgs, University of Edinburgh, Edinburgh EH9 3JZ, UK.

jcb@dcs.ed.ac.uk

Abstract. We consider Hintikka et al.’s ‘independence-friendly first-
order logic’. We apply it to a modal logic setting, defining a notion of
‘independent’ modal logic, and we examine the associated fixpoint logics.

1 Introduction

Modal and temporal logics have a long history as system specification languages
in computer science, and computer scientists’ study of temporal logic has gen-
erated many interesting theoretical developments, as well as many important
practical advances. The logics in question typically describe properties of execu-
tion paths of systems, either explicitly, as in LTL and CTL, or via a ‘next-step’
operator and fixpoints, as in the modal mu-calculus.

Another major issue in computer science is concurrency. The theoretical and
practical analysis of concurrent and distributed systems also has a long history.
Probably the most successful approach to understanding concurrency at a funda-
mental semantic level is the use of ‘independence models’, in which certain events
are stated to be independent of other events, and the associated partial order
semantics, in which a partial order of causality is established between events.
There have also been several major practical advances in exploiting partial order
structure, such as stubborn sets and sleep sets [22] and unfolding techniques [16].

Naturally, one wishes to have modal and temporal logics for concurrent sys-
tems. There are several ways to apply the paradigm of normal temporal logic,
typically by working on event structures, or similar models, and having explicit
operators representing concurrency or independence: see [19] for a survey of such
logics. In some models, and therefore in the associated logics, the notion of in-
dependence is abstract; in others, it is more concrete, perhaps derived from a
notion of location; but in all cases it inheres in the model rather than the logic.

However, there is also a notion of inherent independence in logic, which seems
quite natural when specifying concurrent systems, but which has not, with one
notable exception, received much attention in concurrency theory.

In 1961, Leon Henkin [11] introduced the quantifier ∀x ∃y∀u ∃v, which is intended
to mean that the choice of y depends only on x, not on u; and similarly the
choice of v depends only on u; a formal semantics is given by using suitable
Skolem functions.

The Henkin quantifier and its generalizations received some attention: the
main papers were at the beginning of the 70s, by William Walkoe [23] and

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 247–261, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

248 J.C. Bradfield

Herbert Enderton [9], and later also by Krynicki and Barwise. It was shown
that ∀ ∃∀ ∃ suffices to express all partially ordered or branching quantifiers (that is,
quantifiers where the dependence of variables need not be simply linear). More
recently, Georg Gottlob has looked at generalized quantifiers, including ∀ ∃∀ ∃, for
capturing complexity classes.

In the last few years, logicians, in particular the (Boston and) Helsinki logi-
cians Jaakko Hintikka, Gabriel Sandu and Jouko Väänänen, have returned with
a vengeance to the study of ‘independent’ quantifiers as a basic logic, rather than
a specialist extension, and Hintikka and Sandu [12] have gone so far as to claim
that their absence from Frege’s logic was a ‘fundamental error’, a ‘horror’, and
to claim that their reintroduction heralds ‘a revolution in logic’ (albeit with a
question mark in the title). It is not necessary to accept this thesis to accept that
‘independence-friendly first-order logic’ (IF-FOL) is an interesting, and natural
[3,20] logic. For example, when considering the development of systems by sev-
eral designers working independently, the notion of independent choice seems
natural, and may reasonably form part of any language for discussing properties
of such designs. At a more concrete level, different components of a distributed
system cannot be assumed to have full knowledge of other components, and so
cannot make fully informed choices.

In this paper, I suggest that the use of modalities based on Henkin quan-
tifiers gives an approach to independence in concurrency which complements
the model-based independence usually used. I start by outlining the work on
independent quantifiers; I then give a natural modal logic using independent
quantification, and relate it to other work on logics for distributed systems; I
define the obvious fixpoint extension, and consider complexity issues and the
extent to which the usual theory transfers. I then return to the first-order inde-
pendence logic giving our metalanguage, and consider briefly the interpretation
of fixpoints there: which is not a trivial question. Finally, I raise the problem
of more general modal fixpoint logics based on independence. Owing to space
constraints, proofs are generally omitted or just sketched, unless they are of
particular interest.

2 ‘Independence-Friendly’ First-Order Logic

By FOL+ we mean first-order logic in positive form: that is, negation is applied
only to atomic formulae, and both operators of the dual pairs ∨/∧ and ∃/∀
are considered primitive; FOL denotes the usual logic where negation is not so
restricted. FOL++Q denotes the logic where the additional operator Q appears
only positively. We use similar notation for other logics.

2.1 Partial Quantifiers à la Henkin

A branching quantifier Q is a set {x1, . . . , xm, y1, . . . , yn} of variables, carrying
a partial order ≺; the xi are universal, the yi existential. The semantics of Qφ
is defined to be that of ∃f1 . . . fn.∀x1 . . . xm. φ[fi(yi↓)/yi], where yi↓ is the list

Independence: Logics and Concurrency 249

of variables ≺ yi, and [·/·] denotes syntactic substitution: thus fi is a Skolem
function for yi, but it refers only to variables preceding yi in the partial order.

In particular, the Henkin quantifier ∀ ∃∀ ∃ = {x1, x2, y1, y2} with xi ≺ yi is
written ∀x1 ∃y1∀x2 ∃y2; thus

∀x ∃y
∀u ∃vφ(x, y, u, v) is equivalent by definition to

∃f, g.∀x, u. φ(x, f(x), u, g(u)).

Fact 1. The following are the basic properties of branching quantifiers.

1. Any formula Qφ where Q is a branching quantifier and φ is FOL+ is equiv-
alent to a formula of FOL++∀ ∃∀ ∃. [23,9].

2. By definition, any FOL++∀ ∃∀ ∃ formula is equivalent to an existential second-
order formula.

3. Moreover, any existential second-order formula is equivalent to a formula of
FOL++∀ ∃∀ ∃. (This is because the formula can be ‘unskolemized’ using ∀ ∃∀ ∃: for
example, the assertion that there exists an injective function which never
takes a particular value c, which being true only on infinite structures is not
first-order, can be written as ∃f.∀x, u. (f(x) = f(u) ⇒ x = u) ∧ (f(x) �= c);
and this can be written using ∀ ∃∀ ∃ as

∀x ∃y
∀u ∃v.(x = u ⇒ y = v) ∧ (y = v ⇒ x =

u) ∧ (y �= c).)
4. It follows via Fagin’s Theorem that on finite structures FOL++∀ ∃∀ ∃ expresses

NP-hard properties [4]; in fact, as one would expect, FOL+∀ ∃∀ ∃ captures L
NP

[10].

2.2 Partial Knowledge Games and Quantifiers à la Hintikka

An alternative way of giving semantics to branching quantifiers is via games.
Recall the Hintikka model-checking game for FOL+: given a formula ψ and a
structure M , a position is a subformula φ(x) of ψ together with a deal for φ, that
is, an assignment of values v to its free variables x. At a position (∀x. φ1,v),
Abelard chooses a value v for x, and play moves to the position (φ1,v · v);
similarly Eloise moves at ∃x. φ. At φ1 ∧ φ2, Abelard chooses a conjunct; and at
φ1 ∨ φ2, Eloise chooses a disjunct. A play of the game terminates at (negated)
atoms P (x) (resp. ¬P (x)), and is won by Eloise (resp. Abelard) iff P (x) is true
with the current deal. Then it is standard that M � φ exactly if Eloise has a
winning strategy in this game, where a strategy is a function from sequences of
legal positions to moves.

These games have perfect information; both players know everything that
has happened, and in particular when one player makes a choice, they know
the other player’s previous choices. Game semantics for the Henkin quantifiers,
following [12], use games of imperfect information: in the game for ∀x ∃y∀u ∃vφ, when
Eloise chooses for v, she does not know what Abelard chose for x. To make
this explicit, the logic is written with a more general syntax which is linear
rather than two dimensional. We here use Hodges’ [13] syntax, which addresses
certain flaws in Hintikka’s; and for reasons of space and simplicity, we omit some
operators in this version.

250 J.C. Bradfield

IF-FOL+ is obtained from FOL+ by modifying the syntax of quantifiers to
be ∀x/W. and ∃x/W. , where W is a set of variables. The intention is that
W is the set of independent variables, whose values the player is not allowed
to know at this choice point. Thus the Henkin quantifier ∀x ∃y∀u ∃v can be written
as ∀x/∅.∃y/∅.∀u/{x, y}.∃v/{x, y}. Henceforth we freely omit set braces and
write just ∀x. for ∀x/∅. We shall also, again for reasons of space and simplicity,
consider only the independent ∃, leaving the dualization for independent ∀ to the
reader (or see [13]). The adapted model-checking game, where the information
is restricted, can be shown to characterize the Skolem function semantics in the
sense that Eloise has a winning strategy iff the formula is true. However, these
games are not determined, so it is not true that Abelard has a winning strategy
iff the formula is false. For example, ∀x∃yx = y (or ∀x.∃y/x. x = y) is false in any
structure with more than one element, but Abelard has no winning strategy.

3 Henkin Modal Logic

For a concurrency theorist, it is natural to see the model-checking game for ∀x ∃y∀u ∃vφ
not as a game of imperfect information, but as a concurrent game: at ∀x ∃y∀u ∃vφ the
game splits into two independent concurrent components: in one component
play proceeds with ∀x.∃y. , in the other with ∀u. ∃v. , and then the components
join to proceed with φ. This also seems a natural statement to want to make
about concurrent systems: a choice in one component should not even be able
to depend on a concurrent choice in another! However, until recently all modal
or temporal logics enforced logical dependence of choices.

Example 2. In the children’s game Scissors–Paper–Stone, the two players (say
Abe and Elly) each put one hand behind their back, and make it either open (Pa-
per), a fist (Stone), or a V-sign (Scissors). The two players then simultaneously
bring forward their hands. The round is won according to the rules: Scissors cut
Paper, Paper wraps Stone, Stone blunts Scissors (if both players choose the same
object, the round is drawn). Can we ask the question ‘can Elly always win?’?

If we formalize the game by seeing Abe as choosing between the three ac-
tions A = {scA, paA, stA}, and similarly for Elly, and viewing the game as their
independent concurrent composition with final states that satisfy Ewins when
Elly wins, we can approximate the question by [A]〈E〉Ewins∧〈E〉[A]Ewins. This
expresses that Elly can win on all interleavings; it is (correctly) false, but it is
false for the wrong reason: that 〈E〉[A]Ewins fails, means that after Elly chooses,
Abe can, with knowledge of that choice, make her lose, which mis-models the
situation.

If we formalize the simultaneity by using a synchronous concurrent compo-
sition, there is, in normal modal or temporal logics, no way to ask the question
at all, since only one action (the simultaneous choice) happens.

Of course, with an eye on Henkin quantifiers, the obvious answer is to define
a modality []

〈〉 so one can write [A]
〈E〉Ewins, with the intended meaning.

Independence: Logics and Concurrency 251

Recently, Alur, Henzinger and Kupferman [1] have implicitly taken this ap-
proach in their Alternating Temporal Logic, apparently without awareness of
Henkin quantifiers: they express, rather, their logic directly in terms of games
and strategies. We shall now define a simple logic of Henkin modalities; a frag-
ment of this provides a generalization of ATL, and also includes several other
distributed logics.

3.1 A Distributed System Model

First let us define a notation for system models that, although by no means
the most general possible, is sufficient for all our examples. Given an algebra
Act of basic actions, sequential components P are built from non-deterministic
choice P1 + P2, action prefix a.P1, and mutual recursive definitions P = Q(P).
Systems are defined as a parallel composition ‖Si Pi of n components; Act⊥ =
Act∪{⊥} where ⊥ is the ‘non-action’ or idle action, and S ⊆ Actn⊥×Act gives the
synchronization rules by ‖Si Pi a−→ ‖Si P ′i (where a ∈ Act) iff each Pi

αi−→ P ′i (for

αi ∈ Act⊥) and also S(α1, . . . , αn, a). We also write ‖Si Pi
⊗

i αi−→ ‖Si P ′i , particularly
in the case when S is a function Actn⊥ → Act .

This model gives a convenient notation for various distributed automata
formalisms, or for finite state CCS or CSP (by adjusting the synchronization);
and a slightly less convenient notation for arbitrary finite 1-safe Petri nets, by
taking each place as a two state component and using S to code the transitions.
The alternating transition systems of [1] can also be coded into this notation.

3.2 Henkin Modalities

We now define Henkin modal logic (HML) on such a system thus: in addition
to ML+, that is, basic modal logic in positive form, we have the concurrent
modalities of the form

⊗
i=1,...,n Q1

i (A
1
i) . . .Q

m
i (A

m
i), where Qji (A

j
i) is either [A

j
i]

or 〈Aji 〉, and Aji ⊆ Act⊥; the length of the modality is m. We shall sometimes use
‘−’ to mean ‘Act ’ in modalities. These modalities are given a semantics in terms
of the corresponding first-order Henkin quantifier. This is notationally tedious
to write out, so we just give the semantics of the length 2 Henkin modality [] 〈〉

[] 〈〉
on a 2-component system, by way of example. (We write [A] 〈B〉

[C] 〈D〉 in Henkin style
for the formal ([A]〈B〉 ⊗ [C]〈D〉).)

P1‖SP2 � [A1] 〈B1〉
[A2] 〈B2〉φ

holds iff

∀α1 ∈ A1, P
′
1 ∃β1 ∈ B1, P

′′
1∀α2 ∈ A2, P

′
2 ∃β2 ∈ B2, P

′′
2
(P1‖SP2)

α1⊗α2−→ (P ′1‖SP ′2) β1⊗β2−→ (P ′′1 ‖SP ′′2)

Note that by definition H
ML does not include the duals of the Henkin modalities.

252 J.C. Bradfield

Let H
MLn denote the sublogic where the modalities have length at most n.

H
ML1 with the addition of fixpoints (see later) includes many existing distributed
modal logics.

Example 3. The indexed transition systems of Andersen [2] take the form of
systems ‖S1≤i≤nPi, where S(α1, . . . , αn, a) iff there is some k such that αk = a
and all other αi are ⊥. (The systems move one component at a time.) Then in
Andersen’s ‘polyadic mu-calculus’, the indexed modality [a]k is in our notation⊗

i[αi] where αk = a and the other αi are all ⊥.

Example 4. The distributed net systems used by Huhn, Niebert and Wallner
[14] are systems ‖S1≤i≤nPi where each Pi is a sequential Petri net, and S defines
the synchronization of common transitions. The transitions are labelled, which
we may express either by using instead sets of transitions, or by letting S map
local transitions to global labels rather than to global transitions. Their logic is
defined locally via an event structure style semantics, so that the basic modality
is 〈a〉Jφ, where J ⊆ {1, . . . , n}; this is true at a local state of Pi, for i ∈ J , if a
(which must share some location with J) can fire as an immediate action of the
J processes, possibly with non-J actions happening first, and then φ holds.

Such a modality is not expressible in H
ML1 without fixpoints, since we have an

interleaving, global semantics, but with fixpoints it is just µZ.〈a〉φ∨ (
⊗

i〈Ai〉)Z,
where Ai is ⊥ for i ∈ J and Act⊥ otherwise.

The previous examples are merely using the idea of location; to use the power
of independent quantification, we need:

Example 5. The alternating transition systems of [1] are an unlabelled setting.
An ATS is a global state space Q, shared by n agents Pi. Each agent has a
transition function δi : Q → 22

Q

. At a state q, each agent chooses Qi ∈ δi(q).
It is required that for all such choices,

⋂
iQi is a singleton set {q′}, and this

determines the next state of the system. Thus the intuition is that each agent
chooses its desired successors, independently of the others, and the system moves
to the one state they all desire.

To encode this in our setting, it is easiest to make the choice an explicit local
transition happening before the move to the next state. So we take each agent
Pi to be a transition system with state space Q ∪ 2Q, with transitions q

τ−→ Qi

(where τ is a dummy label) for every Qi ∈ δi(q), and Qi
q′

−→ q′ for every q′ ∈ Qi

(note that q′ is also being used as a label). The synchronization algebra S is then
the diagonal on Q ∪ {τ}, and one move of the original ATS corresponds to two
moves of our system ‖Si Pi. Thus the reachable states of our system have the form
(q, q, . . . , q) or (Q1, . . . , Qn), and the requirements on the ATS transition function
mean that there is exactly one transition from any reachable (Q1, . . . , Qn), to
the unique (q′, q′, . . . , q′) with q′ ∈ ⋂iQi.

The Alternating Temporal Logic of [1] is like CTL, except that the path
quantifiers are not just ∀ and ∃, but have the form 〈〈E〉〉, where E ⊆ {1, . . . , n}.
The interpretation is that, given a path formula φ (for example, Fψ, ‘eventually

Independence: Logics and Concurrency 253

ψ’), 〈〈E〉〉φ is true if the agents E can choose their successors to make φ hold on
all paths, regardless of how the other agents E choose their successors. In other
words, the E agents can win the path game defined by φ.

This logic is then in turn defined as a fragment of a suitable mu-calculus,
just as CTL is defined in the usual modal mu-calculus. The [1] mu-calculus has
the basic modality 〈〈E〉〉 ©φ, where © is the ‘next’ operator, interpreted as just
described.

Now in our encoding, this modality is just (
⊗

i Qi)〈−〉φ, where Qi is 〈τ〉 for
i ∈ E, and [τ] otherwise.

Remark 6. A referee suggests that my presentation of H
ML on distributed sys-

tems obscures that fact that it is a natural fragment of IF-FOL just as ML is a
natural fragment of FOL. There is some force in this, but there is a counter: if
one defines the modalities without reference to locality, one must use a model
such as ATS’s in which locality is encoded by means of sets of possible next states
for each agent. It is arguable that the ATS model is less natural than the usual
models, and also that the distributed modalities are themselves more natural for
the user that a pure Henkin quantifier. A fuller discussion of this point requires
further analysis of guarded and finite-variable fragments of IF-FOL, which, as
far as I know, has not yet been done.

3.3 Adding Fixpoints

We have already used fixpoint notation above; to justify this, it suffices to note
the following fact:

Proposition 7. A Henkin modality defines a monotone operator on sets of
global states. Therefore least and greatest fixpoint operators can be added to H

ML
as in the normal modal mu-calculus: call this µH

ML.

Because we are defining interpretations as sets of global states, some of the
usual theory carries through trivially: for example,

Proposition 8. The usual simple complexity upper bound applies: given a µH
ML

formula φ of length m and fixpoint alternation depth d, and a system of size n
(meaning here the number of global states plus the number of transitions), the
complexity of determing whether s � φ is O(m · H · nd), where H is the cost of
evaluating a basic modality or boolean.

In normal modal mu-calculus, H is O(n); we consider below what H is for
Henkin modalities.

Other parts of the theory can be made to carry through in a rather uninter-
esting way, by ignoring the concurrency and using rather the Skolem semantics:

Proposition 9. Consider the tableau model-checking system of [21], and add
rules for the Henkin modalities in the following form:

s1‖s2 � ([A1]〈B1〉 ⊗ [A2]〈B2〉)φ
s11‖s21 � φ . . . s1m‖s2m � φ

254 J.C. Bradfield

where the states on the bottom are given by: for every A1 successor s′1 of s1 there
is some B1 successor s1j of s′1, and similarly for the second component, such that

s1‖s2 A1⊗A2−→ s′1‖s′2 B1⊗B2−→ s1j‖s2j.
Then the resulting tableau system is sound and complete.

Other parts do not carry through so easily: for example, the relationships with
automata and parity games, where one must extend the usual frameworks with
either second-order moves or Henkin quantification in the winning conditions.

3.4 Cost of Henkin Modalities

As we remarked above, the usual complexity analysis carries through, but de-
pends, of course, on the cost of evaluating the modalities.

Proposition 10. The cost of evaluating a Henkin modality of length 1 is O(n3).

Proof. To check s1‖s2 ∈ [[([A]⊗〈B〉)φ]], it suffices to try in turn each of the O(n)
possible B-successors of s2 and check whether all the so chosen A⊗B-successors
are included in [[φ]]. ��

The result of this is that µ H
ML1 is not significantly worse (in theory!) than

normal modal mu-calculus. However, since it is also a slight generalization of
the AMC of [1], the complexity hardness results there can also be applied to
µ H
ML1, giving, for example, P-hardness (rather than the NL-hardness of modal

mu-calculus).
When we move to real Henkin modalities, things become more expensive. As

we know that first-order Henkin modalities are NP-complete, we might expect
this; but we might also hope that the restricted quantification involved in modal
logic reduces the complexity. Unfortunately, this is not the case:

Proposition 11. Model-checking H
ML2 is NP-hard (and obviously NP).

Proof. There is a direct reduction (with thanks to Perdita Stevens) from CNF-
SAT, which illustrates the use of the Henkin modalities quite nicely, and so is
worth giving in full.

Consider an instance Φ of CNF-SAT: it has the form
∧

1≤i≤m Ci, where
Ci =

∨
1≤j≤ni

(ij , and each (ij is vk or ¬vk for one of the r variables vk.
We now define a system with two components: the first represents the for-

mula, the second a choice of variable assignment. Let D =
∑

1≤i≤m c.Ci, and
Ci =

∑
1≤j≤ni

d.Lij , and Lij = vk.t if (ij = vk, or Lij = vk.f if (ij = ¬vk

Let A =
∑

1≤k≤r c.Vk, and Vk = d.vk.t+ d.vk.f .

(
v3−→ v3

t−→•
d↗∨ ...

c↗ ↘d

∧ ... (
v17−→¬v17

f−→•

∥∥∥∥∥

true v1−→• t−→•
d↗

v1
c↗ ↘d

• ... false v1−→• f−→•

Independence: Logics and Concurrency 255

Now let S be the synchronization algebra given by α ⊗ α = τ , and sym-
metrically, for every α ∈ {c, d, vk, t, f}, and let P = D‖SA. (In standard CCS
notation, this would be (D | A)\{c, d, vk, t, f}.) Note that the size of this system
is at most quadratic in the size of Φ.

Now we claim that P � [−] 〈−〉
[−] 〈−〉[τ]〈τ〉tt iff Φ is satisfiable.

Firstly, suppose Φ has a satisfying assignment S. In the game for [−] 〈−〉[−] 〈−〉, Eloise
plays the following strategy: in the top half, in response to Abelard’s choice of
Ci, she chooses any Lij made true by S – such a literal exists, by definition
of satisfying assignment. In the bottom half, in response to Abelard’s choice of
Vk, she chooses vk.t or vk.f according as vk is true or false in S. The resulting
process is then vk′ .(t/f)‖Svk.(t/f) according as (ij is vk′ or ¬vk′ , and as vk is
true or false. If k′ �= k, then the process is deadlocked, and so satisfies [τ]〈τ〉tt.
If k′ = k, then since Eloise chose Lij to be true in S, the left hand process has
t iff the right hand process has t, and so again the process satisfies [τ]〈τ〉tt.

Conversely, if P � [−] 〈−〉
[−] 〈−〉[τ]〈τ〉tt, then Eloise’s strategy for [−] 〈−〉

[−] 〈−〉 defines, in
the bottom half, an assignment S, and in the top a selection of one literal Liji
for each conjunct Ci, such that the literal is made true by the assignment; so S
is a satisfying assignment. ��

So it appears that the Henkin modality is exponential to check. This has two
apparent consequences: it means that one might reasonably argue it is useless,
even if there are natural properties to be expressed with it; and it means that
the fixpoint alternation depth is no longer the dominant factor in the combined
complexity of model-checking.

The first consequence is in any case rather dubious – worst-case complexity
may or may not have any relevance to practical complexity, as demonstrated by
the practical utility of the theoretically non-elementary Mona system – but both
consequences can be mitigated if systems have certain structure.

Given a system in our framework, define the local size to be the maximum
of the sizes of the individual components.

Proposition 12. In a k-component system with local size d, evaluating a Henkin
modality of length 2 costs O(dd+2k) = O(2(d+2k) log d)).

Proof. Brute force exploration of all the possible ‘Skolem functions’: in each
component there are at most dd possible local strategies in the local []〈〉 game;
to check that a candidate k-tuple of local strategies satisfies the formula costs
at most dk · dk. Thus the total cost is dd+2k ��

In a loosely coupled system, the global state space is of size dk; thus as
the number of components increases, the exponential of the Henkin modality is
absorbed by the exponential of the state space explosion, rather than adding to
it.

The fact that the Henkin modality in the worst case dominates fixpoint
complexity raises the question of the fixpoint alternation hierarchy for finite
models. In the infinite case, this question can be solved by extending previous
techniques.

256 J.C. Bradfield

Proposition 13. For µH
ML2 on infinite models (and even on 2-component sys-

tems), the fixpoint alternation hierarchy is strict.

Proof. If one considers arithmetic with fixpoints and the Henkin quantifier, the
fixpoint alternation hierarchy is strict – see the next section. Then a natural
extension of the techniques of [5], in which a Henkin modality is used to encode
a first-order Henkin quantifier, transfers this hierarchy to µ H

ML2 on 2-component
systems. ��

However, for this result to transfer down to finite models, we would need
the finite model property for µ H

ML2 and its closure under negation. One can see
that:

Proposition 14. Given a finite action set, fixed number of components, and
given synchronization algebra, then if a µH

ML2 formula has a countably infinite
model, it has a finite model.

Proof. The elegant proofs of the modal mu-calculus finite model property do not
easily transfer. However, the brute force construction of a finite model by surgery
on the unravelling, does transfer: essentially one builds an infinite tableau (using
the tableau rule given in Proposition 9 for the Henkin modality); then removes
all branches that are not required to exist by a diamond modality; and then looks
for repetitions of the same set of subformulae annotating a state (after defining
a suitable notion of subformula for the Henkin modality). Closing repetitions to
form loops gives a finite (albeit large) model. ��

Unfortunately, I cannot see how to obtain this result for the dual of the
Henkin modality, if indeed it holds.

4 IF-FOL and Fixpoints

4.1 Fixpoints and the Henkin Quantifier

We return now to the general setting of first-order logic. As we remarked in the
last proposition, there is no great difficulty in combining a simple Henkin quan-
tifier with fixpoints: ∀ ∃∀ ∃ is just another monotone operator. Getting a handle on
the expressive power is less trivial. Consider LFP++∀ ∃∀ ∃, that is, first-order logic
with fixpoints in positive form, plus the Henkin quantifier occurring only posi-
tively, and consider the structure of arithmetic. The Henkin quantifier itself has
Σ1
1 power, so a formula of the form µ(z, Z).∀x ∃y∀u ∃vφ, for first-order φ, is at worst a

fixpoint over Σ1
1, which is at worst Σµ2 in the normal fixpoint hierarchy (because

Σ1
1 = Πµ1 : Kleene’s theorem). However, it is not immediately obvious that, say,
∀x ∃y
∀u ∃vµ(z, Z).φ is well-behaved; naively, it might be Σ1

2. Of course, it is not, be-
cause the fixpoint is parametrized on the variables x, y, u, v, and cannot actually
refer to the defined Skolem functions. The key to analysing the expressive power
is to extend the normal form results of [15,5] with the

Independence: Logics and Concurrency 257

Lemma 15. In arithmetic (or other structures with suitable coding power), a
Henkin quantifier can be pushed inside a fixpoint operator.

As corollaries of the normal form and existing theorems [6,7] on the power
of fixpoints, one obtains

Corollary 16. The fixpoint alternation hierarchy for LFP++∀ ∃∀ ∃ (on arithmetic)
is strict.

Corollary 17. LFP++∀ ∃∀ ∃ is no more expressive than LFP+ (on arithmetic).

and in fact both these apply to LFP+∀ ∃∀ ∃ as well; adding the dual is not prob-
lematic. The latter result contrasts sharply with the position on finite models,
where a single ∀ ∃∀ ∃ is stronger than fixpoints, unless P = NP.

4.2 Fixpoints and Full IF-FOL

Now consider the full independence-friendly logic, with the linear syntax al-
lowing arbitrary specification of independence in quantifiers. We described the
Skolem function semantics, and the game semantics of Hintikka. These seman-
tics have the problem that they are not compositional, and in particular they
give no meaning to a formula such as ∃y/x. φ, which occurs as a subformula of
∀x.∃y/x. φ (alias ∀x∃yφ). Hintikka and Sandu [12] thought that this was an in-
evitable fact, and Hintikka even went so far as to say that ‘no perverse ingenuity’
could produce a compositional semantics. So Wilfrid Hodges [13] promptly gave
a compositional semantics. This allows us to add fixpoints freely in the usual
way (call the result IF-LFP, ‘independence-friendly least fixpoint logic’), but at
an (apparently) considerable price: the interpretation of a formula with free vari-
ables is no longer just a set of value tuples, but a set of sets of tuples. For the
formal semantics, recall the definition of the syntax in section 2.2 – which is, for
simplicity, a fragment of the full logic. We will give, using Hodges’ terminology,
the semantics for this fragment.

Let φ(x) mean that x is all the free variables of φ without repetition. Given
a structure A, a deal for φ is an assignment of an element of A to each variable
in x. The interpretation of a formula is the set of its trumps, defined as follows.

– If P (x) is atomic, then a non-empty set X of deals is a trump iff every deal
in X satisfies P .

– X is a trump for (φ ∧ ψ)(x) iff X is a trump for φ(x) and X is a trump for
ψ(x).

– X is a trump for (φ ∨ ψ)(x) iff it is non-empty and there are trumps U of φ
and V of ψ such that every deal in X belongs either to U or V .

– X is a trump for ∀y. ψ(x, y) iff the set { ab | a ∈ X, b ∈ A } is a trump for
ψ.

– The interesting case is the existential quantifier (and, in the presence of
negation, the universal quantifier). Given φ(x) = ∃y/W.ψ(x, y) (where W
is a subset of the variables x), say that two deals are W -equivalent iff they

258 J.C. Bradfield

agree on all variables not in W . Say that a non-empty set X of deals is a
W -set if its members are pairwise W -equivalent. Then a set X of deals for
φ is a trump iff: there is a trump U for ψ such that for every W -set Y ⊆ X
there is a b such that { ab | a ∈ Y } ⊆ U .

A trump for φ is essentially a set of winning positions for the model-checking
game for φ, for a given uniform strategy, that is, a strategy where choices are
uniform in the ‘hidden’ variables. The meaning [[φ]] of a formula is then defined
to be the set of its trumps.

It is easy to see that any subset of a trump is a trump. In the case of an
ordinary first-order φ(x), the set of trumps of φ is just the power set of the
set of tuples satisfying φ. To see how a more complex set of trumps emerges,
consider the following formula, which has x free: ∃y/{x}. x = y. Any singleton
set of deals is a trump, but no other set of deals is a trump. Thus we obtain that
∀x.∃y/{x}. x = y has no trumps (unless the domain has only one element).

Now consider adding fixpoints. In normal LFP, we form an inductive defi-
nition via a formula φ(x,X) with a relation variable X. In Hodges’ semantics,
the ‘relation’ variable should instead range over sets of (potential) trumps, and
hence the fixpoint is taken over functionals ℘(℘(A)) → ℘(℘(A)) rather than
℘(A) → ℘(A). For this, we require

Lemma 18. The operators ∨, ∧, ∀x. , ∃x/W. are monotone in the lattice of
trump sets.

Thus given a n-ary ‘relation’ variable X, and a formula φ(x, X) with n free
variables, we have in the usual way an operator on ℘(℘(An)), and we can form
the fixpoints µX.φ and νX.φ. Note, however, that this is not the form of a
general inductive definition over ℘(An), since we do not have variables ranging
directly over ℘(An).

The usual machinery of ordinal approximants applies. However, as the fix-
points are over ℘(℘(A)), the naive bound on the closure ordinal of a single
fixpoint is now exponential in |A|. If A is countably infinite, this raises the pos-
sibility of 2ℵ0-step approximation; and high expressive power.

Indeed, the question of the expressive power of this logic, on the structure
of arithmetic, is most interesting. We know that ordinary induction on the inte-
gers (i.e. LFP) is a small fragment of ∆1

2; but with IF-LFP, we are performing
induction over the continuum, which is, unrestricted, extremely powerful: ωω
induction over a Π1

1 formula gives Σ1
2, and then induction over ∆1

2 gives all the
semihyperprojective sets [8] (including, for example, the entire analytical hierar-
chy). In our framework, it is natural to conjecture that the expressive power of
IF-LFP is much less than this (and in fact I conjecture it is in ∆1

2), but at present
I do not have the tools to analyse the power. The reasons for the conjectured
weakness are that the form of induction is very restricted, as noted above.

We can, however, note the simple fact that this semantics agrees with the
usual semantics for LFP when there is no independence:

Independence: Logics and Concurrency 259

Proposition 19. If an IF-LFP formula φ contains no slashes, then its deno-
tation [[φ]]IF−LFP is exactly the set of non-empty subsets of the ordinary LFP
denotation [[φ]]LFP; and in particular, x ∈ [[φ]]LFP ⇔ {x} ∈ [[φ]]IF−LFP.

Proof. By induction on approximants and the structure of φ. ��

5 Independence-Friendly Modal Mu-Calculus?

The fixpoint extension of IF-FOL is interesting in its own right, but it is also
a tool for understanding more sophisticated Henkin modal logics than we have
defined so far.

We have already used the notation ⊗ to describe the concurrent, independent
combination of sequences of modalities. A natural extension is to take it as an
operator on formulae instead, so one can write, for example, ([a](P1 ∧ (〈b〉 ∗
∧〈c〉∗))) ⊗ ([a](P2 ∧ 〈−〉∗))Q, with the intended interpretation that the first
component satisfies the first factor (with P1 probably, but not necessarily, being
a local proposition as in [14]), making its existential choices independently; the
second satisfies the second; and in the process, the two components synchronize
on the a; and when they rendezvous at ∗, the system satisfies Q.

The simplest way to define such operators formally is to use a game seman-
tics, in the style of Hintikka. Precisely, take the syntax of modal logic, in positive
form, and add: an n-ary (for each n) operator ⊗ (“parallel composition”), an
atomic formula ∗ (“end of parallel”), and a binary operator . (roughly, “sequen-
tial composition”). In our usual framework, only one level of ⊗ nesting is allowed,
and ⊗ and ∗ may only occur on the left side of a “sequential composition”.

Given a system (say 2-component, for simplicity) in our usual framework, a
formula defines a game thus: the normal modalities are played as usual. At a
formula (φ1 ⊗ φ2).ψ, the game splits into two concurrent parts: every modality
move in one half must match a modality move in the other half, with the global
system advancing as dictated by the synchronization algebra, but the choices
in one half are independent of those in the other. When play reaches ∗ in both
halves, play continues at ψ; if play stops because an atomic formula (other than
∗) is reached in either component, Eloise wins if the formula is locally satisfied
(in both halves, in the event that both halves reach an internal atomic formula).

This game semantics, although not unnatural, is quite complex. It is an
exercise in applying [13] to see that:

Remark 20. Given appropriate predicates on systems in our framework, the
above logic can be given a semantics using IF-FOL, with the IF-FOL game
semantics corresponding naturally to the above modal game semantics.

The issue of fixpoints then arises. Provided that fixpoint operators are re-
stricted to ‘system formulae’, that is, are not allowed inside ⊗, there is no par-
ticular problem, and we obtain a logic that can express moderately complex
properties concerning independence and synchronization, but which is still de-
cidable.

260 J.C. Bradfield

However, it is natural to ask whether formula such as ((µZ.∗∨(P1 ∧ [−]Z))⊗
(µZ.∗∨(P2∧ [−]Z)).〈a〉tt make sense. They appear to make good intuitive sense,
when one thinks of µ as just meaning ‘finite looping’, but it is not apparent how
to give a semantics to them within IF-LFP. Furthermore, an attempt to give a
game semantics results in games where the two agents can proceed arbitrarily
far without ‘rendezvous’ing and acquiring knowledge of each other’s state space.
In general, such games, in which the lack of knowledge persists indefinitely, have
undecidable outcome problems; for example, in [1], a general game quantifier
temporal logic is defined, which is undecidable on finite systems for that rea-
son. Whether such formulae can be allowed with restrictions sufficient to retain
decidability, is an issue for further investigation.

6 Summary and Future Work

In this paper, we have introduced the notion of ‘independence-friendly’ modal
logic; we have laid some of the groundwork for a modal theory, and looked at the
extension of the first-order theory by fixpoints. This opens up many avenues for
further exploration, both in a ‘computer science’ setting and in a more ‘logical’
setting. For example:

– Does full µ H
ML with negation have a finite model property?

– What is the expressive power of IF-LFP on arithmetic?
– Does µ H

ML have a fixpoint alternation hierarchy on finite models? If so, how
does this connect to the complexity?

– In this paper, we have used only a fragment of IF-FOL; in particular, we
have not used independent disjunction (and conjunction), which is a subtle
connective (see [13]); and we have not addressed the issue of negation and
duality. The latter question was traditionally ignored, by sticking to positive
form; Hodges has provided an account of negation, and there is some work
to do in applying it in our setting.

– What is the relation between the logical independence we have been study-
ing, and the model independence in semantic accounts of true concurrency?
There appear to be some links between logics of causality and locality, in-
cluding history-sensitive logics such as the hereditary history-preserving logic
of [17], and these should be investigated.

– Independence-friendly logics are philosophically and mathematically inter-
esting, but are they really useful? Putative applications such as distributed
system design should be investigated, and it is hoped to pursue this in a
future project.

Finally, I should like to thank the several colleagues with whom I have dis-
cussed the idea of H

ML, in particular Perdita Stevens and Juliana Küster Filipe.
I also thank the referees for perceptive criticisms, which, I regret, are largely
unanswered here; a longer version of this paper will be found via my home page
http://www.dcs.ed.ac.uk/home/jcb/. I am supported by EPSRC Advanced
Fellowship AF/97/0322.

Independence: Logics and Concurrency 261

References

1. R. Alur, T. Henzinger and O. Kupferman, Alternating-time temporal logic,
in Proc. 38th FOCS (1997), 100–109.

2. H. R. Andersen, Verification of Temporal Properties of Concurrent Systems,
DAIMI PB – 445, Computer Science Dept, Aarhus University, 1993.

3. J. Barwise, On branching quantifiers in English, J. Philos. Logic 8 47–80
(1979).

4. A. Blass and Y. Gurevich. Henkin quantifiers and complete problems. Ann.
Pure Appl. Logic 32:1, 1–16 (1986).

5. J. C. Bradfield, The modal mu-calculus alternation hierarchy is strict,
Theor. Comput. Sci. 195 133–153 (1997).

6. J. C. Bradfield, Fixpoint alternation and the game quantifier, Proc. CSL
’99, LNCS 1683 350–361 (1999).

7. J. C. Bradfield, Fixpoint alternation: arithmetic, transition systems, and
the binary tree, Theoret. Informatics Appl. 33 341–356 (1999).

8. D. Cenzer, Monotone inductive definitions over the continuum, J. Symbolic
Logic 41:1 188–198 (1976).

9. H. B. Enderton, Finite partially ordered quantifiers, Z. für Math. Logik u.
Grundl. Math. 16 393–397 (1970).

10. G. Gottlob, Relativized logspace and generalized quantifiers over finite or-
dered structures. J. Symbolic Logic 62:2, 545–574 (1997).

11. L. Henkin, Some remarks on infinitely long formulas, Infinitistic Methods,
Pergamon Press, Oxford and PAN, Warsaw, 167–183 (1961).

12. J. Hintikka and G. Sandu, A revolution in logic?, Nordic J. Philos. Logic
1(2) 169–183 (1996).

13. W. Hodges, Compositional semantics for a language of imperfect informa-
tion, Int. J. IGPL 5(4), 539–563.

14. M. Huhn, P. Niebert and F. Wallner, Verification on local states, Proc.
TACAS ’98, LNCS 1384 36–51.

15. R. S. Lubarsky, µ-definable sets of integers, J. Symbolic Logic 58 (1993)
291–313.

16. K. L. McMillan, Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits, Proc. CAV’92, 161–171 (1992).

17. M. Nielsen and C. Clausen, Bisimulations, games and logic. BRICS report
RS-94-6. BRICS, Aarhus (1994).

18. W. Penczek, On undecidability of propositional temporal logics on trace
systems, Inf. Proc. Let. 43(3) 147–153 (1992).

19. W. Penczek and R. Kuiper, Traces and Logic, in: Diekert and Rozenberg,
ed. The Book of Traces, World Scientific (1995).

20. G. Sandu, On the logic of information independence and its applications,
J. Philos. Logic 22 361-372 (1993).

21. C. P. Stirling and D. J. Walker, A general tableau technique for verifying
temporal properties of concurrent programs. Proc. Int. BCS–FACS Work-
shop on Semantics for Concurrency Workshops in Computing (Springer–
Verlag, Berlin, 1990) (1–15).

22. A. Valmari, A stubborn attack on state explosion. Proc. CAV ’90, DIMACS
vol. 3, 25–42 (1991).

23. W. J. Walkoe, Jr, Finite partially-ordered quantification. J. Symbolic Logic
35 535–555 (1970).

Flatness Is Not a Weakness

Hubert Comon and Vèronique Cortier

LSV, Ecole Normale Supèrieure de Cachan
61 Avenue du prèsident Wilson, 94235 Cachan cedex, France.

{comon,cortier}@lsv.ens-cachan.fr
Tel: +33 1 47 40 24 30
Fax: +33 1 47 40 24 64

Abstract. We propose an extension, called L+
p , of the temporal logic

LTL, which enables talking about finitely many register values: the mod-
els are infinite words over tuples of integers (resp. real numbers). The
formulas of L+

p are flat: on the left of an until, only atomic formulas or
LTL formulas are allowed. We prove, in the spirit of the correspondence
between automata and temporal logics, that the models of a L+

p formula
are recognized by a piecewise flat counter machine; for each state q, at
most one loop of the machine on q may modify the register values.
Emptiness of (piecewise) flat counter machines is decidable (this follows
from a result in [9]). It follows that satisfiability and model-checking the
negation of a formula are decidable for L+

p . On the other hand, we show
that inclusion is undecidable for such languages. This shows that validity
and model-checking positive formulas are undecidable.

Keywords: Counter automata, temporal logics, model-checking, verifi-
cation, logic in computer science.

1 Introduction

Temporal logics play a central role in the specification and verification of reactive
systems (see e.g. [16]). Temporal logics come in two varieties: linear time and
branching time [13]. We consider here the linear version PLTL. This (propo-
sitional) temporal logic is decidable (actually PSPACE-complete [18]). Model
checking is also PSPACE-complete (linear w.r.t. the model). The set of words
which satisfy a PLTL formula is recognized by a finite Büchi automaton, which
shows the relatively weak expressive power of the logic; here we are interested
in specifying and verifying infinite state systems.

One more general (hence more realistic) class of models would be machines
with finitely many registers (or counters) taking their values in integers or real
numbers and a finite control, of which the simplest example is Minsky machines.
Unfortunately, even the most simple temporal property, reachability, is undecid-
able for 2-counters machines [17]. Several restrictions of this model have been
studied. For instance Petri nets basically consist in removing the ability to test a
counter for zero. Temporal properties of Petri nets have been studied in, e.g.,[15].

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 262–276, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Flatness Is Not a Weakness 263

Another approach consists in adding hypotheses on the control instead of hy-
potheses on the basic operations only. That is the approach of [9]; a counter
machine is called flat if there is at most one loop on each state. For such ma-
chines, the binary reachability relation between two control states is expressible
in Presburger arithmetic [9], hence decidable. Flat automata are still a significant
subclass of counter automata since, for instance, Alur and Dill’s timed automata
[2] can be encoded in this model [11].

The notion of flatness appears in several places. As we have seen, it appears
to be a crucial hypothesis for counter machines. In [7] the authors study the set
of reachable configurations for an automaton communicating through fifo chan-
nels. They show how to describe such a set of configurations using a Presburger
formula, provided that the control is flat. Similarly, in [1] the authors study au-
tomata communicating through lossy fifo channels and introduce the so-called
SRE which assume a flatness hypothesis on the control. This is not by chance
that a similar hypothesis appears in several places: roughly, if only increments
are allowed, using one loop one may compute addition and using two nested
loops one can compute multiplication; from one loop to two nested loops we
move from decidable to undecidable theories.

More interestingly, flatness appears naturally in PLTL itself: following the
automata approach, the models of a PLTL formula are recognized by a weak
alternating automaton (see e.g. [19]). Weakness means that there is an ordering
on the states such that any state occurring in the image of q by the transition
function is smaller (or equal to) q. Hence “weak” is a synonym of “flat” in the
context of alternating automata, though the Büchi automaton accepting the
same language as a weak alternating automaton may contain several loops on
the same state, hence is not itself flat.

This raises the following question: assume that we design a temporal logic
which includes as atomic formulas expressions involving finitely many counters
and that we are able to construct for each formula φ an automaton which rec-
ognizes the models of φ, would the automaton be flat ? If this were the case, we
could design decision procedures for such a logic, because we do have decision
procedures for flat automata.

That is the purpose of the present paper: we define a flat temporal logic
Lp whose atomic formulas include expressions such as x ≥ y − 1 for instance
where x, y are integer variables. “flatness” is a restriction in which only atomic
formulas may occur on the left of an “until”. If we drop such a restriction, we
show that we immediately cross the boarder: the logic becomes undecidable. In
[4,6,5] there are similar hypotheses: they design a logic in which it is possible
to consider as a first class object the number of times a given propositional
formula is satisfied. This logic is in general undecidable, but becomes decidable
when on the left (resp. on the right) of an until only propositional formulas are
allowed. Strictly speaking, the results of [4] for instance are incomparable with
ours since neither the logic nor the models we consider are the same. (Roughly,
they consider models which are described by a process algebra, i.e. in which there
is no explicit counter. On the other hand, the integer variables in the logic only

264 H. Comon and V. Cortier

count number of occurrences of a given event). Let us emphasize however that
counting the number of steps which satisfy some proposition is possible in our
logic: it suffices to add one counter and increase it each time the proposition is
satisfied. In this respect, we get some “parametric quantitative reasoning” ([14])
for free; the number of times some transition is fired can be a free variable in
our logic.

We prove that recognizability by a flat automaton is equivalent to definability
in Lp . Note that this result goes both ways: unlike PLTL for which only star-free
languages are definable, here, any flat language is definable (and conversely any
definable language is flat). We prove that satisfiability of Lp formulas, as well as
model-checking the negation of formulas in Lp (against a model described by a
flat automaton) are decidable: this is a consequence of the relationship between
flat formulas and flat automata on one hand and decidability results for flat
automata on the other hand.
Lp has however several weaknesses. First, it is not closed by negation. This

cannot be avoided as we show that validity of φ ∈ Lp as well as model-checking
φ are undecidable. Phrasing these results in term of automata, though emptiness
is decidable for flat automata, the universality is undecidable.
Lp does not contain LTL. However, we can design a logic L+p which embeds

both LTL and Lp , while keeping the nice decidability properties. Now, instead
of flat automata, each formula of L+p can be associated with a piecewise flat au-
tomaton which accepts the models of the formula. Emptiness remains decidable
for such automata, which implies again that satisfiability and model-checking
the negation of a formula are decidable (this includes reachability for instance).

We start in section 2 by definitions and examples of (flat) counter automata.
In section 3 we establish (un)decidability results for flat automata. The flat logic
Lp is introduced in section 4 where we also prove the correspondence with flat
automata. Then we consider in section 5 the decision problems for this logic.
Finally, in section 6 we consider the extension L+p which also embeds LTL.

2 Flat Counter Automata

Our constraints relate the current values (unprimed variables) and the next
values (primed variables) of the counters, in a declarative way.

Definition 1 (Constraint). An atomic constraint is one of the expressions:
x#y + c, x#c, c#x where # ∈ {≤, <} and c ∈ Z (resp. c ∈ Q). A constraint
c is either the constant true, the constant false or a conjunction of atomic
constraints. The set of constraints with free variables x1, . . . , xk, x

′
1, . . . , x

′
k is

written C(x1, . . . , xk).
A constraint c in C(x1, . . . , xk) defines a binary relation Rc on Dk where

D ∈ {N,Z,Q, . . . }: the relational symbols ≤, < are interpreted as the usual
ordering, as well as constant addition. (v, v′) ∈ Rc iff the valuation in which the
ith component of v is assigned to xi and the ith component of v′ is assigned to
x′i satisfies c.

Flatness Is Not a Weakness 265

Definition 2 (Counter automaton: syntax). An automaton with k counters
A is a tuple (Σ,Q, q0, F, δ) where Q is a finite set of states, Σ is a finite alphabet,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states and δ ⊆ Q ×
C(x1, . . . , xk) × Σ × Q is a transition relation. We write sometimes q

c,a−−→
A

q′

instead of (q, c, a, q′) ∈ δ.
A configuration of the automaton is a pair (q, v) with q ∈ Q and v ∈ Nk

(resp. v ∈ Qk
+). The automaton may move from a configuration (q, v) to a con-

figuration (q′, v′) iff there is a transition (q, φ, a, q′) ∈ δ such that v, v′ |= φ:
the free variables x1, . . . , xk are interpreted by v1, . . . , vk and the free variables
x′1, . . . , x

′
k are interpreted by v′1, . . . , v

′
k. We write (q, v) a−→

A
(q′, v′) when the

automaton A may move from a configuration (q, v) to a configuration (q′, v′)
while reading a. a may be dropped if it is not relevant.

Definition 3 (Counter automaton: semantics). Let w be finite (resp. infi-
nite) word of length |w|: w ∈ (Σ ×Nk)∗ (resp. w ∈ (Σ ×Nk)ω). A run of A on
w is a finite (resp. infinite) word ρ ∈ Q∗ of length |w| (resp. ρ ∈ Qω) such that
ρ(1) = q0 and, for every 1 ≤ i ≤ |w|−1 (resp. i ≥ 1), (ρ(i), vi) −→A (ρ(i+1), vi+1)

if w(i) = (ai, vi).
A run ρ is successful if its last letter belongs to F (resp. if it contains infinitely

many elements of F). A word w is accepted by A if there is a successful run of
A on w.

We write L(A) the set of finite words accepted by A and Lω(A) the language
of infinite words accepted by A.

Example 1. On figure 1 we have depicted a controller for a pay phone. There
are two counters: x is the number of quarters which have been inserted and
y measures the total communication time. We use the classical abbreviations:
x++ stands for x′ = x+1 and x−− stands for x′ = x−1. Also, by convention,
when x′ (resp. y′) is not present in a transition, the constraint x′ = x (resp.
y′ = y) is assumed.

Such an automaton is expected to interact with its environment; messages
are followed either by a question mark, when they are received by the controller,
or by an exclamation mark, when they are sent by the controller. These aspects
are however irrelevant here.

The initial state (which is also the only final state) is q1. A possible sequence
of consecutive moves of the automaton is:

q1,

(
0
0

)
lift?−−−→ q2,

(
0
0

)
quarter?−−−−−−→ q2,

(
1
0

)
dial?−−−→ q3,

(
1
0

)

quarter?−−−−−−→ q3,

(
2
0

)
quarter?−−−−−−→ q3,

(
3
0

)
connected?−−−−−−−→ q4,

(
3
0

)
. . .

Note that, by choice of the final state, it is not possible to insert quarters forever.

266 H. Comon and V. Cortier

Definition 4. A counter automaton over a single letter alphabet (|Σ| = 1) is flat
if there is an ordering on the states such that there is a possible move from some
(q, v) to some (q′, v′) only if q ≥ q′. Moreover, there is at most one transition
from a state to itself.

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

q1 q2 q3 q4

q5q6

�
�

�
�

�
��❅

❅
❅

❅
❅

❅❅ ❊
❊
❊
❊
❊
❊

❄

❄

❄

✲ ✲ ✲

✠

✛

�

✲ ✲

❄

✛

x = y = 0
lift?

quarter?, x ++

dial?

quarter?, x ++

connected?
x > 0 y ≤ x

signal?
y ++

y ≤ x
busy?

hang?

quarter!
y′ ≤ x, y ++

x = y
x′ = y′ = 0

Fig. 1. A pay phone

Example 2. Consider the pay phone of figure 1 in which we forget the messages.
The resulting automaton is not flat as there are several loops on a single state
(e.g. q2). It is however possible to replace each loop on a single state with a
single transition, without changing the reachability relation. For instance the
iteration of a loop labeled with x + + can be replaced with a single transition
x′ > x. Then the one step loops on q2, q3, q4 and q6 can be replaced with single
transitions and the automaton becomes flat.

Also, if we remove the transition between q6 and q1, the automaton becomes
flat.

3 (Un)decidability Results for Flat Counter Automata

We first recall here the decision results which can be derived from [9]. Then we
prove new undecidability results.

Theorem 1 ([9]). Given two states q1, q2 of a flat counter automaton A, there
is an effectively computable formula of Presburger arithmetic φq1,q2(x, n,x

′) with
2k + 1 free variables such that (q1, v)

m−→
A

(q2, v) iff v,m, v′ |= φq1,q2 .

Flatness Is Not a Weakness 267

where m−→
A

= −→
A
· · · −→

A︸ ︷︷ ︸
m

.

Corollary 1 ([10]). The emptiness of L(A) (resp. Lω(A)) is decidable for flat
automata A.

Decidability of the emptiness of L(A) follows directly from theorem 1: it suffices
to decide ∃m.q0

m−→
A

qf for every final state qf . Concerning Lω(A), we need

to decide the infinite iterability of a loop, which is also a consequence of the
particular expression of the reachability relation, with some additional work
[10].

Proposition 1. The class of languages recognized by flat counter automata is
effectively closed by union and intersection (both in the finite and in the infinite
words cases).

Proof sketch: The closure by union is straightforward. The closure by intersec-
tion is a consequence of the closure of C(x1, . . . , xk) by conjunction. ��

Unfortunately the class of languages recognized by flat automata is not closed
under complement. Actually, we are going to show that the question of whether
a flat automaton accepts all words in (Nk)∗ is undecidable, which gives the non-
closure results thanks to corollary 1.

First, consider the set CA1 of counter automata over a one letter alphabet
such that there is exactly one transition starting from a final state, which is
labeled with true. The reachability of a final state in a Minsky machine reduces
to the emptiness of the language recognized by such a counter automaton. Hence
we have the undecidability result:

Lemma 1. The emptiness problem for L(A) (resp. Lω(A)) is undecidable for
A ∈ CA1.

We may further restrict the class of counter machines, encoding the states
into a counter. Let CA2 be the class of automata in CA1 which only contain two
states q1, q2, such that q2 is final and there is no transition from q2 to q1. (See
figure 2.)

✲✣✢
✤✜

✣✢
✤✜
✖✕
✗✔✒

✲

�

�
✛

✒

✲
✲

✲

✲

Fig. 2. An automaton in CA2

If A is an automaton with k+1 counters and x is one particular counter then
the projection πx(L(A)) (resp. πx(Lω(A))) is the subset of (Nk)∗ (resp. (Nk)ω)
of words in L(A) in which the x component has been erased.

268 H. Comon and V. Cortier

Lemma 2. For every automaton A ∈ CA1 with k counters x1, . . . , xk, there
is an automaton A′ ∈ CA2 with k + 1 counters c, x1, . . . , xk such that L(A) =
πc(L(A′)) and there is a flat automaton A′′ such that L(A′′) = (Nk)∗ − L(A′)
(resp. Lω(A′′) = (Nk)ω − Lω(A′))

Proof sketch: First add a counter c which records the state number; without
loss of generality, we may assume that numbering the states is such that Q =
{q1, . . . , qn} and Qf = {qf , . . . , qn} (i.e. states whose number is larger than f
are final). The automaton A′ contains two states: Q and Qf . A transition from
state i to state j with a constraint φ becomes, when i is not final (for instance),
a constraint φ∧ c = i∧ c′ = j from the initial state to itself, or to the final state
if qj ∈ Qf .

Let φ1, . . . , φn be the constraints of the transitions on the initial state and
ψ1, . . . , ψm be the constraints of the transitions from the initial to the final state
in A′. Note that, by construction, for every i, ψi |= c′ ≥ f .

Let g1 ∨ . . . ∨ gr be a disjunction of constraints which is logically equivalent
to

¬((
n∨
i=1

φi) ∨ (
m∨
i=1

ψi))

Such a disjunction of constraints always exist since the negation of an atomic
constraint can always be written as a disjunction of atomic constraints.

Our flat automaton is built as depicted on figure 3. A word which is not

✲✚✙
✛✘
✒✑
�✏

✚✙
✛✘
✒✑
�✏

✛c < f

✲g1

✲
gr

✲true

Fig. 3. The flat automaton in the proof of lemma 2.

accepted either never reaches a final state, i.e. c remains strictly smaller than
f , or else it is not compatible with the transition relation at some point, before
reaching a final state. ��

Lemma 2 is a little bit confusing; one may get the impression that the com-
plement of any counter language (over a one letter alphabet) is a recognized by
a flat automaton. This is not true, however; the projection plays an important
role here. On the other hand, we know that the complement of a flat automaton,
cannot be always recognized by a flat automaton: universality would then be
decidable, hence the emptiness for any counter automaton.

From the two previous lemmas we can derive the following:

Theorem 2. The universality is undecidable for flat automata (both in the case
of finite and in the case of infinite words).

Flatness Is Not a Weakness 269

4 The Flat Counter Logic Lp

We introduce first a logic with counters CLTL, which, unfortunately, is too
expressive. However, the notion of flat automaton which we introduced in the
last section can be easily characterized at the logical level using a restriction of
CLTL, which is similar to the so-called “flat fragment” in [12] for instance.

4.1 A Logic with Counters

Basically, we consider a temporal logic whose modalities are the same as in
PLTL. The only difference is that, instead of propositional atomic formulas, we
allow arbitrary constraints in C(x1, . . . , xk).

More precisely, given a natural number k and a finite set of propositional
variables P, CLTL is the smallest set of formulas such that P belongs to CLTL
for every P ∈ P, C(x1, . . . , xk) is included in CLTL and if φ1 and φ2 are formulas
of CLTL, then φ1 ∧ φ2, φ1 ∨ φ2,¬φ1,Xφ1, φ1 Uφ2 are formulas of CLTL.

We may also use the classical derived operators �� (“henceforth”) and ♦
(“eventually”).

Temporal formulas are interpreted over computations which are now infinite
words in 2P × Nk. Given an infinite path π ∈ (2P × Nk)ω, we write π(i) for the
ith letter of π and we let π̃ be the infinite word in (2P ×Nk ×Nk)ω defined by:

(π(i) = (a,v) and π(i+ 1) = (b,w)) implies π̃(i) = (a, v, w)

This little technicality is necessary because the constraints may express relations
between two successive values of the counters and not only constraints on a given
value of the counters.

Now, a path π satisfies φ iff π̃, 0 |= φ and:

– π̃, i |= true and π̃, i �|= false
– π̃, i |= P where P ∈ P if and only if π(i) = (a,v) and P ∈ a
– π̃, i |= φ(x1, . . . , xk, x′1, . . . , x

′
k) where φ ∈ C(x1, . . . , xk) iff π̃(i) = (a,v,w)

and v,w |= φ (with the usual definition of satisfaction in Presburger arith-
metic).

– π̃, i |= Xφ iff π̃, i+ 1 |= φ,
– π̃, i |= φ1 ∧ φ2 iff π̃, i |= φ1 and π̃, i |= φ2, ...
– π̃, i |= φ1 Uφ2 iff there is an index j ≥ i such that π̃, j |= φ2 and for all

k ∈ [i, j[, π̃, k |= φ1.

Example 3. CLTL allows to express properties such as: “x is never greater than
100” or “each time x is larger than 100, an alarm is raised” or “ultimately, the
register x remains stable” :

��(x ≤ 100), ��(x ≤ 100) ∨ (x ≤ 100 U alarm ≥ 1) ♦��(x′ = x)

Unfortunately, CLTL is too expressive:

270 H. Comon and V. Cortier

Theorem 3. Satisfiability is undecidable for CLTL. Model checking (of a flat
automaton) is also undecidable in this logic.

Proof sketch: We reduce the halting problem of a counter machine. Roughly, we
use an auxiliary variable c ranging over the states of the machine and encode
the computations of the machine by the formula:

c = q0 ∧

∧
i

(c = qi ⇒
∨

qi
G−→ qj

[Gqi,qj (x,x
′) ∧ c′ = qj])

 U

 ∨
qf∈F

c = qf

��

4.2 The Flat Fragment of the Logic

Lp is defined by a syntactic restriction of the formulas, which, roughly, restricts
the left members of “until” to be conjunctions of atomic formulas, thus prevent-
ing the construction of theorem 3. For simplicity, we assume here that P = ∅;
propositional variables will be re-introduced in section 6 and, anyway, they can
be encoded by integer variables.

Definition 5. An elementary formula is a Boolean combination of constraints
in C(x1, . . . , xk).

The set Lp of flat formulas, is the smallest subset of CLTL such that:

– elementary formulas are flat
– if φ1, φ2 are flat, then φ1 ∧ φ2, φ1 ∨ φ2, Xφ1 are flat.
– if φ1 is a constraint in C(x1, . . . , xk) and φ2 is flat, then φ1 Uφ2 is flat
– if φ is a constraint in C(x1, . . . , xk), then ¬(true U¬φ) (i.e. ��φ) is flat

The last condition is ad-hoc: it corresponds to the encoding of final states,
as we will see.

Let us emphasize that Lp is not closed by negation. This is unavoidable as
we will see in the next section. On the other hand, we could add the weak until,
as both ��φ and φ Uψ are in Lp when φ is a constraint.

Example 4. The formulas given in example 3 are all flat.

One of the main interest of Lp is the correspondence with flat automata:

Theorem 4. For every formula φ of Lp , there is a flat automaton which accepts
the models of φ.

Conversely, for every flat automaton A, there is a formula φ of Lp whose
models are the words accepted by A.

Flatness Is Not a Weakness 271

Proof sketch: From logic to automata we use the closure properties of flat au-
tomata by union and intersection (theorem 1) and the standard constructions
for U , X and ��. For instance consider φ Uψ. By hypothesis, φ belongs to
C(x1, . . . , xk). We construct the automaton for φ Uψ by adding in front of the
automaton for ψ a state on which there is a loop guarded by φ

From the automata to the logic, we proceed by induction on the ordering
on states. From minimal states q there is at most one departing transition, say
labeled with φ, and whose target is q itself. Then, if q is final, the corresponding
formula will be ��φ (false otherwise). For the induction step, if q1, . . . , qn are
the successors of q and φ is the constraint of the loop on q, we get roughly the
formula φ U((φ1 ∧Xφq1) ∨ . . . (φn ∧Xφqn

)). ��

5 Satisfiability and Model-Checking in Lp

Thanks to theorem 4 we can decide satisfiability and model checking of the
negation of a formula of Lp :

Theorem 5. Given a formula φ ∈ Lp and a flat automaton A, the following
questions are decidable:

– Is φ satisfiable ?
– Does A satisfy ¬φ ? (In other words, is there a word accepted by A which is

a model of φ ?)

Proof: Thanks to theorem 4, for every formula φ ∈ Lp , there is an automaton
Aφ which accepts the models of φ. Then satisfiability reduces to the emptiness
of L(Aφ) and A |= ¬φ reduces to L(A) ∩ L(Aφ) = ∅. Now, thanks to theorems
1 and 1, both questions are decidable. ��

Example 5. Negation of formulas in Lp include for instance reachability formu-
las ♦q (adding here a new counter whose value is 0, except when reaching q) or
safety formulas ��¬φ where φ is a constraint. Actually, considering the formulas
in example 3, the negations of the first two formulas also belong to Lp because
the negation of constraints s ≥ t are atomic constraints and the negation of c Uc′
is in Lp when c, c′ are both of the form s ≥ t. Only the negation of ♦��x′ = x
is not a Lp formula.

It is also possible to reduce in polynomial time Presburger arithmetic sat-
isfiability to Lp satisfiability, hence, in principle, Lp is at least as hard as
Presburger arithmetic (between 2-DEXPTIME and 3-DEXPTIME).

Now, deciding A |= φ for φ ∈ Lp is equivalent to the decision of inclusion of
flat automata, which is undecidable:

Theorem 6. The validity problem and the model checking on a flat automaton
are undecidable for a formula φ ∈ Lp .

Sketch of the proof: This follows from theorems 4 and 2. ��

272 H. Comon and V. Cortier

6 L+
p : A Decidable Extension of Lp and LTL

The logic Lp is not fully satisfactory in many respects. In particular, the re-
strictions on the left member of an U disallow arbitrary LTL formulas. On the
other hand, theorem 3 shows that we cannot simply drop the restriction. At
least, we have to consider positive Boolean combinations of PLTL formulas and
Lp formulas. We can still go a little further, as we will see.

Informally, L+p extends Lp by allowing any conjunction of a PLTL formula
and a constraint where only constraints were allowed.

Definition 6 (Syntax of L+p). We assume given a finite set of propositional
variables P and a positive integer k.

Given a constraint φ, PLTLφ is the smallest set of temporal formulas con-
taining φ ∧ P1 ∧ . . . ∧ Pn ∧ ¬Q1 ∧ . . . ∧ ¬Qm for every propositional variables
P1, . . . , Pn, Q1, . . . , Qm and which is closed by ∧,∨, U ,X,��. A basic formula is
a formula ψ ∈ PLTLφ for some φ ∈ C(x1, . . . , xk).
L+p is the smallest set of formulas such that:

– every basic formula is in L+p ,
– if φ1, φ2 are in L+p , then φ1 ∧ φ2, φ1 ∨ φ2, Xφ1 are in L+p
– if φ1 is a basic formula and φ2 ∈ L+p , then φ1 Uφ2 ∈ L+p
– if φ1 is a basic formula, then ��φ1 ∈ L+p .
Note that, in PLTL, negation can be pushed to the propositional variables

level if we include �� in the syntax. That is why PLTL formulas are basic formulas
in the above definition: it is sufficient to choose φ = true. Constraints are also
basic formulas, hence L+p is an extension of both Lp and PLTL.

On the other hand L+p is a fragment of the logic CLTL which was defined in
section 4.1, from which we borrow the the semantics.

Example 6. We may record the elapsed time in a LTL formula using an auxilliary
counter; for instance:

x = 0 ∧ ((p ∧ (x′ = x+ 1)) U(Q ∧ x′ = x+ 1)) U(R ∨ x > α)

is an L+p formula, x recording the elapsed time. We could consider e.g. a second
phase in R in which the time spent for each action is larger (or smaller), or even
record something different, as, e.g., distance or available resources... However, it
is not allowed to replace one of the two occurrences of x+ 1 with x+ 2: on the
left of an until the constraint has to be the same everywhere.

Here, we have to extend the notion of a flat automaton, corresponding to the
extension of the syntax of formulas.

Definition 7. A piecewise flat automaton is a counter automaton on an alpha-
bet Σ = 2P such that there is a partition Q1 � . . . � Qm of the set of states Q
and an ordering on {Q1, . . . , Qn} such that:

– for every i, there is a constraint φi ∈ C(x1, . . . , xk)

Flatness Is Not a Weakness 273

– for every transition q
c,a−−→ q′ of the automaton, if q ∈ Q and q′ ∈ Q′, then

Q ≥ Q′

– for every transition q
c,a−−→ q′ such that q, q′ ∈ Qi, there is a conjunction ψ

of proprositional variables and negations of propositional variables such that
c = φi ∧ ψ

Example 7. Consider the pay phone example of figure 1. With each event, we
associate a propositional variable. Then the behavior between two lift events (i.e.
a “session”) is described by a piecewise flat automaton. Actually, more complex
actions could be described within the same class of models, for instance using
more coins types, calling services...

Proposition 2. The class of languages accepted by piecewise flat automata is
closed under union and intersection.

Sketch of the proof: It is almost the same as the closure of flat languages. We
use the closure of C(x1, . . . , xn) by conjunction and, for intersection, a product
construction which is similar to the Büchi automata intersection construction.
��

Theorem 7. The models of an L+p formula are recognized by a piecewise flat
automaton.

Sketch of the proof: As before, we proceed by induction on the formula. Thanks
to proposition 2, we only have to show the construction for X and U . The
construction for U is actually complicated. An example is depicted on figure 4.
Let Aφ1 be the automaton accepting the models of φ1, Q1 its set of states, and
Aφ2 be the automaton accepting the models of φ2 and Q2 its set of states.

✲✒✑
�✏✲

✛ ✒✑
�✏

✲

α

β

1 2

Aφ1

✲✒✑
�✏

✲

✲

✒✑
�✏

3 4
θ

δ

✲

Aφ2

✲✒✑
�✏��

��✒✑
�✏

❅
❅

❅

✒

✟✟✟✟

1

✲

α

✒✑
�✏

✯

✒✑
�✏

1 ∧ 2

1 ∧ 4

❍❍❍

α ∧ β
✲

✲

❘ ✒✑
�✏

❍❍❍❍✒✑
�✏

❥
3

4

✲

✒✑
�✏

��
θ

✁
✁✁

1 ∧ 3

✠

δ

❥

2 ∧ 3

❄ ✻

✻

✕

δ
β ∧ δ

β ∧ θ

β ∧ θ

α ∧ δ

θ

β ∧ δ

α ∧ θ

Aφ1 Uφ2

Fig. 4. The piecewise flat automaton for φ1 Uφ2

274 H. Comon and V. Cortier

The idea is the following: while we do not reach a point where φ2 is satisfied,
at each move, the automaton launches a copy of Aφ1 on the rest of the word.
This is shown on an example on figure 4. Hence the set states of the automaton
Aφ1 Uφ2 is the union of {S ⊆ 2Q1 , | q0 ∈ S} and 2Q1×Q2, if q0 is the initial state
of Aφ1 .

The initial state of Aφ1 Uφ2 is the singleton {q0}, the final states are the
pairs (S, q) where S ⊆ Q1

f and q ∈ Q2
f , respectively the final states of Aφ1 and

Aφ2 . Transitions are computed as follows: a state S ⊆ Q1 is considered as the
conjunction for all states in S; if S, S′ ⊆ Q1, q0 ∈ S′, f is a mapping from S to S′,
then there is a transition from S to S′ which is labeled

∧
q∈S

cq,f(q) where cq,f(q) is

the constraint of one of the transitions from q to f(q) in Aφ1 . This corresponds
to the case where we did not hit yet a position at which φ2 is satisfied. We may
also move from a state S to a state (S′, q′) if q′ ∈ Q2 and S′ ⊆ Q, under the same
conditions as above, except that we do not require q0 ∈ S′ and move instead
from the initial state of Aφ2 to q′ (see figure 4): this corresponds to the guess
that we are going to satisfy φ2 at the current position. Finally, we also have
transitions from (S, q) to (S′, q′) which corresponds basically to the intersection
of copies of Aφ1 and one copy of Aφ2 .

The construction would be similar if we defined an alternating version of the
automata and then transform it into a non-deterministic one: the exponential
blow-up is unavoidable for the states of the formula φ1.

One important remark is that we still get a piecewise flat automaton here,
which would not be the case if we allowed arbitrary L+p formulas on the left of
an until. Indeed, the powerset construction for Aφ1 introduces transitions which
are labeled with arbitrary conjunctions of constraints occurring in φ1. It remains
piecewise flat only because all these constraints are identical. ��.

Theorem 8. Emptiness is decidable for piecewise flat automata.

Sketch of the proof: We only have to check the reachability for the projection
automaton, where we forget the letters of Σ. Then all states in the same Qi

collapse into a single state and we are back to corollary 1. ��

Theorem 9. Satisfiability and model checking of ¬φ on A are decidable for
φ ∈ L+p an A a piecewise flat automaton.

Sketch of the proof: This follows from theorems 8 and 7 and proposition 2. ��

Finally, let us remark that we can also consider the conjunction of L+p for-
mulas with arbitrary constraints in the additive theory of our domain D (N, Z,
Q+, R+). It is not difficult to see directly how satisfiability and model-checking
can be decided, but there is one elegant way to do it:

Proposition 3. For every formula φ in Presburger arithmetic, whose free vari-
ables are x1, . . . , xk, there is a flat automaton Aφ with k+m counters such that,

Flatness Is Not a Weakness 275

if E is the set of last letters of finite words accepted by Aφ, then
{v ∈ Nk, v |= φ} = {v ∈ Nk,∃w ∈ Nm, (v, w) ∈ E}

Then we can build a piecewise flat counter automaton which accepts the
models of both the L+p formula and the first-order constraint.

In other words, the proposition says that we can encode Presburger arith-
metic in L+p , which shows that we can perform some general parametric quanti-
tative reasoning.

7 Conclusion

The symbolic representation of states played a crucial role in increasing the
efficiency of model-checkers [8]. It is even more crucial for infinite states systems.
We believe that constraints, i.e. logical formulas interpreted in a given domain,
are an adequate symbolic representation in this case. The main advantage w.r.t.
other representations is its declarativeness and the easy combination with logical
formalisms.

In this paper, we provided with an example of application: we can design a
temporal logic which combines the representation of infinite sets of configura-
tions using constraints and the usual temporal properties. We have also shown
a device (automaton) accepting the set of models, hence allowing to decide e.g.
the satisfiability.

This generalizes the results on LTL satisfiability and model-checking: it is
now possible to consider counters in a restricted way. Unlike in the previous
works, we put the restrictions on the control of the automaton (flatness), which
has a logical counterpart.

There is still one important weakness of our results: we do not know anything
about their possible usefulness in practice. In principle, the complexity of the
algorithms are prohibitive. However, the main source of complexity is the number
of counters, which can be low (2 or 3) in many examples.

As we noticed at the end of the previous section, it is possible to express some
parametric quantitative properties, as defined in [3,14] using additional counters
and the logic L+p . For instance, φ U≤xψ can be translated using an additional
counter y into: y = 0 ∧ ((φ ∧ y′ = y + 1) U(y ≤ x ∧ ψ)). We want to investigate
this application: which fragments of the PLTL logic of [3] are (easily) expressible
in L+p ? For these fragments, we can check quantitative properties not only on
finite automata, but also on piecewise flat automata with counters.

Another possible further investigation would be to consider the branching
time temporal logic instead of PLTL.

References

1. P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems with
unbounded, lossy fifo channels. In Proc. Computer Aided Verification, volume 1427
of Lecture Notes in Computer Science, pages 305–318. Springer-Verlag, 1998.

276 H. Comon and V. Cortier

2. R. Alur and D. Dill. Automata for modeling real-time systems. In Proc. 17th
Int. Coll. on Automata, Languages and Programming, Warwick, LNCS 443, pages
322–335. Springer-Verlag, 1990.

3. R. Alur, K. Etessami, S. La Torre, and D. Peled. Parametric temporal logic for
model measuring. In Proc. Int. Conf. on Automata, Languages and Programming
(ICALP’99), volume 1644 of Lecture Notes in Computer Science, pages 159–168,
Prague, 1999. Springer-Verlag.

4. A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of
nonregular properties for nonregular processes. In Tenth Annual IEEE Symposium
on Logic in Computer Science, pages 123–133, 1995.

5. A. Bouajjani, R. Echahed, and P. Habermehl. Verifying infinite state processes
with sequential and parallel composition. In Proc. POPL’95, pages 95–106, San
Francisco, 1995.

6. A. Bouajjani, R. Echahed, and R. Robbana. Verification of nonregular temporal
properties of context free processes. In Proc. CONCUR’94, volume 836 of Lecture
Notes in Computer Science, pages 81–97. Springer-Verlag, 1994.

7. A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO channel
systems with non regular sets of configurations. In Proc. 24th Int. Coll. on Au-
tomata, Languages and Programming (ICALP), volume 1256 of Lecture Notes in
Computer Science, 1997.

8. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, June 1992.

9. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and pres-
burger arithmetic. In A. Hu and M. Vardi, editors, Proc. Computer Aided Verifi-
cation, volume 1427 of LNCS, pages 268–279, Vancouver, 1998. Springer-Verlag.

10. H. Comon and Y. Jurski. Counter automata, fixpoints and addi-
tive theories. Submitted to TCS. Available at http://www.lsv.ens-
cachan.fr/∼comon/ftp.articles/mca.ps.gz, 1999.

11. H. Comon and Y. Jurski. Timed automata and the theory of real numbers. In
Proc. Conf. on Concurrency Theory (CONCUR), number 1664 in Lecture Notes
in Computer Science, pages 242–257. Springer-Verlag, 1999.

12. D. R. Dams. Flat fragments of ctl and ctl*. Journal of the IGPL, 7(1):55–78, 1999.
13. E. Emerson and J. Y. Halpern. Sometimes and not never revisited. J. ACM, 33,

1986.
14. E. Emerson and R. Trefler. Parametric quantitative temporal reasoning. In Proc.

IEEE Symp. on Logic in Computer Science, pages 336–343, Trento, 1999. IEEE
Comp. Soc. Press.

15. J. Esparza. Decidability of model checking for infinite-state concurrent systems.
Acta Informatica, 34:85–107, 1997.

16. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems. Safety.
Springer-Verlag, 1995.

17. M. Minsky. Computation, Finite and Infinite Machines. Prentice Hall, 1967.
18. A. Sistla and E. M. Clarke. The complexity of propositional linear temporal logic.

J. ACM, 32:733–749, 1985.
19. M. Vardi. An automata-theoretic approach to linear time temporal logic. In

Logic for concurrency: structure versus automata, volume 1043 of Lecture Notes in
Computer Science. Springer Verlag, 1996.

Sequents, Frames, and Completeness

Thierry Coquand1 and Guo-Qiang Zhang2,�

1 Department of Computer Science, University of Göteborg
S 412 96, Göteborg, Sweden
coquand@cs.chalmers.se

2 Department of Computer Science, University of Georgia
Athens, GA 30602, U. S. A.

gqz@cs.uga.edu

Abstract. Entailment relations, originated from Scott, have been used
for describing mathematical concepts constructively and for representing
categories of domains. This paper gives an analysis of the freely gener-
ated frames from entailment relations. This way, we obtain completeness
results under the unifying principle of the spatiality of coherence logic. In
particular, the domain of disjunctive states, derived from the hyperreso-
lution rule as used in disjunctive logic programs, can be seen as the frame
freely generated from the opposite of a sequent structure. At the cate-
gorical level, we present equivalences among the categories of sequent
structures, distributive lattices, and spectral locales using appropriate
morphisms.

Introduction

Entailment relations were introduced by Scott as an abstract description of
Gentzen’s sequent calculus [15,16,17]. It can be seen as a generalisation of the
earlier consequence calculus of Hertz [9] to a multi-conclusion consequence re-
lation. The notion of consequence relation, with only one conclusion, has been
analysed by Tarski [20]. This consequence calculus has been used by Scott in or-
der to give a concrete representation of domains, as in information systems [18].
It is thus natural to wonder if the more general notion of entailment relation,
with multiple conclusions, can be used to represent larger categories of domains,
such as those related to non-determinism. This is indeed the case, and it has
been developed in [21,22] and [5], in an independent way from Scott’s work on
entailment relations (in [21], a set together with an entailment relation is called
a sequent structure). Another related reference, also independent from Scott’s
work, is [8].

In this paper we analyse various completeness theorems for sequent structures
by embedding them into frames. A goal of this study is to provide a unified
way to present completeness results in logic, such as those for resolution and
hyperresolution.

� Corresponding author.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 277–291, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

278 T. Coquand and G.-Q. Zhang

A number of recent developments serve as the motivation for the current
paper. In [3,4], it is shown that entailment relations are naturally connected to
several mathematical structures. They can be used to give elegant constructive
version of some basic mathematical concepts (and theorems), such as continuous
linear forms, space of valuations, etc. One key point here is that it is often
possible to get direct explicit descriptions of entailment relations generated by
some rules, avoiding syntactical induction and case analysis on derivations.

In order to understand appropriate domains for the semantics of disjunc-
tive logic programs, [23] introduces clausal logic based on the so-called hyper-
resolution rule [12]. Completeness of hyperresolution provides the basis for this
domain-theoretic semantics: it establishes the equivalence of the model-theoretic
semantics and the proof-theoretic semantics. Here, a set of clauses closed under
hyperresolution is called a disjunctive state; the collection of disjunctive states
under inclusion forms a complete lattice, which, in the case of information sys-
tems, is isomorphic to the Smyth powerdomain [13,23].

A natural question is whether the cpo of disjunctive states can be seen as
a universal construction for sequent structures. Related to this question is the
canonical embedding of a sequent structure into a frame. For this purpose we
use Johnstone’s coverage method [7] to study frames generated from a sequent
structure as well as from its opposite. Interestingly, the frame generated from
the opposite is precisely the complete lattice of disjunctive states. Moreover, in
each case the universal map gives a way to capture a point of the frame as an
ideal element of the underlying sequent structure.

The completeness theorem of coherent logic states that any coherent (or
spectral) frame is spatial [7]. It ensures that enough models exist to uniquely de-
termine the partial order, where models correspond to completely prime filters.
This means that when sequent structures are embedded into spectral frames,
we have enough models to uniquely determine the entailment relation, and thus
obtain certain completeness result “for free”, such as the completeness of hyper-
resolution. In return, existing results [13,23] related to hyperresolution suggest
several explicit constructions for the sequent-structure-generated frames: a se-
mantical one, a proof-theoretic one, and a third one based on the notion of
“choice inference”.

A couple of results in this paper may be seen as “folklore”; their roots may be
traced back eventually to Stone’s representation theorem [19]. We feel however
that our contribution lies in tying in the more discrete notion of sequent struc-
tures with the more complete notion of locales through the so-called coverage
relation [7] in a concrete logical setting. This allows the importation of existing
results in locales to sequent structures, shedding new light on the topic. It is,
for instance, quite interesting that the hyperresolution rule appears naturally in
solving the problem of embedding an entailment relation in a frame, and it may
not be obvious a priori that the disjunctive states form a frame. We hope that
this paper is a first step in exploring completeness of various logical systems by
means of canonical embedding to locales.

Sequents, Frames, and Completeness 279

1 Coverage and Spatiality of Spectral Frames

A frame is a poset with finite meets and arbitrary joins which satisfies the infinite
distributive law

x ∧
∨

Y =
∨
{x ∧ y | y ∈ Y }.

For frames F and G, a frame morphism is a function f : F → G that preserves
finite meet and arbitrary joins. Frames are also called locales.

Johnstone ([7], page 57) provides a way to construct a frame from a meet-
semi-lattice based on the notion of coverage relation.

Definition 1. Let (S,∧,≤) be a meet-semi-lattice. A coverage on S is a relation
�⊆ 2S × S satisfying

1. if Y � a then for any y ∈ Y , y ≤ a.
2. if Y � a then for any b ≤ a, {y ∧ b | y ∈ Y } � b.

A �-ideal determined by coverage � is a subset I of S which is

1. lower-closed: a ∈ I & b ≤ a⇒ b ∈ I,
2. covered: U � a & U ⊆ I ⇒ a ∈ I.

A meet-semi-lattice S equipped with a coverage relation � is called a site. A
frame H with i : S → H is said to be generated from a site (S,�) if

– i preserves finite meets,
– i transforms covers to joins: Y � a⇒ i(a) =

∨
i(Y), and

– H, i is universal, i.e., the following diagram commutes:

S

❄
H

✲F
f

i

�
�

�
��✒

∃!g

Remark. For here and for the rest of the paper, all maps are assumed to preserve
the respective structures they are acting on. This remark will be implicitly in
force for all commutative diagrams and will not be repeated. We also remark in
general that such a universal property guarantees that the generated structures
are always unique up to isomorphism.

Here is Johnstone’s basic result for the coverage relation.

Theorem 1 (Coverage Theorem [7], page 58). The collection of �-ideals
under inclusion is the frame generated from a site (S,�).

Recall that a frame can be seen as a “point-free” description of the open
sets of a topological space. In this view, points are not basic, but are defined as
collection of opens: a point of a frame is a completely prime filter, i.e. a filter α
such that if

∨
X ∈ α then there exists x ∈ X such that x ∈ α. If H is generated

280 T. Coquand and G.-Q. Zhang

from (S,�) then a point is determined by its restriction to S, which is a filter α
of S such that a ∈ α & Y � a ⇒ (∃b ∈ Y) b ∈ α. A frame H is called spatial
(or has enough points) if for any a, b ∈ H, a ≤ b iff ∀α, a ∈ α implies b ∈ α,
where α ranges over points of H. Intuitively, if we regard a, b as sets of points,
then a ≤ b exactly when a ⊆ b.

There is a standard way to generate a frame from a distributive lattice D.
One defines the coverage by letting U � a if and only if U ⊆↓a and there exists
a finite subset X of U such that a = ∨X. By distributivity, this is a coverage
relation. A �-ideal is then exactly an ideal of D: a downward-closed subset of
D closed under finite joins. The generated frame is precisely the so-called ideal
completion of D, which is written as Idl(D).

We say that a frame (locale) is coherent or spectral if it is isomorphic to the
ideal completion of a distributive lattice1. The following fact will be used in the
rest of the paper.

Theorem 2 (Page 65, [7]). Spectral frames are spatial.

2 Sequent Structures, Distributive Lattices, and Frames

We are interested in the question of frames generated by sequent structures.
There are two ways to construct the frame generated by a sequent structure. The
first construction, discussed in this section, is an implicit one built in two steps:
obtaining the generated distributive lattice [3] first, and then taking its ideal
completion as mentioned above. The second, explicit construction, is obtained
by defining an appropriate coverage relation, which will be discussed in Section 5.

Let’s recall the notion of entailment relation introduced by Scott in [15].

Definition 2. An entailment relation (or a sequent structure) is a set A with a
binary relation � between finite subsets Fin(A) of A such that

(I) a � a

(W)
S ⊇ X X � Y Y ⊆ T

S � T
(C)

X � Y, a a, X � Y
X � Y

We use the notations X,Y, . . . for finite subsets of A, and X,Y for X ∪ Y
while X, a for X ∪ {a}.

Several properties of entailment relations are self-evident. First, entailment
relations are completely symmetric: (A,�) is an entailment relation iff (A,�)
is. Second, entailment relations are closed under arbitrary intersections. Third,
since the largest relation on Fin(A) is an entailment relation, given a family
1 The term coherent is used in such a way in [7]. But it is used with another meaning
in domain theory or even in [8]. The term spectral, used because such frames are
exactly the ones that are spectrum of a commutative ring, is less ambiguous.

Sequents, Frames, and Completeness 281

(Xi, Yi)i∈I of pairs of finite subsets of A, the entailment relation generated by
the rules Xi � Yi can be seen to be the intersection of all entailment relations on
A satisfying Xi � Yi for all i ∈ I. (Of course one can close (Xi, Yi)i∈I up by (I),
(W), and (C) directly.) Last, information systems [18] can be seen as a special
kind of entailment relation generated by rules of the form Xi � Yi with Yi being
either a singleton or empty (intuitionistically they are more complex, however).

Distributive lattices freely generated from sequent structures make it possible
to use lattice-theoretic constructions in sequent structures. The concept of freely
generated lattices is introduced in [3].

Definition 3. For a distributive lattice D and a sequent structure (A,�), a map
i : A → D is said to preserve � if X � Y implies ∧i(X) ≤ ∨i(Y). We say that
the distributive lattice L(A) is generated by (A,�) if there is a �-preserving map
i : A→ L(A) which is universal among all such maps:

A

❄
L(A)

✲L
f

i

�
�

�
��✒

∃!g

Theorem 3 (Cederquist and Coquand [3]). Any entailment relation (A,�)
generates a distributive lattice (L(A),≤) with a map i : A→ L(A) such that

X � Y ⇔ ∧i(X) ≤ ∨i(Y)

for all finite subsets X,Y of A, where i(X) is the image of X under i.

We can study the similar topic of interpreting a sequent structure in a frame.

Definition 4. Let H be a frame. An interpretation of a sequent structure (A,�)
in H is a map m : A→ H such that for every finite X,Y ,

X � Y ⇒ ∧m(X) ≤ ∨m(Y).

A frame Frm(A) is generated by (A,�) if there is a universal interpretation
m0 : A→ Frm(A):

A

❄
Frm(A)

✲H
m

m0

�
�

�
��✒

∃!f

Given a sequent structure (A,�), one can first generate the distributive lattice
L(A) using Theorem 3 and then obtain the generated frame Frm(A) := Idl(L(A))

282 T. Coquand and G.-Q. Zhang

by ideal completion (see the ending part of Section 1). Combining the two steps,
we get the following commutative diagram:

∃!g
�

�
�

��✠

∃!f
❄

i

�
�

�
��✒

m
H✲A

idli Idl(L(A))✲L(A)A ✲

This is exactly a proof of the following result:

Theorem 4. Every sequent structure (A,�) generates a frame Idl(L(A)) with
interpretation m0 = idl ◦ i.

One can prove additionally that the map m0 has the property that for any
finite X,Y , X � Y if and only if ∧m0(X) ≤ ∨m0(Y). By Theorem 3 it is enough
to show that if idl(u) ≤ idl(v) in Idl(L(A)) then u ≤ v in L(A), where idl(u)
stands for the principal ideal generated by u ∈ L(A). But this follows from the
special construction of Idl(L(A)) as the ideal completion of L(A).

3 Ideal Elements, Prime and Completely Prime Filters

What makes the results given in the previous section useful is that we have a
canonical correspondence between ideal elements of the sequent structure, prime
filters of the distributive lattice, and completely prime filters of the generated
frame. We establish the correspondence in this section.

We must first recall what is an ideal element. Ideal elements have been used
for representing domains. Given a sequent structure, the set of all of its ideal
elements forms a dcpo under inclusion. One can obtain different categories of
domains by considering different (sub)classes of sequent structures [22].

Definition 5. A subset x ⊆ A is called an ideal element with respect to a sequent
structure A = (A,�) if it is closed under entailment (where ⊆fin stands for “finite
subset of”):

(X ⊆fin x & X � Y)⇒ x ∩ Y inhabited.

The set of all ideal elements of A is denoted as |A|.

A co-element of a sequent structure (A,�) is an ideal element of (A,�). By
logical transposition, one easily checks classically that y is a co-element of (A,�)
iff y is the complement of an ideal element x of (A,�); but our definition of
co-element is formulated in a purely positive way.

As noted earlier, for any sequent structure (A,�), (|A| ,⊆) is a dcpo (not
necessarily with bottom).

Sequents, Frames, and Completeness 283

Let (A,�) be a sequent structure and A
i−→ L(A), A m−→ Frm(A) be the

universal maps for the generated distributive lattice L(A) and generated frame
Frm(A), respectively. For x ⊆ A, define Ix ⊆ L(A) as

Ix := {u ∈ L(A) | (∃X ⊆ x) ∧ i(X) ≤ u}
and define Jx ⊆ Frm(A) in exactly the same way:

Jx := {u ∈ Frm(A) | (∃X ⊆ x) ∧m(X) ≤ u}.
We have the following result, which shows that ideal elements, prime filters,

and completely prime filters uniquely determine each other under their respective
universal maps. A direct proof of the second item is given later in Proposition 1.

Theorem 5. Let (A,�) be a sequent structure.

1. If I is a prime filter of L(A) then the restriction of I to A, that is the set
i−1(I), is an ideal element. Conversely if x is an ideal element of (A,�) then
Ix ⊆ L(A) is a prime filter such that x = i−1(Ix).

2. If J is a completely prime filter of Frm(A) then the restriction of J to A, that
is the set m−1(J), is an ideal element. Conversely if x is an ideal element of
(A,�) then Jx ⊆ Frm(A) is a completely prime filter such that x = m−1(Jx).

Proof. The first item is stated in [3] and the second item follows from item 1,
Theorem 4, and an exercise in ([7], page 66) which states that there is a bijection
between prime filters of L(A) and completely prime filters of Frm(A). �

Note that ideal elements need not exist for an arbitrary sequent structure.
In particular, if we allow ∅ � ∅, then there is no way to obtain an ideal element.
However, we have this basic result:

Theorem 6 (Completeness). Every sequent structure (A,�) has enough ideal
elements: X � Y iff for all ideal elements x, the set x∩ Y is inhabited whenever
X ⊆ x.

This theorem is an immediate consequence of Theorem 2 and Theorem 5
above. A quite standard direct proof also exists by using classical logic and a
weak form of the axiom of choice: one shows that if X �� Y , then there is an ideal
element x such that X ⊆ x but x ∩ Y = ∅. This is done by showing that the
maximal filter F containing ∧X and disjoint from ↓∨Y in the generated lattice
L(A) is prime. The ideas used in such a proof seem to come from Birkhoff [2].

It is worth noting a number of consequences of Theorem 6. First, if we start
from a set of pairs {(Xi, Yi) | i ∈ I}, then the least entailment relation generated
by it can be described as X � Y if and only if for any x, if X ⊆ x, then x∩ Y is
inhabited, where x is an ideal element determined by {(Xi, Yi) | i ∈ I}.

Secondly, as a special case of Theorem 6, we have ∅ � ∅ if and only if the
sequent structure does not have any ideal element. This is precisely when the
generated distributive lattice L(A) is degenerated, i.e., 0 = 1. (However, a direct
proof of this and the next remark is possible.)

284 T. Coquand and G.-Q. Zhang

Thirdly, from the proof of Theorem 6 we see that for any finite set X ⊆ A,
there is an ideal element containing X if and only if X �� ∅.

Finally, notice that rule (C) is a form of the resolution rule. Thus, we get
as a consequence completeness of resolution: a clause X � Y is a semantical
consequence of a set of rules Xi � Yi, that is is valid in any model satisfying
these rules, iff it can be deduced from these rules using (I), (W) and (C).

4 Clausal Logic and Hyperresolution

The notion of clause is a basic concept in logic programming. A natural frame-
work for reasoning about clauses, called clausal logic, is demonstrated in [13,23]
to play a fundamental role in disjunctive logic programming semantics.

With respect to a sequent structure (A,�), a clause is a finite subset of A,
and a clause set is a collection of clauses. An ideal element x is a model of a
clause u if x ∩ u �= ∅. x is a model of a clause set W if it is an model of every
clause in W . There are three distinct notions of inference in clausal logic: |=,
�∗hr, and the “choice inference” ���. For a clause set W and a clause u, we write

1. W |= u if every model of W is a model of u. This is a model-theoretic
concept, capturing the semantics.

2. W �∗hr u if either ∅ ∈ W , or u can be deduced from W using the so-called
hyperresolution rule

a1, X1 . . . an, Xn a1, . . . , an � Y
X1, . . . , Xn, Y

This is clearly a proof-theoretic, or operational, concept.
3. {X1, . . . , Xn} ��� u if {ai | 1 ≤ i ≤ n} � u for any choice a1 ∈ X1, a2 ∈

X2, . . . , an ∈ Xn. This is an intermediate notion: it uses the notion of arbi-
trary choice.

A result of [23] is that the three distinct notions of inference are equivalent
to each other.

Theorem 7 (Rounds and Zhang). Let (A,�) be a sequent structure. Let W
be a finite clause set, and u a clause. The following three items are equivalent:

1. W |= u,
2. W �∗hr u,
3. W ��� u.

For any clause set C, we write ⇑C for the least clause set containing C and
closed under hyperresolution. A disjunctive state is a clause set C such that
C =⇑C.

The concept of disjunctive state is well-behaved on sequent structures [23]:

Theorem 8. For a sequent structure A, the set of all its disjunctive states under
inclusion is a complete lattice.

This theorem will be refined later, by giving a universal property of the lattice
of disjunctive states w.r.t. the sequent structure (A,�).

Sequents, Frames, and Completeness 285

5 Explicit Construction of Generated Frame
Using Coverage

It is possible to give an explicit construction of the generated frame from a
sequent structure (A,�) through an appropriate coverage relation defined by a
dual form of hyperresolution.

For a sequent structure (A,�), consider the meet-semi-lattice (Fin(A),∪,⊇)
and the relation defined by {a1, X, a2, X, . . . , an, X} � X iff X � a1, . . . , an.
Note that no subscripts are used for the Xs here. Note also that if X � ∅, then
we have { } � X (one can take this to be the n = 0 case). This is clearly a
coverage relation, according to Definition 1. A �-ideal is, by definition, precisely
a subset U ⊆ Fin(A) such that

– if X ∈ U and Y ⊇ X, then Y ∈ U ;
– if {a1, X, a2, X, . . . , an, X} ⊆ U and X � a1, . . . , an, then X ∈ U .

We call such�-ideals conjunctive states and write H0 for the set of all conjunctive
states. For a set U ⊆ Fin(A), we write cU for the conjunctive state generated by
U . Note that there is a conceptually simpler way to generate such a conjunctive
state: first close U under finite super sets, and then add in all the Xs that are
covered by some finite subset of the resulting set. We can do this because the
only way to obtain a covered set is by removing at most one element from an
existing set.

There is also a useful proof-theoretic reading of the generated conjunctive
state. For any set U ⊆ Fin(A), its generated state cU consists of all Xs that
can be derive from assumptions from U by using supersets of sets in U and the
unique rule of inference:

a1, X . . . an, X

X
provided X � a1, . . . , an

By Theorem 1, we immediately obtain that the set of conjunctive states
under inclusion is the frame generated from the meet-semi-lattice (Fin(A),∪,⊇)
with coverage �, which depends on �. We show that this frame has the required
universal property for an interpretation.

Lemma 1. Let H be any frame. There is a bijection between (finite) meet-
preserving maps i : Fin(A) → H that transforms covers to joins, and inter-
pretations m : A→ H.

Proof. Suppose i : Fin(A)→ H preserves finite meets and transforms covers to
joins. Define a map mi : A → H by letting mi(a) := i({a}) for each a ∈ A. We
show that mi is an interpretation. Since i preserves finite meets and meet for
Fin(A) is set union, we have, for any finite X ⊆ A,

i(X) = i(
⋃
a∈X
{a}) = ∧a∈X i({a}) = ∧a∈Xmi(a) = ∧mi(X).

286 T. Coquand and G.-Q. Zhang

Suppose X � Y , with Y = {a1, . . . , an}. By the definition of �,

{a1, X, a2, X2, . . . , an, X} � X.

Since i transforms covers to joins, we have

i(X) = i(X ∪ {a1}) ∨ · · · ∨ i(X ∪ {an})
≤ i({a1}) ∨ · · · ∨ i({an})
= ∨mi(Y).

Therefore, ∧mi(X) ≤ ∨mi(Y), as needed. (Note that when X � ∅, the empty
collection { } covers X, by definition. Transforming covers to joins in this case
means i(X) =

∨ ∅ = 0, which can be restated as ∧mi(X) ≤ ∨mi(∅).)
Suppose, on the other hand, that m : A→ H is an interpretation. We define

a map im : Fin(A) → H by letting im(X) := ∧m(X) for each X ∈ Fin(A).
By this definition, im automatically preserves finite meets. We show that it also
transforms covers to joins. If {a1, X, a2, X, . . . , an, X} � X then by definition
X � a1, . . . , an. Therefore,

∧m(X) ≤ m({a1}) ∨m({a2}) ∨ · · · ∨m({an}).
By distributivity, we have

∧m(X) = (∧m(X ∪ {a1})) ∨ · · · ∨ (∧m(X ∪ {an})).
This means im(X) = im(X ∪ {a1}) ∨ · · · ∨ im(X ∪ {an}), which is exactly the
required property of “transforming covers to joins”.

It is clear that the given transformations i �−→ mi and m �−→ im amount to
a bijection. �

By the previous lemma and the Coverage Theorem, we arrive at the next
conclusion, which says that H0 is the generated frame from (A,�).

Theorem 9. For any sequent structure (A,�), the set of its conjunctive states
H0 is a frame under inclusion. Moreover, the interpretation m0 : A → H0
mapping a to c{a} is universal. Furthermore we have X � Y if and only if
∧m0(X) ≤ ∨m0(Y) for all finite subsets X,Y of A.

Lemma 2. Let X,Y ∈ Fin(A). Then c{X}∧c{Y } = c{X}∩c{Y } = c{X ∪Y }.
Proof. We show the non-trivial part that c{X} ∩ c{Y } ⊆ c{X ∪ Y }. Suppose
Z ∈ c{X} ∩ c{Y }. Then one has a derivation tree for Z with supersets of X as
leaves/premises as well as a derivation tree for Z with supersets of Y as leaves.
One can use structural induction on derivations to show that the two derivation
trees can always be put together to obtain a derivation tree for Z with supersets
of X ∪ Y as leaves. Therefore, Z ∈ c{X ∪ Y }. �

The concrete notion of coverage � allows a direct proof of the correspondence
between ideal elements of (A,�) and completely prime filters of H0, repeated as
follows.

Sequents, Frames, and Completeness 287

Proposition 1. Let m0 : A → H0 be the universal interpretation given in the
previous theorem. If J is a completely prime filter of H0 then the restriction of J
to A, that is the set m−10 (J), is an ideal element of (A,�). Conversely, if x is an
ideal element then Jx ⊆ H is a completely prime filter such that x = m−10 (Jx),
where Jx := {u ∈ H0 | (∃X ⊆ x) ∧m0(X) ≤ u}.
Proof. Suppose J is a complete prime filter of H0. We show that m−10 (J) is an
ideal element. Suppose X � Y and X ⊆ m−10 (J). Then m0(X) ⊆ J and so
∧m0(X) ∈ J since J is a filter. Now Theorem 9 implies ∧m0(X) ≤ ∨m0(Y),
and so ∨m0(Y) ∈ J . As J is prime, we have m0(b) ∈ J for some b ∈ Y . So
Y ∩m−10 (J) is inhabited.

On the other hand, suppose x is a ideal element. We show that Jx is a
completely prime filter. It is easy to see that it is a filter. To show it is completely
prime, we use the concrete representation of elements in H0 as conjunctive states.
By Lemma 2, ∧m0(X) = c{X}. It suffices to show that if X ⊆ x and c{X} ⊆
c(
⋃
i∈I ui), where ui are conjunctive states, then there exists some Y ⊆ x and

i ∈ I such that Y ∈ ui. For this it is enough to notice that whenever we can
apply the rule

a1, X . . . an, X

X
provided X � a1, . . . , an

and X ⊆ x then there exists i such that X, ai ⊆ x. Indeed there exists i such
that ai ∈ x because x is an ideal element. �

As a result of Theorem 9, we can talk about joins and meets of finite subsets
of A, with the understanding that such operations are always carried out in
the generated frame, H0 (or in the generated lattice L(A)). This is indeed the
notational convention we adopt for the rest of the paper: ∧X stands for ∧m0(X).

Call ∧X a semantical consequence of ∧X1, . . . ,∧Xn if for any ideal element
x, X ⊆ x implies Xi ⊆ x for some i. We have the following completeness result,
which is dual to Theorem 7.

Proposition 2. Let H0 be the frame generated by (A,�). The following are
equivalent in H0:

1. ∧X is a semantical consequence of ∧X1, . . . ,∧Xn.
2. ∧X ≤ ∧X1 ∨ · · · ∨ ∧Xn.
3. X � a1, . . . , an for any choice a1 ∈ X1, . . . , an ∈ Xn.

If we apply the construction H0 to the opposite of the relation �, which is
also an entailment relation, but still use the same underlying meet-semi-lattice,
we get the following result.

Theorem 10. The complete lattice of all disjunctive states of (A,�) is the frame
generated by (A,�).

Proof. The elements of the frame generated by � are sets U of finite sets of A
such that X ∈ U whenever we have X1, . . . , Xn ∈ U with ∨X1∧· · ·∧∨Xn ≤ ∨X.
This is the same as the complete lattice of disjunctive states (see Section 4). �

288 T. Coquand and G.-Q. Zhang

In particular, there is a canonical correspondence between points of the frame
of all disjunctive states and co-elements of the sequent structure (A,�).

It is clear that the hyperresolution rule (Section 4) is equivalent to the rule

a1, X . . . an, X

X
provided a1, . . . , an � X

together with the rule
X

Y
provided X ⊆ Y .

A simple combinatorial argument on permutation of rules show that we can even
suppose the use of this last rule limited to the leaves of the derivation tree.

By duality, it follows from our results that X is derived by hyperresolution
from X1, . . . , Xn iff

∨X1 ∧ · · · ∧ ∨Xn ≤ ∨X
holds in D or equivalently, in H0. Using Theorem 2 for the spectral frame H0,
this is true if and only if any point of H0 containing ∨X1, . . . ,∨Xn contains
also ∨X, which means exactly that the clause X is a semantical consequence
(Section 4) of the clauses X1, . . . , Xn. We get in this way yet another derivation
of the completeness of the hyperresolution rule, Theorem 7 (see [12,23] as well).
By soundness of the cut rule (C), which is nothing else than a form of the
resolution rule, this gives a constructive proof that transforms any resolution
proof into a hyperresolution proof.

In particular this shows the equivalence between �∗hr and the “choice infer-
ence” ���, as stated in Theorem 7. There is, however, a direct proof of this
equivalence.

Proposition 3. We have X1, . . . , Xn ��� X if and only if X follows from
X1, . . . , Xn by the hyperresolution rule.

Proof. For the “if” part we refer to [23]. We prove the “only if” part by induction
on the size Σ|Xi|. Let a1 ∈ X1, . . . , an ∈ Xn. We claim that we can deduce all
the clauses X, ai (1 ≤ i ≤ n) from X1, . . . , Xn using the hyperresolution rule.
The result follows then from

a1, X . . . an, X

X
provided a1, . . . , an � X

Let us prove X, a1 from X1, . . . , Xn; the other cases are similar. Notice that we
have b1, . . . , bn � X, a1 for any choice b1 ∈ X − {a1}, b2 ∈ X2, . . . , bn ∈ Xn.
By induction hypothesis, we can deduce X, a1 from X1 − {a1}, X2, . . . , Xn and
hence from X1, . . . , Xn. �

6 Example: Spectrum of a Ring

Let us give an example in algebra, that illustrates some of the notions introduced
here.

Let A be a commutative ring, and consider the entailment relation generated
by the axioms

Sequents, Frames, and Completeness 289

– � 0,
– x � xy
– x, y � x + y
– xy � x, y
– 1 �

We have the following direct description of �.

Theorem 11. X � Y if and only if the product of elements in Y belong to the
radical of the ideal generated by X.

Proof. We prove first that the relation “the product of elements in Y belong to
the radical of the ideal generated by X” is an entailment relation, which satisfies
all the rules above. We analyse only the rule (C), the other rules being directly
checked: assume that we have both X � Y, a and a,X � Y . Let y be the product
of the elements in Y and I the ideal generated by X. We reason in A/I: by
assumption ya is nilpotent (in A/I) and y belongs to the radical of the ideal
generated by a. So we have m,n and x such that yn = ax and (ya)m = 0. This
implies ym(ax)m = ymn+m = 0 and hence y is nilpotent in A/I. Hence X � Y
as required.

It is direct that this entailment relation satisfies all the rules above.
Conversely, if the product of elements in Y belong to the radical of the ideal

generated by X, we can derive X � Y using only the given axioms. Indeed, the
first third rules show that X � y whenever y belongs to the ideal generated by
X, while the two last rules show y1 . . . ym � y1, . . . , ym. �

In the particular case where A is a ring of polynomials, notice that we recover
“for free” the proof of the formal Nullstellensatz theorem presented in [10]: the
following items

– x1, . . . , xn � y is a consequence of the above axioms,
– y belongs to the radical of the ideal generated by x1, . . . , xn,
– {y} can be derived from {x1}, . . . , {xn} by hyperresolution

are equivalent.
An ideal element of this entailment relation is then exactly a proper prime

ideal of A. Furthermore, if I is a radical ideal of A, then the set of finite subsets
whose product is in I is a disjunctive state UI . Conversely, if U is a disjunctive
state, and I is the set of elements x such that {x} ∈ U then I is a radical ideal
such that U = UI .

7 Categorical Equivalences

We extend our terminology first in order to adequately express categorical con-
cepts related to sequent structures.

We have a natural category Seq of sequent structures, where a map f :
A → B is simply a map which preserves entailment: X1 � X2 in A implies
f(X1) � f(X2) in B.

290 T. Coquand and G.-Q. Zhang

Furthermore, any distributive lattice D (and hence any frame) defines a se-
quent structure G(D) by taking X � Y to mean ∧X ≤ ∨Y . This defines a
functor G : Spec → Seq from the category of spectral frames and an inter-
pretation m : A → H is nothing else than a map A → G(D) in the category
Seq.

If A,B are sequent structures, we define an approximable relation from A to
B to be an interpretation m : A → Frm(B) of A in the frame generated by B.
Notice that, in view of Theorem 9, this can be seen as a relation � between
finite subsets of B and elements of A satisfying the following conditions:
– for any x ∈ A the set of all Y ⊆ B such that Y � x is a conjunctive state,
– if we have x1, . . . , xn �A u1, . . . , um and Y � xi, 1 ≤ i ≤ n then there exists

Y1, . . . , Ym such that Yj � uj , 1 ≤ j ≤ m and Y �B y1, . . . , ym for any choice
yj ∈ Yj , j = 1, . . . ,m.
By standard categorical construction (see for instance [11], Chapter VI, 5) we

get that sequent structures with approximable maps form a category RelSeq.
Similarly, we can introduce the category RelLat of distributive lattices, and

maps m : D → Idl(E), where Idl(E) is the frame generated by E.
Theorem 12. The categories RelSeq,RelLat,Spec are equivalent.

Proof. The equivalence between RelLat,Spec is standard (see [1], page 120),
while the equivalence between RelSeq and Spec follows from the universal
properties of the free frame construction (see for instance [11], Chapter VI, 5,
Exercise 2). �

8 Concluding Remarks

Sequent structures are the skeletons of propositional theories. A propositional
theory can be reduced to a sequent structure by translating an entailment in-
stance ϕ1 ∨ ϕ2 � ψ1 ∧ ψ2 to simpler ones ϕi � ψj (i, j ∈ {1, 2}) repeatedly until
only ∧ appear on the left, and only ∨ appear on the right (distributivity is used
in this process). The remaining ∧’s and ∨’s can then be removed by virtue of
sequents. Of course this process can be reversed; but we believe that working at
the sequent level can in many cases avoid tedious syntactic details.

It is possible to provide a similar treatment to infinitary sequent structures.
These structures consist rules of the form X � Y , with X finite and Y arbitrary.
Any such structure can still be canonically embedded into a frame. However,
completeness and compactness fail in this case. Except for the purpose of rep-
resenting L-domains [22] and of providing a connection to sober spaces, the
significance of such a concept remains to be seen. We omit the treatment of
them due to space limitations.

We end by repeating the hope given in the introduction that this paper be
a first step in exploring completeness of various logical systems by means of
canonical embedding to locales. It should be interesting to develop richer tools
for this purposes, in order to handle additional logical operators. The well-known
Henkin construction for instance, has been investigated in this setting [14] for
linear logic.

Sequents, Frames, and Completeness 291

Acknowledgment. We would like to thank the anonymous referees for insight-
ful comments which lead to the improved presentation.

References

1. S. Abramsky and A. Jung, Domain theory, in: Handbook of Logic in Computer
Science, Vol 3, (Clarendon Press, 1995).

2. G. Birkhoff. On the combination of subalgebras. Proc. Camb. Philos. Soc. 29,
441-464, 1933.

3. J. Cederquist and Th. Coquand. Entailment relations and distributive lattices. To
appear in the Proceedings of Logic Colloquium 98.

4. Th. Coquand and H. Persson. Valuations and Dedekind Prague Theorem. To
appear in the Journal of Pure and Applied Logic.

5. M. Droste and R. Göbel. Non-deterministic information systems and their domains.
Theoretical Computer Science 75, 289-309, 1990.

6. M. Fourman, R. Grayson. Formal Spaces. in L. E. J. Brouwer Centenary Sym-
posium (Noordwijkerhout, 1981), 107-122, North-Holland, Amsterdam-New York,
1982.

7. P. Johnstone. Stone Spaces. Cambridge University Press, 1982.
8. A. Jung, M.A.M. Moshier and M. Kegelmann. Multi lingual sequent calculus and
coherent spaces. Fundamenta Informaticae, vol 37, 1999, pages 369-412.

9. G. Gentzen Collected Works. Edited by Szabo, Not-Holland, 1969.
10. V. Lifschitz. Semantical completeness theorems in logic and algebra. Proc. Am.

Math. Soc., vol. 79, 1980, p. 89-96.
11. S. MacLane, Categories for the working mathematician. Springer-Verlag, 1971.
12. J.A. Robinson. The generalised resolution principle. Machine Intelligence, vol. 3,

p. 77-93. 1968.
13. W. Rounds and G.-Q. Zhang. Clausal logic and logic programming in algebraic

domains. Submitted. Copy at: http://www.cs.uga.edu/˜gqz
14. G. Sambin. Pretopologies and completeness proofs. J. Symbolic Logic 60 (1995),

no. 3, 861-878.
15. D. Scott. Completeness and axiomatizability. Proceedings of the Tarski Sympo-

sium, 1974, p. 411-435.
16. D. Scott. Background to formalisation. in Truth, Syntax and Modality, H. Leblanc,

ed., p. 411-435, 1973.
17. D. Scott. On engendring an illusion of understanding. Journal of Philosophy, p.

787-807, 1971.
18. D. Scott. Domains for denotational semantics. in: Lecture Notes in Computer

Science 140, 577-613, 1982.
19. M. H. Stone. The theory of representations for Boolean algebras. Trans. Amer.

Math. Soc. 40, 37-111, 1936.
20. A. Tarski. Logic, semantics, metamathematics. Oxford, 1956.
21. G.-Q. Zhang. Logic of Domains. Birkhauser Boston, Inc., Boston, MA, 1991.
22. G.-Q. Zhang. Disjunctive systems and L-domains. 19th International Colloquium

on Automata, Languages, and Programming(ICALP’92), Lecture Notes in Com-
puter Science 623, 1992, pp. 284-295.

23. G.-Q. Zhang and W. C. Rounds. An information-system representation of the
Smyth powerdomain. International Symposium on Domain Theory. Shanghai,
China, October 1999. Copy at: http://www.cs.uga.edu/˜gqz

Disjunctive Tautologies
as Synchronisation Schemes

Vincent Danos and Jean-Louis Krivine

Université Paris 7
Équipe Preuves, Programmes, Systèmes

2 place Jussieu, 75251 Paris Cedex 05, France

Abstract. In the ambient logic of classical second order propositional
calculus, we solve the specification problem for a family of excluded mid-
dle like tautologies. These are shown to be realized by sequential simu-
lations of specific communication schemes for which they provide a safe
typing mechanism.

1 Introduction

Since the inception of the proof/program correspondence with the Curry-Howard
isomorphism, one of the goals of proof-theory has been the interpretation of log-
ical rules as programming instructions. Only recently has this correspondence
been extended to classical logic, which is now explained as a typing system for a
λ-calculus augmented with a ‘call-with-current-continuation’ primitive, or some
similar form of control such as an ‘exception handler’. This extremely interesting
explanation, first promoted by Griffin [3] and Felleisen, now admits many vari-
ants, as well as neat proof-theoretic renderings by Parigot [6] and Girard [2], for
instance. All these variants are given in terms of sequential languages, though.

In this paper, we significantly depart from this tradition by interpreting a family
of classical formulas, namely pure disjunctions of literals, as specifying synchro-
nisation protocols. We contend, more generally, that this paradigmatic shift to-
wards a concurrent reading of classical logic, gives rise to illuminating behavioral
explanations.

The programming language we’ll be using to make our point is a concurrent
extension of a variant of Felleisen’s λC-calculus, so that the world of programs
that formulas will be referring to will indeed be a world of concurrent processes.
The ambient logic, i.e., the means of expressing behavioural specifications, will
be classical second order propositional logic, equipped with only the following
logical operators: → and ∀. More comprehensive frames, such as second order
predicate calculus or even Zermelo-Frænkel set theory, are amenable to the same
treatment, as shown in [4], but this simple logic suffices for our present purposes.
Finally, the main and only tool we shall use is a revised version of the second

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 292–301, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Disjunctive Tautologies as Synchronisation Schemes 293

author’s realizability method, which itself is an adaptation of the Tait-Girard
reducibility method.

The gist of the interpretation is best understood with a simple example. Let’s
consider the formula G1 = ∀R∀S [(R→ S) ∨ (S → R)] . For one thing, we may
recode implication as a disjunction and get a classically equivalent form of G1,
which is a pure disjunction of literals, namelyG0 = ∀R∀S [(¬R ∨ S) ∨ (¬S ∨R)].
This last form is obviously true, so that G1 itself is a tautology.

Conversely, the standard second order recoding of disjunction, yields a purely
implicative formula, which is an intuitionistic equivalent of G1, namely G =
∀R∀S∀X [((R→ S)→ X)→ (((S → R)→ X)→ X)] . This last formula can as
well be reformulated as a rule:

Γ,R→ S � X Γ,S → R � X
G

Γ � X

The operational explanation developed in this paper for such rules is as follows.
Suppose we have two processes P1[k1], P2[k2], both of type X, with free vari-
ables, or channels, k1, k2, of respective types R → S and S → R. By the rule
above we can build a compound process of type X, say [P1 |P2], within which
k1, k2 are bound. Close examination with the realizability tool shows that the
computational behavior prescribed by G is the following: [P1 |P2] starts run-
ning both P1 and P2 concurrently; if both get locked in requesting values for
their free variables, k1 and k2, their states can then be described as (k1)vRπS
and (k2)vSπR, where vR, vS are some terms and πR, πS are some sequences, or
stacks of terms; [P1 |P2] then resumes the computation by running (vS)πS and
(vR)πR concurrently.

That G is a tautology amounts to saying, according to our interpretation, that
this cross communication scheme is well-typed, in that if, as expected, vR, vS are
of respective types R and S, and if πR, πS are providing suitable environments
in which to evaluate any term of respective types R and S, then both (vS)πS
and (vR)πR will interact correctly.

This paper gives theoretical support to such concurrent computational expla-
nations. A detailed construction of the framework, language, types and the re-
alizability tool is given first. We then exercise that tool to extract concurrent
behavioral specifications from a few tautologies, such as G, which is the simplest
interesting example. Eventually, we home in on a quite general result explaining
the family of purely disjunctive tautologies as synchronisation protocols.

2 Terms, Types and Models

In this preliminary section we first define our language, and the logic which types
it, and then set up the suitable notion of realizability interpretation.

294 V. Danos and J.-L. Krivine

2.1 The Programming Language

We first define the set Λ of terms, denoted t, and the set Π of stacks, denoted
π, with the following grammar:

t = x, (t)t, t | t, λx.t, κx.t, ∗t, ∗π
π = ε, t · π

We then define executables as finite multisets on Λ×Π, still denoting | the mul-
tiset constructor. By definition this constructor is commutative and associative.
Those executables are equipped with an evaluation relation, written
, and de-
fined as the smallest preorder on the set of executables which is compatible with
| and such that:

(t)u, π
 t, u · π (push)
t |u, π
 t, π |u, π (dist)
(λx.t), u · π
 t[∗u/x], π (l-store)
∗u, π
 u, π (l-load)
(κx.t), π
 t[∗π/x], π (k-store)
∗π, t · π′
 t, π (k-load)

Note the analogy between the two binders, λx and κx. The first takes a snapshot,
denoted ∗u, of u, the current top element of the stack, stores it in x and pops
the stack, while the second is taking a snapshot, denoted ∗π, of the whole stack
π, stores it in x as well, and leaves the stack intact. When ∗u comes in head
position, it simply loads its value u, while ∗π throws the top element of the stack
to its value.

The usual cc construction can be recovered as λh.κk.(h)k, one interest of our
variant formulation being that the analogy just noted is made more obvious.

As an example, set δ = κx.x, then for any π, we get that loop:

(δ)δ, π
 δ, δ · π
 ∗δ·π, δ · π
 δ, δ · π.

2.2 The Typing System

Formulas or types, denoted A, B, . . . , are here second order propositional for-
mulas. Typing judgements of the form x1 : A1, . . . , xn : An � t : B, where t is a
term and A1, . . . , An, B are formulas, are generated by the following rules:

ax var

Γ, x : A � x : A
Γ, x : A � t : B

→i abs
Γ � λx.t : A→ B

Γ � t : A→ B Γ � u : A→e app

Γ � (t)u : B

Γ � t : A∀i
Γ � t : ∀XA

Γ � t : ∀XA∀e

Γ � t : A[B/X]

Disjunctive Tautologies as Synchronisation Schemes 295

Γ, x : A→ B � t : A
peirce cc

Γ � κx.t : A
Γ � t : A Γ � u : A

mix par

Γ � t |u : A

The quantification introduction rule, ∀i, is subject to the constraint thatX is not
free in the context Γ . The first five rules give a standard presentation, known as
natural deduction, for second order propositional intuitionistic logic. Alongside
with the sixth rule, known as Peirce’s law, we get one possible natural deduction
presentation of second order propositional classical logic. The last rule, or the
mix rule, is just there to add expressive power on the terms side.

2.3 Truth Values and Models

Let ⊥⊥ be a given set of executables, which, we assume throughout the paper, is
closed by
−1 and |. That is to say: 1) if e ∈ ⊥⊥ and e′
 e, then e′ ∈ ⊥⊥, and 2)
if e ∈ ⊥⊥ and e′ ∈ ⊥⊥, then e | e′ ∈ ⊥⊥.
For any set of stacks Z, set Z → ⊥⊥ to be the largest set of terms X such that
X × Z ⊂ ⊥⊥. Any such set of terms, which can be written as Z → ⊥⊥ for some
set of stacks Z, will be said to be a truth value. Two particular truth values are
of special interest, the largest one Λ = ∅ → ⊥⊥, and the smallest one, denoted
⊥ = Π → ⊥⊥. For any t, π ∈ ⊥⊥, (∗π)t ∈ ⊥, so ⊥ is empty iff ⊥⊥ is.

Given a choice of ⊥⊥, we can extend any map |.|−0 : V ar → 2Π , from propositional
variables to 2Π , to a map |.|− : Form(2Π)→ 2Π , from formulas with parameters
in 2Π to 2Π , as follows:

|Z|− = Z
|X|− = |X|−0
|A→ B|− = (|A|− → ⊥⊥) · |B|−
|∀XA|− = ∪Z |A[Z/X]|−

In the last clause, the union is meant to range over all subsets Z of Π. For
instance, we get |∀XX|− = ∪|Z|− = ∪Z = Π, so that |∀XX| = ⊥.
We then define the dual map |.| : Form(2Π)→ 2Λ simply by putting:

|F | = |F |− → ⊥⊥,
so |F | is always a truth value. Moreover, when F is closed, its value, |F |, only de-
pends on the choice of ⊥⊥. Such valuations of classical formulas can be factorized
through a ‘not-not’ translation to intuitionistic formulas.

When ⊥⊥ = ∅, it is easily seen that |.| can only take two values, namely ∅ and
Λ, and that, for any closed formula F , |F | = Λ iff F is valid. In this special
case the model collapses down to the usual notion of two-valued model. The
generalization of this fact to any choice of ⊥⊥ is known as the adequacy property:

Proposition 1 Let x1 : A1, . . . , xn : An � t : B be derivable, ⊥⊥ be any set of
multisets on Λ×Π closed by
−1 and |, and |.|−0 be any map from propositional

296 V. Danos and J.-L. Krivine

variables to 2Π , then, for all v1 ∈ |A1|,. . . , vn ∈ |An|, and for all π ∈ |B|−,
t[v1/x1, . . . , vn/xn], π ∈ ⊥⊥.

Proof. The proof is by induction on the typing derivation of t. To ease the
reading of the proof, we’ll simply write A and A− for |A| and |A|−, and t[vi/xi]
for t[v1/x1, . . . , vn/xn]. We also skip the axiom and quantifier rules, which are
trivial, and use no assumption on ⊥⊥.
1. Application: Γ�t:A→B Γ�u:A

Γ�(t)u:B . Pick vi ∈ Ai and π ∈ B−.

By induction t[vi/xi] ∈ A → B = A · B− → ⊥⊥ and u[vi/xi] ∈ A, so that
t[vi/xi], u[vi/xi] · π ∈ ⊥⊥. But:

(t)u[vi/xi], π = (t[vi/xi])u[vi/xi], π
 t[vi/xi], u[vi/xi] · π,
⊥⊥ being closed by (push), we deduce (t)u[vi/xi], π ∈ ⊥⊥, qed.
2. Abstraction: Γ,x:A�t:B

Γ�λx.t:A→B . Pick v ∈ A, vi ∈ Ai, π ∈ A− and π′ ∈ B−.

We have ∗v, π
 v, π, ⊥⊥ being closed by (l-load), we deduce ∗v ∈ A. So, by
induction, t[vi/xi][∗v/x], π′ ∈ ⊥⊥. But:

(λx.t)[vi/xi], v · π′ = (λx.t[vi/xi]), v · π′
 t[vi/xi][∗v/x], π′,
⊥⊥ being closed by (l-store), we deduce (λx.t)[vi/xi], v · π′ ∈ ⊥⊥, qed.
3. Peirce: Γ,x:A→B�t:AΓ�κx.t:A . Pick v ∈ A, vi ∈ Ai, π ∈ A− and π′ ∈ B−.

We have ∗π, v · π′
 v, π, ⊥⊥ being closed by (k-load), we deduce ∗π ∈ A→ B.
So, by induction, t[vi/xi][∗π/x], π ∈ ⊥⊥. But:

(κx.t)[vi/xi], π = (κx.t[vi/xi]), π
 t[vi/xi][∗π/x], π,
⊥⊥ being closed by (k-store), we deduce (κx.t)[vi/xi], π ∈ ⊥⊥, qed.
4. Mix: Γ�t:A Γ�t′:A

Γ�t | t′:A .

Pick vi ∈ Ai and π ∈ A−. By induction, t[vi/xi], π and t′[vi/xi], π ∈ ⊥⊥, so, ⊥⊥
being closed by |, we get t[vi/xi], π | t′[vi/xi], π ∈ ⊥⊥. But:

(t | t′)[vi/xi], π = t[vi/xi] | t′[vi/xi], π
 t[vi/xi], π | t′[vi/xi], π,
⊥⊥ being closed by (dist), we deduce (t | t′)[vi/xi], π ∈ ⊥⊥. ��

The proof is perfectly modular, each listed case calling on its own closure condi-
tions on ⊥⊥ which we have carefully recorded. Indeed, this proof, in some sense,
describes a set of computation rules which are compatible with the typing sys-
tem.

3 The Specification Problem

We can now put to good use this adequacy result. Careful choices of ⊥⊥ result
in proving normalizability results, which has been the traditional application of

Disjunctive Tautologies as Synchronisation Schemes 297

adequation. Here, we’ll be using it in a somewhat different way, to solve the
so-called specification problem. That is, given an F , is there any computational
behavior which all terms of type F have in common ?

3.1 Booleans

Let’s start with a very simple example: B = ∀X [X → (X → X)].

From now on, as in the adequation proof, we’ll simply write A and A− in place
of |A| and |A|−. The particular choices we’ll make for ⊥⊥ will always be closures
by
−1 and | of a given generating set of executables.

Proposition 2 Let � t : B be derivable, then for all terms a, b and for all stack
π, tab, π evaluates into a multiset on {(a, π), (b, π)}.

Proof. Indeed, let a, b be terms and π be a stack. Take ⊥⊥ to be the closure of
{(a, π), (b, π)} and set X− = {π}. Then, a and b ∈ X, hence, by adequation,
t, a · b · π ∈ ⊥⊥, so that by (push), tab, π ∈ ⊥⊥. ��

For instance t = λx.λy.x |λx.λy.y : B does behave in this way, since tab, π

a, π | b, π.
One can refine a specification. Though we didn’t develop the formal material
pertaining to predicate calculus, the following should be pretty self-explanatory.

Consider a language L with two individual constants, 0 and 1, set:

Bx = ∀X [X0→ (X1→ Xx)] ,

and suppose � t : B0. Take then ⊥⊥ to be the closure of {(a, π)} and set X0− =
{π} and X1 = Λ. Clearly a ∈ X0 and b ∈ X1, so that t, a · b · π ∈ ⊥⊥, and hence,
by (push), tab, π ∈ ⊥⊥. So we get:

Proposition 3 Let � t : B0 be derivable, then for all terms a, b and for all
stack π: tab, π evaluates into a multiset on {(a, π)}.

Informally, this last proposition says that any t : B0 behaves as a certain num-
ber of λx.λy.x running concurrently. A property which one might think of as
computational consistency for our system.

To recap, adequation gives a means of decoding the behavior specified by a
given formula with respect to a given language. This here is the main thrust.
Conversely, one can use it to refute typability. For instance, the proposition
above shows in particular that t = λx.λy.x |λx.λy.y can’t be of type B0, nor
can be any term with the same behaviour.

298 V. Danos and J.-L. Krivine

3.2 The Excluded Middle

Set T = ∀X∀R∀S [((R→ S)→ X)→ ((R→ X)→ X)], which is the usual im-
plicative coding of the excluded middle, T1 = ∀R∀S [(R→ S) ∨R].

We want to show:

Proposition 4 Let � c : T be derivable, then for all terms ρ, σ, r and for all
stacks π, πR and πS, such that for all terms a and b, ρa, π
 a, r · πS and
σb, π
 b, πR, cρσ, π evaluates into a multiset on {(r, πR)}.

Proof. Let ρ, σ, r, π, πR and πS be as above. Take for ⊥⊥ the closure of {(r, πR)},
and set R− = {πR}, S− = {πS} and X− = {π}.
First, we have r ∈ R. Let now a ∈ R → S, by definition a, r · πS ∈ ⊥⊥, so by
⊥⊥ being closed: ρ, a · π ∈ ⊥⊥, hence ρ ∈ (R → S) → X. Likewise, if b ∈ R, by
definition, b, πR ∈ ⊥⊥, so by ⊥⊥ being closed: σ, b · π ∈ ⊥⊥, hence σ ∈ R→ X. By
adequation we get: c, ρ · σ · π ∈ ⊥⊥. ��

This specification can be rendered informally as follows: c launches two executa-
bles, or two independent processes, ρ and σ, passing over to each a variable, a
and b respectively, and a same context π; if both processes stop on these vari-
ables, c sends ρ’s top stack element to σ, via b, so that σ runs again, while ρ
dies.

Let’s run an example. We set ((c)ρ)σ = κk.(σ)κh.(k)(ρ)h, and by typing k :
X → R and h : R → S, we do have cρσ : X as it should. If ρ and σ behave as
in the proposition, we then get the following interaction:

cρσ, π
 (σ)κh.(∗π)(ρ)h, π

 κh.(∗π)(ρ)h, πR

 (∗π)(ρ)∗πR

, πR

 (ρ)∗πR

, π

 ∗πR

, r · πS

 r, πR,

with the expected result. And thus we get one possible sequential implementation
of the specification. It can be observed that, in this particular example, σ is
run first, which means that T can’t be understood as specifying an exception
handling mechanism where σ would be the handler !

A particular case is when σ = λx.x, which at the level of types means X = R.
The behavior is now, if ever ρa, π
 a, r · πS , then ((c)ρ)λx.x, π evaluates to a
multiset on {(r, πR)}. If we further assume that all terms involved are sequential,
i.e., none involve the | operator, then we simply get ((c)ρ)λx.x, π
 r, π, which
is the behaviour of cc. In that T [R/X] is trivially equivalent to Peirce’s law; this
shouldn’t be too much a surprise.

Disjunctive Tautologies as Synchronisation Schemes 299

3.3 The Symmetric Excluded Middle

We return to G, already presented in the introduction. This formula is not
intuitionistically valid, and the logic obtained when adding it to intuitionistic
logic is that of formulas which are true in any linear Kripke model. What we set
up to prove is:

Proposition 5 Let � c : G be derivable, then for all terms ρ, σ, r et s and for
all stacks π, πR and πS, such that for all terms a and b, ρa, π
 a, r · πS and
σb, π
 b, s · πR, cρσ, π evaluates into a multiset on {(s, πS), (r, πR)}.

Proof. Let ρ, σ, r, s, π, πR and πS be as above. Take for ⊥⊥ the closure of
{(s, πS), (r, πR)}, and set R− = {πR}, S− = {πS} and X− = {π}.
For one thing r ∈ R and s ∈ S.

Let now a ∈ R→ S, by definition a, r ·πS ∈ ⊥⊥, so by ⊥⊥ being closed: ρ, a·π ∈ ⊥⊥,
hence ρ ∈ (R → S) → X. Symmetrically, σ ∈ (S → R) → X. Whence by
adequation we get: c, ρ · σ · π ∈ ⊥⊥. ��

An example is ((cR)ρ)σ = κkX→S .(ρ)λxR.(k)(σ)λyS .x : X or cS the symmet-
ric form exchanging σ and ρ. When ρ and σ behave as in the proposition,
((cR)ρ)σ, π
 r · πR, whereas ((cS)ρ)σ, π
 s · πS .
In pure propositional calculus, there is no means to discriminate between these
two behaviours. As in the case of the boolean type, we can refine the specification
in predicate calculus, by decorating G as:

∀R∀S [(∀xRx→ ∀xSx) ∨ ∀x(Sx→ Rx)] .

Then all terms of that type will behave as cR does.

Note also that, since T trivially implies G, there is a form of compatibility
between the two specifications.

We don’t rerun the operational explanation given in the introduction. Let us
observe, yet, that the proposition is not saying that any c of type G is imple-
menting the cross communication mechanism. In fact that can’t be the case since
sequential proofs, such as the one above, just can’t express it. But some proofs
will, such as cS | cR. Admittedly, the implementation is not very elegant. The
reasonable thing to do, then, seems to extend the language with a new suitable
primitive. One subtle point yet is that the näıve rule:

[a, r · πS | b, s · πR | . . .]
 [r, πR | s, πS | . . .],
would be wrong in that r, s might respectively contain a and b, so that both
executables r, πR and s, πS might know a and b and could subsequently deadlock
by calling on the same channel.

One other desirable thing would be a general specification result about T - and
G-like formulas, perhaps giving some insight on why they should specify a means

300 V. Danos and J.-L. Krivine

of synchronisation, and explaining as well what other schemes are typable. This
is the object of the next and last subsection.

3.4 Disjunctive Tautologies

Let’s consider a finite family of formulas Ai, i ∈ I, each of the form:

Ai = Bi1 → (. . . (Bini → Ci) . . .),

where Bijs and Cis are all propositional variables, and set A to be the universal
closure of ∨IAi. Such an A will be called a purely disjunctive formula.

We define the truth set of A, denoted tr(A), to be the set of triples i, j, k such
that Bij = Ck. Rewriting all implications in A as disjunctions yields a classi-
cally equivalent formula which is the closure of a disjunction of literals, namely
(∨¬Bij) ∨ Ck, whence A is valid iff its truth set is not empty.

Conversely, by the standard second order encoding of disjunctions as implica-
tions, we can obtain an intuitionistic equivalent of A, which we still denote A in
the proposition below.

Both T1 and G1, we already ran into, are purely disjunctive; a simpler example
is V = ∀A [A→ A], and a longer one is:

W = ∀ABC [(A→ (B → C)) ∨ (C → A) ∨ (C → B)] .

The special thing about them is:

Proposition 6 Let A be a purely disjunctive formula and let � c : A be deriv-
able, then for all terms ρi, bij and for all stacks πi, such that for all terms a,
ρia, π
 a, bi1 · · · bini

· πi, cρ1 . . . ρn, π evaluates into a multiset on {(bij , πk) :
i, j, k ∈ tr(A)}.

Proof. Note that if A is false, then, hopefully, � c : A is not derivable, and the
statement then vacuously holds.

The proof goes the usual way. Take for ⊥⊥ the closure of {(bij , πk) : i, j, k ∈
tr(A)}, set X− = {π} and C−i = {πk : Ci = Ck}.
First we observe that bij , πk ∈ ⊥⊥ whenever Bij = Ck, hence bij ∈ Bij if there is
some k such that i, j, k ∈ tr(A). If not, we simply take Bij = Λ. In all cases, we
now have bij ∈ Bij .

Let a ∈ Ai, then a, bi1 · · · bini · πi ∈ ⊥⊥, and so does ρia, π, hence ρi ∈ Ai → X.
Therefore, cρ1 . . . ρn, π ∈ ⊥⊥. ��

If we consider any protocol generated by V , then we see it is sequential, c merely
feeding in ρ with the identity, should ρ ever stop on a. In fact, V is intuitionisti-
cally valid, and any intuitionistic proof of a purely disjunctive formula generates

Disjunctive Tautologies as Synchronisation Schemes 301

a dummy protocol, by the . . . disjunction property. That is, intuitionistic terms,
even using |, can only fork and will never synchronise back their threads. In fact,
| itself behaves like this and can be thought of as a degenerated synchronisation
scheme associated to the disjunctive formula � ∨ �, where � stands for the
logical constant ‘true’.

Next, if we turn to W , we see that associated protocols can be non linear and
non deterministic either. Specifically, if our three processes are blocked as in
ρ1a1, π
 a1, vA ·vB ·πC , ρ2a2, π
 a2, vC ·πA and ρ3a3, π
 a3, v

′
C ·πB , then com-

munication could be implemented by launching concurrently vC , πC and v′C , πC ,
or by launching one of them only, etc. There is room in such a specification for
creating dynamic patterns of synchronisation.

4 Conclusion

So what ? We have shown disjunctive tautologies have as realizers λκ-terms
which are dying to be read as sequential implementations of more abstract con-
current programs, namely synchronisation schemes. We didn’t, as the referrees
would point out, develop those concurrent programs in an independent syntax
such as the pi- or the join-calculus [7]. That remains to be done. We didn’t
either bring in any concrete concurrent example backing the expressiveness of
these schemes. As all synchronisations here are by construction deadlock-free
they shouldn’t be expected to have imme nse expressive power anyway.

References

1. V. Danos, J.-B. Joinet, H. Schellinx. A New Deconstructive Logic: Linear
Logic (1996). Journal of Symbolic Logic.

2. J.-Y. Girard. A New Constructive Logic: Classical Logic (1992). Mathematical
Structures in Computer Science.

3. T. Griffin. A formulae-as-types notion of control (1990). In Proceedings of
POPL’90.

4. J.-L. Krivine. Typed Lambda-Calculus and Classical ZF Set-Theory (2000).
Archive for Mathematical Logic.

5. L. Ong, C. Stewart. A Curry-Howard Foundation for Functional Computation
with Control (1997). In Proceedings of POPL’97.

6. M. Parigot. Strong Normalization for Second-Order Lambda-Mu Calculus
(1993). In Proceedings of LICS’93.

7. Moscova Project. The Join-Calculus Language:
http://pauillac.inria.fr/join/.

Axiomatizing the Least Fixed Point Operation
and Binary Supremum

Zoltán Ésik�

University of Szeged
Department of Computer Science
P.O.B. 652, 6701 Szeged, Hungary

esik@inf.u-szeged.hu

Abstract. The equational properties of the least fixed point operation
on (ω-)continuous functions on (ω-)complete partially ordered sets are
captured by the axioms of iteration algebras, or iteration theories. We
show that the equational laws of the binary supremum operation in con-
junction with the least fixed point operation on (ω-)continuous functions
on (ω-)complete semilattices have a finite axiomatization over the equa-
tions of iteration algebras. As a byproduct of this relative axiomatizabil-
ity result, we obtain complete infinite equational, and finite implicational
axiomatizations.

1 Introduction

Consider the language of µ-terms given by the syntax

T ::= x |σ(
n−times︷ ︸︸ ︷
T, . . . , T) |T + T | 0 |µx.T

where x ranges over a countably infinite set of variables, and for each n ≥ 0, σ
ranges over a set Σn of n-ary function symbols. Such terms may be interpreted as
(ω)-continuous functions on (ω-)complete semilattices, or as monotonic functions
on complete semilattices A, where + denotes the supremum operation, 0 denotes
the least element of A, and where terms of the form µx.t denote least (pre-)fixed
points. We show that under these interpretations the valid equations between
µ-terms possess a finite axiomatization over the axioms of iteration algebras (or
iteration theories) [8], which capture the equational properties of the least fixed
point operation on (ω-)continuous or monotonic functions. We prove that the
following set of equations is relatively complete, where for any µ-terms t, t′, t ≤ t′

� Partially supported by grant no. FKFP 247/1999 from the Ministry of Education
of Hungary and grant no. T30511 from the National Foundation of Hungary for
Scientific Research.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 302–316, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Axiomatizing the Least Fixed Point Operation 303

is an abbreviation for t+ t′ = t′.

x+ (y + z) = (x+ y) + z (1)
x+ y = y + x (2)
x+ 0 = x (3)
µx.x = 0 (4)

σ(x1, . . . , xn) ≤ σ(x1 + y1, . . . , xn + yn), σ ∈ Σn, n > 0 (5)
µx.t ≤ µx.t+ t′ (6)

µx.x+ y = y (7)

(As usual, the scope of the prefix µx extends to the right as far as possible. The
equation

x+ x = x (8)

is a consequence of the above axioms and those of iteration algebras. Note that
(6) is an equation scheme. Equations (5) may be replaced by the equation scheme
(14).) As a byproduct of our relative completeness result, we obtain complete
infinite equational and finite implicational axiomatizations. In fact, it follows
that the system consisting of the equations (1) – (7), the Conway equations [8,9]

µx.t[t′/x] = t[µx.t′[t/x]/x] (9)
µx.t[x/y] = µx.µy.t, (10)

and an equation associated with each finite (simple) group is complete. (Group-
equations for µ-terms were introduced in [15] as a generalization of Conway’s
group-equations for regular languages, cf. [10]. The completeness of the Conway
equations and the group-equations for iteration algebras extends Krob’s result
[21] who confirmed a longstanding conjecture of Conway [10] about the axioma-
tization of the equational theory of regular sets.) By recent advances in the study
of iteration theories [14], it follows that the implicational system consisting of
(1) – (3), (5), (8), the fixed point equation

µx.t = t[µx.t/x] (11)

and the least pre-fixed point rule (or fixed point induction) [24,3]

t[y/x] ≤ y ⇒ µx.t ≤ y (12)

is also complete. This result is analogous to Kozen’s axiomatization [20] of the
equational theory of the regular sets that improves on Salomaa’s axiomatiza-
tion [26], which is not a pure implicational system and is not sound in most
of the natural models. We also show that there is no finite equational axiom-
atization and establish the existence of a polynomial time decision algorithm
for the validity of equations. Along the way of proving these results, we give
a concrete description of the free algebras in the corresponding variety of iter-
ation algebras. This description uses simulation equivalence classes of regular

304 Z. Ésik

synchronization trees [25,23]. Thus, our axioms are also sound and complete for
simulation equivalence of (regular) processes, connecting our work to a large
body of axiomatization results in process algebra, of which [22,16,2,12] is only a
small sampling.

2 The Models

2.1 Preiteration Algebras

Terms, or µ-terms over a signature Σ are defined by the syntax

T ::= x |σ(
n−times︷ ︸︸ ︷
T, . . . , T) |µx.T,

where x ranges over a countably infinite set X of variables, and for each n ≥ 0,
σ ranges over Σn. Thus, the terms given in the Introduction may be regarded
as µ-terms over the signature Σ+,0 obtained by adding the binary letter + and
the constant 0 to Σ. A term with no occurrence of a prefix µx is called finite.
Free and bound variables in a term are defined as usual. We identify any two
µ-terms that differ only in the names of the bound variables.Moreover, for any µ-
terms t, t1, . . . , tn and distinct variables x1, . . . , xn, we write t[t1/x1, . . . , tn/xn]
or t[t1, . . . , tn/x1, . . . , xn] for the term that results from t by simultaneously
substituting ti for xi, for each i ∈ [n]. Since we may assume that the bound
variables in t are different from the variables that have a free occurrence in
the terms ti, no free variable in the ti may become bound as the result of the
substitution.
A preiteration Σ-algebra is a set A together with an assignment of a function
tA : AX → A to each term t over Σ subject to the following rules:

1. For each variable x and a ∈ AX , xA(a) = a(x), i.e., xA is the projection
AX → A corresponding to x.

2. If a, b ∈ AX are such that a(x) = b(x) for all variables x with a free occur-
rence in t, then tA(a) = tA(b).

3. For all terms t, t1, . . . , tn and a ∈ AX , (t[t1/x1, . . . , tn/xn])A(a) = tA(b),
where b(xi) = (ti)A(a), i ∈ [n], and b(x) = a(x), if x �∈ {x1, . . . , xn}.

4. For all terms t, t′ and variable x, if tA = t′A, then (µx.t)A = (µx.t
′)A.

When a(x) = ax ∈ A, for each variable x ∈ V , where V ⊆ X contains the free
variables of t, below we will often write tA(ax/x) or just t(ax/x) for tA(a). When
t has no free variable, we also write tA. A homomorphism A→ B of preiteration
Σ-algebras is a function h : A → B such that tA(ax/x)h = tB(axh/x), for all
terms t and ax ∈ A, x ∈ X. If A and B are preiteration Σ-algebras such that
A is a subset of B and the inclusion of A into B is a homomorphism, we call A
a sub-preiteration Σ-algebra of B. Moreover, if h is a surjective homomorphism
A → B, then we call B a quotient of A. In particular, if θ is a (preiteration
Σ-algebra) congruence on A, i.e., θ is an equivalence relation on A such that
a(x) θ b(x), x ∈ X implies t(a) θ t(b), for all terms t and a, b ∈ AX , and such that
for all terms t, t′ and if t(a) θ t′(a) holds for a ∈ AX , then for any variable x,

Axiomatizing the Least Fixed Point Operation 305

(µx.t)(a) θ (µx.t′)(a) for all a ∈ AX , then the factor set A/θ can be turned into
a preiteration Σ-algebra in a unique way such that the quotient map A→ A/θ
becomes a homomorphism.

Example 1. Recall that an ω-continuous Σ-algebra is a Σ-algebra A which is
an ω-complete poset such that the operations σA : An → A induced by the
letters σ ∈ Σn, n ≥ 0 are ω-continuous, i.e., they preserve the supremum of
any ω-chain. Each ω-continuous Σ-algebra may be turned into a preiteration Σ-
algebra such that if t = σ(t1, . . . , tn), for some σ ∈ Σn and terms t1, . . . , tn, then
tA(a) = σA((t1)A(a), . . . , (tn)A(a)), for all a ∈ AX . Moreover, if t = µx.t′, for
some variable x and µ-term t′, then for each a ∈ AX , (µx.t)A(a) is the least (pre-
)fixed point of the ω-continuous function A → A, b �→ t′A(a

x
b), where a

x
b ∈ AX

agrees with a except that it maps x to b. A homomorphism of continuous Σ-
algebras is a Σ-algebra homomorphism which is an ω-continuous function. It
follows that any homomorphism of ω-continuous Σ-algebras is a homomorphism
of the corresponding preiteration Σ-algebras.

Example 2. The previous example can be generalized. Suppose that A is a small
(skeletal) category that has an initial object and colimits of all ω-diagrams.
Moreover, suppose that for each σ ∈ Σn. σA is an ω-continuous functor An → A,
so that σA preserves colimits of ω-diagrams. Then we may assign a functor
tA : AX → A to each term t over Σ using initial fixed points. The set of objects
of A thus becomes a preiteration Σ-algebra. See [8] for details.

A semilattice Σ-algebra (A,Σ,+, 0) has both the structure of a Σ-algebra (A,Σ)
and the structure (A,+, 0) of a semilattice with zero. A homomorphism of semi-
lattice Σ-algebras preserves the Σ-algebra operations, the semilattice operation
+ and the constant 0. An ordered semilattice Σ-algebra is a semilattice Σ-algebra
which satisfies equations (5), so that the operations are monotonic with respect
to the induced partial order defined by a ≤ b iff a + b = b. Homomorphisms of
ordered semilattice Σ-algebras are just semilattice Σ-algebra homomorphisms.
Note that semilattice Σ-algebras form a variety of Σ+,0-algebras. This variety is
axiomatized by the equations (1) – (3) and (8). Ordered semilattice Σ-algebras
form a subvariety of semilattice Σ-algebras.
An ω-continuous semilattice Σ-algebra A = (A,Σ,+, 0) is both a semilattice
with zero (A,+, 0) and an ω-continuous Σ-algebra (A,Σ), equipped with the
induced partial order. It follows that all countable suprema exist in A. Alter-
natively, an ω-continuous semilattice Σ-algebra is a Σ-algebra which, equipped
with the induced partial order, is an ω-continuous Σ-algebra. Homomorphisms
of ω-continuous semilattice Σ-algebras are both semilattice homomorphisms and
ω-continuous Σ-algebra homomorphisms. Since in an ω-continuous semilattice
Σ-algebra + is just the supremum operation with respect to the semilattice or-
der, it follows that this operation is also ω-continuous. Thus, any ω-continuous
semilattice Σ-algebra is an ω-continuous Σ+,0-algebra. Also, any ω-continuous
semilattice Σ-algebra is an ordered semilattice Σ-algebra, and any homomor-
phism of ω-continuous semilattice Σ-algebras is an (ordered) semilattice Σ-
algebra homomorphism. (For a different definition of continuous semilattices
see [18].)

306 Z. Ésik

Suppose that t and t′ are terms over Σ. We say that equation t = t′ holds
in the preiteration Σ-algebra A, or that A satisfies t = t′, if for all a ∈ AX ,
tA(a) = t′A(a), i.e., when the functions tA and t′A are equal. More generally,
we say that the implication t1 = t′1 ∧ . . . ∧ tn = t′n ⇒ t = t′ holds in the
preiteration Σ-algebra A, where t, t′, ti, t′i are terms over Σ, if for all a ∈ AX , if
(ti)A(a) = (t′i)A(a), for all i ∈ [n], then tA(a) = t′A(a).
A variety of preiteration Σ-algebras is a class V of preiteration Σ-algebras con-
sisting of the models of some set E of equations between terms over Σ, i.e., such
that a preiteration Σ-algebra A belongs to V iff A satisfies any equation in E.
The set E is called an equational basis, or an equational axiomatization of V. It
follows that each class K of preiteration Σ-algebras is contained in a least variety
V, the class of all models of the equations that hold in every member of K. V
is called the variety generated by K. See [8] for more on varieties of iteration
algebras.

2.2 Iteration Algebras

Some nontrivial equations that hold in all ω-continuous Σ-algebras are (9),
(10), (11) given above. To define the group-equations, we need to extend the
µ-notation to term vectors t = (t1, . . . , tn) over Σ. Let x = (x1, . . . , xn) be a
vector of distinct variables. When n = 1, µx.t is just the term vector of dimension
1 whose unique component is µx1.t1. We identify any term vector of dimension
1 with its component. If n > 1, let x′ = (x1, . . . , xn−1), t′ = (t1, . . . , tn−1) and
s = t′[µxn.tn/xn]. (Substitution into a term vector is defined componentwise.)
We define

µx.t = (µx′.s, (µxn.tn)[µx′.s/x′]). (13)

The definition is motivated by the Bekić-de Bakker–Scott rule [5,3]. It follows
that for any ω-continuous Σ-algebra A, term vector t = (t1, . . . , tn) of dimension
n, and for any x = (x1, . . . , xn) and a ∈ AX , (µx.t)A(a) is the least pre-fixed
point of the map An → An, b = (b1, . . . , bn) �→ tA(axb), where of course a

x
b (xi) =

bi, for all i ∈ [n], and axb (x) = a(x), if x �∈ {x1, . . . , xn}.
Suppose now that G is a finite group of order n with multiplication denoted ·.
Moreover, suppose that the elements of G are the integers in the set [n]. Given
a vector x = (x1, . . . , xn) of distinct variables and an integer i ∈ [n], define
i · x = (xi·1, . . . , xi·n). Thus, i · x is obtained by permuting the components of
x according to the ith row of the multiplication table of G. The group-equation
associated with G is

(µx.(t[1 · x/x], . . . , t[n · x/x]))1 = µy.t[y/x, . . . , y/x],

where t is any µ-term over Σ, y is a variable, and where (µx.(t[1 · x/x], . . . , t[n ·
x/x]))1 is the first component of the term vector µx.(t[1 · x/x], . . . , t[n · x/x]).
An iteration Σ-algebra [8,15] is a preiteration Σ-algebra satisfying (9), (10), as
well as each group-equation. A homomorphism of iteration algebras is a preiter-
ation algebra homomorphism. A sub-iteration algebra of an iteration algebra is
just a sub-preiteration algebra.

Axiomatizing the Least Fixed Point Operation 307

Theorem 1. [15] The ω-continuous Σ-algebras generate the variety of iteration
Σ-algebras.

Thus, an equation between terms over Σ holds in all iteration Σ-algebras iff it
holds in all ω-continuous Σ-algebras.
The above definitions apply to the case that the signature is of the form Σ+,0. In
particular, any ω-continuous semilattice Σ-algebra is an iteration Σ+,0-algebra.
In [14] it is proved that any “ordered preiteration Σ-algebra” satisfying the fixed
point equation and the least pre-fixed point rule is an iteration Σ-algebra. Using
this result we have:

Proposition 1. Any preiteration Σ+,0-algebra satisfying (1) – (3), (8), the fixed
point equation (11) and the least pre-fixed point rule (12) is an iteration Σ+,0-
algebra and satisfies (4), (6) and (7).

For later use, we note

Lemma 1. Suppose that A is a preiteration Σ+,0-algebra satisfying (1) – (3),
(5), (6), (8). Then for all terms t over Σ+,0, A satisfies the equation

t ≤ t[x+ y/x], (14)

or equivalently, the implication x ≤ y ⇒ t ≤ t[y/x].

3 The Completeness Results

In this section we give precise formulations of the main completeness results of
the paper.

Theorem 2. An equation between terms over Σ+,0 holds in all ω-continuous
semilattice Σ-algebras iff it holds in all iteration Σ+,0-algebras satisfying equa-
tions (1) – (7).

Corollary 1. An equation between terms over Σ+,0 holds in all ω-continuous
semilattice Σ-algebras iff it holds in all preiteration Σ+,0-algebras satisfying the
Conway equations (9), (10), the group-equations associated with the finite groups,
and equations (1) – (7).

Corollary 2. An equation between terms over Σ+,0 holds in all ω-continuous
semilattice Σ-algebras iff it holds in all preiteration Σ+,0-algebras satisfying
equations (1) – (3), (5), (8), (11), and the least pre-fixed point rule (12).

Corollary 3. An equation between terms over Σ+,0 holds in all ω-continuous
semilattice Σ-algebras iff it holds in all preiteration Σ+,0-algebras satisfying
equations (1) – (3), (5), (6), (8), (11), and the least fixed point rule (15)

t[y/x] = y ⇒ µx.t ≤ y,

where t is any term over Σ+,0.

308 Z. Ésik

To prove Theorem 2, we first give a concrete description of the free algebras in
the variety of iteration Σ+,0-algebras satisfying (1) – (7). In Theorem 6, we show
that the free algebra on a set A may be represented as the iteration Σ+,0-algebra
of simulation equivalence classes of regular (Σ,A)-labeled synchronization trees.
We then show in Theorem 7 that each such free algebra can be embedded in an
ω-continuous semilattice Σ-algebra. Theorem 2 is an immediate consequence of
these facts.

4 Synchronization Trees

In this section we consider a generalization of the usual notion of synchronization
trees [23]. Suppose thatΣ is a signature and A is a set disjoint fromΣ. We extend
the rank function on Σ to Σ ∪ A by defining the rank of each letter in A to be
0. The resulting signature is denoted Σ(A). A (Σ,A)-labeled (synchronization)
tree is a countable rooted hyper-tree (V,E, r) equipped with a labeling function
λ subject to certain conditions. Here, V denotes the set of vertices and E is the
set of (hyper-)edges, so that each edge e ∈ E has a source v ∈ V and a target
(v1, . . . , vn) ∈ V n, for some n > 0, called the rank of e. Accordingly, we write
e : v → (v1, . . . , vn), and call v and the vi the endpoints of e. We require that the
labeling function is compatible with the ranks, so that eλ ∈ Σ(A)n whenever e
has rank n �= 1, and eλ ∈ Σ0∪A∪Σ1, if e has rank 1. Moreover, we require that
the target of any edge labeled in Σ0 ∪A is a leaf. Each synchronization tree has
an underlying directed graph defined in a straightforward way.
If S = (V,E, r, λ) and S′ = (V ′, E′, r′, λ′) are (Σ,A)-labeled trees, a simulation
[25] S → S′ is a relation ρ : V → V ′ such that the roots are related, i.e., r ρ r′,
and for all e : v → (v1, . . . , vn) in E and v′ ∈ V ′, if v ρ v′ then there is an edge
e′ : v′ → (v′1, . . . , v

′
n) with eλ = e′λ′ and vi ρ v

′
i, for all i ∈ [n]. A bisimulation

S → S′ is a simulation ρ : S → S′ such that ρ−1, the relational inverse of
ρ is a simulation S′ → S. A functional simulation is a simulation which is a
function. It is obvious that the composition of simulations is a simulation. Thus
(Σ,A)-labeled synchronization trees and their (functional) simulations form a
category.

Proposition 2. If ρ is a simulation S → S′, where S = (V,E, r, λ) and S′ =
(V ′, E′, r′, λ′), then there is a functional simulation τ : S → S′ contained in ρ,
i.e., such that (v, (vτ)) ∈ ρ for all v ∈ V .

Thus, there is a simulation S → S′ iff there is a functional simulation S → S′.
Suppose that S = (V,E, r, λ) is a (Σ,A)-labeled tree and v ∈ V . Let Vv denote
the set of all vertices accessible from v along a path in the underlying directed
graph of S. Let Ev denote the set of all edges e : u → (u1, . . . , un) such that
u ∈ Vv (and hence u1, . . . , un ∈ Vv), and let λv be the restriction of λ to Ev.
The resulting (Σ,A)-labeled synchronization tree (Vv, Ev, v, λv) is denoted Sv.
We call Sv the subtree of S rooted at v. We let (Σ,A)T denote the category
of all (Σ,A)-trees and functional simulations. Note that the isomorphisms in
(Σ,A)T are the bijective functional simulations. Two subcategories of (Σ,A)T
are also of interest: the category (Σ,A)F determined by the finite trees, and the

Axiomatizing the Least Fixed Point Operation 309

category (Σ,A)R determined by the regular trees. We call a tree regular if it has,
up to isomorphism, a finite number of subtrees. Moreover, we call a functional
simulation τ : S → S′ normal if for all vertices v1, v2 of S, if Sv1 and Sv2 are
isomorphic, then so are S′v1τ and S′v2τ . The proof of the following proposition is
omitted.

Proposition 3. Suppose that S and S′ are trees and ρ is a functional simulation
S → S′. Then there exists a normal functional simulation τ : S → S′.

Proposition 4. [8] The category (Σ,A)T is countably cocomplete.

Colimits can be constructed in the expected way. If Si = (Vi, Ei, ri, λi), i = 1, 2
are trees, then the coproduct S1 + S2 is the disjoint union of the Si with the
distinguished vertices identified. The coproduct injections are the obvious em-
beddings. See [8] for a formal definition of S1 + S2. The empty coproduct, i.e.,
initial object is the tree 0 with a single vertex and no edges. In addition to coprod-
ucts, we will use colimits of ω-diagrams (Sn, fn)n≥0, where Sn = (Vn, En, rn, λn)
and fn : Sn → Sn+1. The colimit (hn : Sn → S) can be constructed at the level
of sets.
From now on, we identify isomorphic trees, so that we may regard (Σ,A)T , the
category of (Σ,A)-trees and functional simulations, as a small skeletal category.
For each σ ∈ Σn, we define the functor σ(Σ,A)T : (Σ,A)Tn → (Σ,A)T as follows.
Given trees S1, . . . , Sn with roots r1, . . . , rn, respectively, σ(Σ,A)T (S1, . . . , Sn) =
σ(S1, . . . , Sn) is the tree obtained from the Si by taking their disjoint union and
adding to this set a new vertex r and a new edge e : r → (r1, . . . , rn) labeled
σ. Vertex r is the new root. On morphisms, σ(Σ,A)T is defined in the expected
way. When n = 0, σ(Σ,A)T is a tree with a single edge labeled σ. The following
fact is clear.

Proposition 5. [8] Each functor σ(Σ,A)T is ω-continuous.

Thus, since the functor + that forms binary coproducts is also ω-continuous,
using Example 2 we have:

Proposition 6. [8] The isomorphism classes of (Σ,A)-trees form an iteration
Σ+,0-algebra satisfying the equations (1) – (4) and (15)

µx.µy.x+ y + z = µx.x+ z. (15)

We let (Σ,A)T denote this iteration Σ+,0-algebra. It is shown in [8] that the
regular trees determine a sub-iteration Σ+,0-algebra of (Σ,A)T. We denote this
algebra by (Σ,A)R. The finite trees determine a Σ+,0-algebra (Σ,A)F. The
following result gives an algebraic characterization of (Σ,A)R. Let us identify
each letter a ∈ A with the tree which has a unique vertex and a unique edge,
which is labeled a.

Theorem 3. [8] (Σ,A)R is freely generated by the set A in the variety of iter-
ation Σ+,0-algebras satisfying equations (1) – (4) and (15).

310 Z. Ésik

The meaning of this result is that for any iteration Σ+,0-algebra satisfying (1)
– (4) and (15), and for any function h : A → B, there is a unique iteration
Σ+,0-algebra homomorphism h� : (Σ,A)R→ B extending h. There is a similar
result for finite trees.

Theorem 4. [6] (Σ,A)F is freely generated by A in the variety of Σ+,0-algebras
satisfying equations (1) – (3).

4.1 The Simulation Preorder

We will consider a preorder on trees. Suppose that S and T are (Σ,A)-labeled
trees. We write S ≤ T if there is a (functional) simulation S → T . The equiva-
lence relation induced by this preorder ≤ is denoted ≡. Relation ≤ is called the
simulation preorder and ≡ the simulation equivalence.

Proposition 7. For all (Σ,A)-labeled trees S and S′, we have S ≤ S′ iff S′ ≡
S + S′.

Suppose now that for each variable x we are given trees Sx and Rx with Sx ≤ Rx.
Then for any term t, since t(Σ,A)T is a functor (Σ,A)TX → (Σ,A)T , we have
that t(Σ,A)T (Sx/x) ≤ t(Σ,A)T (Rx/x).

Proposition 8. For all µ-terms t over Σ+,0 and for all families of (Σ,A)-
labeled trees (Sx)x∈X and (Rx)x∈X with Sx ≤ Rx for x ∈ X, it holds that
t(Σ,A)T (Sx/x) ≤ t(Σ,A)T (Rx/x).

Proposition 9. Suppose that s and t are µ-terms over Σ+,0. If s(Σ,A)T (Ry/y) ≤
t(Σ,A)T (Ry/y), for all families (Ry)y∈X of regular trees in (Σ,A)R, then also

(µx.s)(Σ,A)T (Ry/y) ≤ (µx.t)(Σ,A)T (Ry/y),
for all families R = (Ry)y∈X of regular trees in (Σ,A)R, and for all x.

Proof. For a family (Ry)y∈X of regular trees, let F denote the functor (Σ,A)T →
(Σ,A)T , defined on objects by S �→ s(Σ,A)(RxS). On morphisms, F is defined in
a similar way. Let G denote the corresponding functor using term t. Then F † =
(µx.s)(Σ,A)T (Ry/y) is the colimit of the ω-diagram Fn(i0) : Fn(0) → Fn+1(0),
where 0 is the empty tree and i0 denotes the unique functional simulation 0→
F (0). Also, G† = (µx.t)(Σ,A)T (Ry/y) is the colimit of the ω-diagram Gn(j0) :
Gn(0) → Gn+1(0) defined in the same way. It is easy to see that each Fn(i0)
and Gn(j0) is injective, so that we may as well assume that each Fn(i0) and
Gn(j0) is an inclusion, and that F † and G† are the “unions” of the Fn(0) and
Gn(0), respectively. Suppose that S is a finite tree with S ≤ F †. Then there is
some n such that S ≤ Fn(0). But it follows from our assumption on s and t that
Fn(0) ≤ Gn(0), so that S ≤ Gn(0) and S ≤ G†. Since F † and G† are regular,
by Corollary 4, proved independently, we have F † ≤ G†. ✷

By the previous facts, simulation equivalence is a congruence on (Σ,A)R. Let
(Σ,A)SR denote the quotient (Σ,A)R/≡.

Axiomatizing the Least Fixed Point Operation 311

Proposition 10. (Σ,A)SR is an iteration Σ+,0-algebra satisfying (1) – (7).

Proof. Since (Σ,A)SR is a quotient of (Σ,A)R, by Theorem 3 (Σ,A)SR is an
iteration Σ+,0-algebra satisfying (1) – (4). It follows from Proposition 7 that
(Σ,A)SR also satisfies (8) and that the relation ≤ is the partial order induced
by the semilattice structure. By Proposition 8, also (5) holds. Thus, it remains
to verify (6) and (7). Equation (6) follows from Exercise 5.21 in Chapter 8 of
[8]. Equation 7 is obvious. ✷

Let (Σ,A)SF denote the subalgebra of (Σ,A)SR determined by the finite trees.

Theorem 5. [17] For each set A, (Σ,A)SF is freely generated by A in the
variety of ordered semilattice Σ-algebras. An equation between finite Σ+,0-terms
holds in all algebras of simulation equivalence classes of (finite) (Σ,A)-trees iff
it holds in all ordered semilattice Σ-algebras.

5 A Characterization of Simulation Equivalence Classes
of Regular Trees

In this section we give an algebraic characterization of simulation equivalence
classes of regular (Σ,A)-labeled trees. In the technical developments to follow,
for any term t over Σ+,0 and for any integer k ≥ 0, we will use the abbreviation
kt for the k-fold sum of t with itself (where we take advantage of the associativity
of +). When k = 0, kt is just the term 0. Moreover, we will write ∞t for the
term µx.x+ t, where the variable x does not occur in t.
A (Σ,A)-normal description of dimension n in the variables x1, . . . , xn, y1, . . . ,
yp is an ordered pair D = (t, a), where t = (t1, . . . , tn) is an n-dimensional
vector of terms over Σ+,0 in the free variables x1, . . . , xn, y1, . . . , yp and a =
(a1, . . . , ap) ∈ Ap. Moreover, each term ti is primitive, i.e., a finite sum of terms
of the form kσ(xj1 , . . . , xjm) or kyj , where k �= 0, σ ∈ Σm, m ≥ 0, j1, . . . , jm ∈
[n] and j ∈ [p]. (It is allowed that k = ∞.) Let us denote x = (x1, . . . , xn)
and y = (y1, . . . , yp). The behavior of D, denoted |D| is the first component of
(µx.t)(Σ,A)R(a/y). Thus, the behavior of D is a regular tree in (Σ,A)R.
Each regular tree T ∈ (Σ,A)R is known to be the behavior of a description
D = (t, a). To construct D, let T1, . . . , Tn be an enumeration of the subtrees
of T with T = T1, and let a1, . . . , ap be an enumeration of those elements of
A which appear as labels of some edges of T . We define t = (t1, . . . , tn) and
a = (a1, . . . , ap), where each ti corresponds to Ti in the following manner. Each
edge e : v → (v1, . . . , vm) whose source is the root of Ti is labeled by some symbol
σ ∈ Σm or some component of a. Suppose that e is labeled σ ∈ Σm, m > 0.
Then let Tj1 , . . . , Tjm denote the subtrees rooted at the vertices v1, . . . , vm,
respectively, and let k denote the total number of edges v → (v′1, . . . , v

′
m) labeled

σ such that the subtrees rooted at the vertices v′1, . . . , v
′
m are isomorphic to the

trees Tj1 , . . . , Tjm , respectively. (If there are an infinite number of such edges,
then k =∞.) Then kσ(xj1 , . . . , xjm) is a summand of ti. Similarly, if e is labeled
aj , say, then kyj is a summand of ti, where k is determined in the same way.

312 Z. Ésik

Finally, if v has an outedge labeled σ ∈ Σ0, then kσ is a summand of ti, where
k is the number of all such edges. The term ti is the sum of all such summands.
We call the description D constructed in this way the canonical description of
T . (Note that the canonical description is unique only up to a rearrangement of
the components of t and a and renaming of the variables.) It is known that for
each i, the ith component of (µx.t)(a) is the tree Ti. In particular, we have:

Proposition 11. [8] For the canonical description D = (t, a) of the tree T ∈
(Σ,A)R, it holds that |D| = T .

Theorem 6. For each set A, (Σ,A)SR is freely generated by A in the variety
of iteration (Σ,A)-algebras satisfying equations (1) – (7).

Proof. By Proposition 10, (Σ,A)SR is an iteration Σ+,0-algebra satisfying (1) –
(7). Suppose that B is an iteration (Σ,A)-algebra which also satisfies equations
(1) – (7), and suppose that h is a function A→ B. By Theorem 3, h extends to
a unique homomorphism (Σ,A)R→ B that we also denote by h. If we can show
that T ≤ T ′ implies Th ≤ T ′h, for all trees T, T ′ ∈ (Σ,A)R, then it follows that
h factors through the quotient map (Σ,A)R→ (Σ,A)SR. Thus,

h = (Σ,A)R τ→ (Σ,A)SR h�

→ B,

where τ is the quotient map. Using Theorem 3, it follows that h� is the unique
extension of h to a homomorphism (Σ,A)SR→ B.
So assume that T, T ′ are regular (Σ,A)-labeled trees with T ≤ T ′. Let D = (t, a)
and D′ = (t′, a′) denote the canonical descriptions of T and T ′, respectively,
where t = (t1, . . . , tn), t′ = (t′1, . . . , t

′
n′), a = (a1, . . . , ap), a′ = (a′1, . . . , a

′
p′).

Let x1, . . . , xn, y1, . . . , yp and x′1, . . . , x
′
n′ , y′1, . . . , y

′
p′ denote the free variables

appearing in t and t′, respectively, where each xi corresponds to ti, each yj to
aj , etc. Recall that each xi also corresponds to a subtree Ti of T , and similarly,
each x′i to a subtree T

′
i of T

′. Since T ≤ T ′, we have p ≤ p′ and {a1, . . . , ap} ⊆
{a′1, . . . , a′p′}, so that without loss of generality we may assume that a′j = aj , for
all j ∈ [p]. Let ϕ denote a functional simulation T ≤ T ′. By Proposition 3, we
may assume that ϕ is normal. Thus, we can use ϕ to define a map ψ : [n]→ [n′]
such that Ti ≤ T ′iψ, for each i ∈ [n]: if v is any vertex of T such that the subtree
of T rooted at v is isomorphic to Ti, then we let iψ be the integer in [n′] such
that the subtree of T ′ rooted at vϕ is isomorphic to T ′iψ. For each i ∈ [n], let tiψ
denote the term that results from ti by substituting x′jψ for xj , j ∈ [n], and y′j
for yj , j ∈ [p], i.e., tiψ = ti[(x′1ψ, . . . , x

′
nψ, y

′
1, . . . , y

′
p)/(x1, . . . , xn, y1, . . . , yp)].

Since ϕ is a simulation, whenever kσ(xj1 , . . . , xjm) is a summand of ti, where
k �= 0, there exists some k′ �= 0 such that k′σ(x′j1ψ, . . . , x′jmψ) is a summand of
t′iψ. Also, if for some k �= 0, kyj is a summand of ti, then there is some k′ �= 0
such that k′y′j is a summand of t

′
iψ. It follows that with respect to equations (1)

– (3), (8) and (7), we have that tiψ + t′iψ = t′iψ, i.e., tiψ ≤ t′iψ. Thus for each i
there is some primitive term si in the variables x1, . . . , xn, y1, . . . , yp such that,
modulo the equations (1) – (3), (8) and (7), we have

(ti + si)ψ = t′iψ, (16)

Axiomatizing the Least Fixed Point Operation 313

where (ti + si)ψ is defined in the same way as tiψ. Let r = (r1, . . . , rn), where
ri = ti + si, for all i ∈ [n], and let R denote the first component of (µx.r)(a).
We use equations (16) to prove

Lemma 2. There is a bisimulation R→ T ′.

It was shown in [8] that regular trees in (Σ,A)R modulo bisimulation form an
iteration algebra (Σ,A)BR freely generated by A in the variety of iteration
Σ+,0-algebras satisfying (1) – (4) and (7). Thus, by Lemma 2 we have that
Rh = T ′h. On the other hand, by Lemma 3, Th ≤ Rh. Thus, Th ≤ T ′h. ✷

In the next lemma we will say that an inequation (t1, . . . , tn) ≤ (s1, . . . , sn)
between vectors of terms over Σ+,0 holds in a preiteration Σ+,0-algebra, or in a
class of preiteration Σ+,0-algebras, if each equation ti + si = si holds.

Lemma 3. Suppose that t = (t1, . . . , tn) and s = (s1, . . . , sn) are term vectors
in the free variables x1, . . . , xn, y1, . . . , yp. Let x = (x1, . . . , xn). If t ≤ s holds
in the variety V of iteration Σ+,0-algebras satisfying (1) – (7), then so does
µx.t ≤ µx.s.

Proof. By induction on n using (13). The basis case holds by (6). ✷

6 An Embedding Theorem

In this section we prove that for each set A, there is an ω-continuous semilattice
Σ-algebra B such that (Σ,A)SR can be embedded in B. We call a tree T ∈
(Σ,A)T finitely branching if each vertex of T is the source of a finite number of
hyper-edges. For a tree T ∈ (Σ,A)T, we denote by K(T) the collection of all
finite trees S with S ≤ T .

Lemma 4. Suppose that T, T ′ ∈ (Σ,A)T such that T ′ is finitely branching.
Then T ≤ T ′ iff K(T) ⊆ K(T ′).

Proof. It is clear that K(T) ⊆ K(T ′) whenever T ≤ T ′. The reverse implication
is obvious when T is finite. So assume that T is infinite, say T = (V,E, r, λ).
Let K(T) denote the collection of all trees S = (W,F, r, λF) such that W and
F are finite subsets of V and E, respectively, and the inclusion W → V de-
termines a functional simulation S → T . Then let T0 = (V0, E0, r, λ0), T1 =
(V1, E1, r, λ1), . . . be a sequence of trees in K(T) such that each vertex v ∈ V
appears in all but a finite number of the Vi. Since K(T) ⊆ K(T) ⊆ K(T ′),
for each i there exists a functional simulation ρi : Ti → T ′. We show how to
construct a functional simulation ρ : T → T ′. Let v denote a vertex in V . We
define vρ by induction on the depth of v such that v ∈ Vi and vρ = vρi hold
for an infinite number of the i’s. When v is the root r, we define vρ = r′, the
root of T ′. Suppose now that the depth of v is positive. Let u denote the vertex
such that there is an edge u→ (v1, . . . , vm) in E with vj = v for some j. By the
induction assumption, there is an infinite set I such that u ∈ Vi and uρ = uρi,
for all i ∈ I. Moreover, by our assumption on the sequence Tk, k ≥ 0, there is
an infinite set I ′ ⊆ I such that v is a vertex of Ti, for all i ∈ I ′, and since T ′

314 Z. Ésik

is finitely branching, there is an infinite set I ′′ ⊆ I ′ such that vρi is the same
vertex of T ′, for all i ∈ I ′′. Define vρ to be this vertex of T ′. ✷

Given an edge e : v → (v1, . . . , vn) of a tree S = (V,E, r, λ), the vertices of the
tree T determined by e are the vertex v and those vertices v′ ∈ V accessible
from the vi in the underlying directed graph of S. The root of T is v, and its
edges are those edges in E whose endpoints belong to the vertex set of T . The
labeling function is the restriction of the labeling function λ. We call a (Σ,A)-
labeled tree S reduced if for any two distinct edges e : v → (v1, . . . , vn) and
e′ : v → (v′1, . . . , v

′
n) with the same source, the trees determined by e and e′ are

incomparable with respect to ≤, i.e., either e and e′ have distinct labels or there
exists some i ∈ [n] such that Svi

�≤ Sv′
i
and Sv′

i
�≤ Svi

.

Lemma 5. Suppose that S and S′ are reduced (Σ,A)-labeled trees. Then S ≡ S′

iff S and S′ are isomorphic.

Proposition 12. If S is a regular (finite, respectively) (Σ,A)-labeled tree, then
up to isomorphism there is a unique reduced tree S′ with S ≡ S′. Moreover, S′

is also regular (finite, respectively).

Example 3. Suppose that σ ∈ Σ1. Define σ0(0) = 0 and σn+1(0) = σ(σn(0)),
so that each σn(0) is reduced. Let T =

∑
n≥0 Tn. Then there is no reduced tree

simulation equivalent to T . On the other hand, if S1, . . . , Sk are reduced, then
there is a reduced tree simulation equivalent to S1 + . . .+ Sk.

By the above results, we may represent (Σ,A)SF as an ordered semilattice Σ+,0-
algebra of finite reduced (Σ,A)-labeled trees. In the same way, (Σ,A)SR may
be represented as an iteration Σ+,0-algebra of reduced regular trees. Since any
reduced regular tree is finitely branching, from Lemma 4 and Proposition 12 we
deduce

Corollary 4. Suppose that T, T ′ are (Σ,A)-labeled trees and T ′ is regular. Then
T ≤ T ′ iff K(T) ⊆ K(T ′).

Example 4. There exist nonisomorphic trees T, S such K(T) = K(S). Indeed,
let T =

∑
n≥0 σ

n(0) and S = σω, i.e., the colimit of the ω-diagram (σn(0) →
σn+1(0))n≥0.

Theorem 7. For each set A there exists an ω-continuous semilattice Σ-algebra
B and an injective iteration Σ+,0-algebra homomorphism (Σ,A)SR→ B.

Proof. By Theorem 5, the algebra (Σ,A)SF of simulation equivalence classes
of finite (Σ,A)-labeled trees is freely generated by A in the variety of ordered
semilattice Σ-algebras. Now (Σ,A)SF is a “strict ordered algebra”, so that
its completion B = (Σ,A)ISF by “ω-ideals” is a ω-continuous Σ+,0-algebra
satisfying every equation satisfied by (Σ,A)SF. In particular, (Σ,A)ISF is an
ω-continuous semilattice Σ-algebra. (In fact, it follows from well-known facts
that (Σ,A)ISF is the free ω-continuous semilattice Σ-algebra on A, see [7].)
By Corollary 4, the map T/≡�→ K(T), T ∈ (Σ,A)R is a well-defined injective
function (Σ,A)SR→ B. We show that this function is an iteration Σ+,0-algebra
homomorphism. ✷

Axiomatizing the Least Fixed Point Operation 315

7 Further Results

By the Knaster-Tarski theorem, every monotonic function on a complete lattice
has a least fixed point. Accordingly, one might wish to consider algebras over
complete lattices equipped with monotonic or continuous operations, the binary
supremum operation and the constant 0 representing the least element. The ax-
ioms of Theorem 2 and Corollaries 1, 2, 3 are sound in these models. Moreover,
every iteration algebra (Σ,A)SR can be embedded in an iteration algebra de-
rived from a complete lattice equipped with continuous operations. Hence, our
main results remain valid for these models as well. Also, the least fixed point
operation may be replaced by the greatest fixed point operation provided the
binary supremum operation is replaced by the infimum operation. Very little
is known about the equational theory when infimum and supremum and both
extremal fixed point operations are present.
It is well-known that the problem to decide whether two finite transition sys-
tems are bisimilar lies in P (see, e.g, [19]), in fact, it is P-complete, cf. [4]. It is
not difficult to show that the same holds for simulation equivalence. Now each
µ-term t over Σ+,0 can be transformed in logarithmic space to a finite transition
system S(t) such that t = t′ holds in ω-continuous Σ-algebras for terms t, t′ iff
S(t) is simulation equivalent to S(t′) (i.e., when the tree obtained by unfolding
S(t) is simulation equivalent to the tree obtained by unfolding S(t′).) In con-
clusion, there is a polynomial algorithm to decide whether an equation holds
in ω-continuous semilattice Σ-algebras. Suppose that Σ contains a letter whose
rank is not 0. Then iteration Σ-algebras do not possess a finite axiomatization
in terms of equation schemes [9]. It is not difficult to modify the proof of this
result to show that the variety generated by ω-continuous semilattice Σ-algebras
also do not possess a finite axiomatization. This also follows from the fact that
Kleene algebras of binary relations (or regular languages) have no finite basis of
their equations, see [10] or [2] for a recent improvement, but have a finite basis
over the equations of iteration algebras [8], and in fact relative to the equations
of ω-continuous semilattice Σ-algebras.
As for related results to be published in a forthcoming paper, we would like to
mention a similar treatment of continuous additive Σ-algebras. The equational
theory of these algebras is intimately related to that of the resource simulation
equivalence classes of processes, or trees [11,13].

References

1. L. Aceto, W.J. Fokkink and A. Ingólfsdóttir, A menagerie of non-finitely based
process semantics over BPA*: from ready simulation to completed traces, Math.
Struct. Comput. Sci., 8(1998), 193-230.

2. L. Aceto, W.J. Fokkink and A. Ingólfsdóttir, On a question of A. Salomaa: The
equational theory of regular expressions over a singleton alphabet is not finitely
based, Theoret. Comput. Sci., 209(1998), 163-178.

3. J.W. De Bakker and D. Scott, A theory of programs, IBM Seminar, Vienna, 1969.
4. J. Balcazar, J. Gabarro and M. Santha, Deciding bisimilarity is P-complete, Formal

Aspects of Computing, 4(1992), 638–648.

316 Z. Ésik

5. H. Bekić, Definable operations in general algebras, and the theory of automata
and flowcharts, Technical Report, IBM Laboratory, Vienna, 1969.

6. D. Benson and J. Tiuryn, Fixed points in free process algebras, Theoret. Comput.
Sci., 63(1989), 275–294.

7. S.L. Bloom, Varieties of ordered algebras, J. Comput. System Sci., 13(1976), 200–
212.

8. S.L. Bloom and Z. Ésik, Iteration Theories, Springer–Verlag, 1993.
9. S.L. Bloom and Z. Ésik, The equational logic of fixed points, Theoret. Comput.

Sci., 179(1997), 1–60.
10. J.H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, London,

1971.
11. F. Corradini, R. De Nicola and A. Labella, Tree morphisms and bisimulations, in:

Proc. MFCS’98 Workshop on Concurrency, ENTCS, 18(1998).
12. F. Corradini, R. De Nicola and A. Labella, A finite axiomatization of nondeter-

ministic regular expressions, Theoret. Inform. Appl., 33(1999), 447–465.
13. F. Corradini, R. De Nicola and A. Labella, Models of nondeterministic regular

expressions. J. Comput. Sys. Sci., 59:412–449, 1999.
14. Z. Ésik, Completeness of Park induction, Theoret. Comput. Sci., 177(1997), 217–

283.
15. Z. Ésik, Group axioms for iteration, Inform. and Comput., 148(1999), 131–180.
16. W. Fokkink and H. Zantema, Basic process algebra with iteration: Completeness

of its equational axioms. Computer Journal, 37(1994), 259–267.
17. R.J.H. van Glabbeek, The linear time – branching time spectrum, Chapter 1

in: Comparative Concurrency Semantics and Refinement of Actions, R.J.H. van
Glabbeek, CWI TRACT 109, 1996.

18. C.C. Gunter, Semantics of Programming Languages, MIT Press, 1992.
19. P.C. Kanellakis and S.A. Smolka, CCS expressions, finite state processes and three

problems of equivalence, Inform. and Comput., 86(1990), 43–68.
20. D. Kozen, A completeness theorem for Kleene algebras and the algebra of regular

events, Inform. and Comput., 110(1994), 366–390.
21. D. Krob, Complete systems of B-rational identities, Theoret. Comput. Sci.,

89(1991), 207–343.
22. R. Milner, A complete inference system for a class of regular behaviours, J.

Comput. Syst. Sci., 28(1984), 439–466.
23. R. Milner, Communication and Concurrency, Prentice-Hall, 1989.
24. D.M.R. Park, Fixpoint induction and proofs of program properties, in: Machine

Intelligence 5, D. Michie and B. Meltzer, Eds., Edinburgh Univ. Press, 1970, 59–78.
25. D.M.R. Park, Concurrency and automata on infinite sequences, in: Proc. GI

Conference, P. Deussen, Ed., LNCS 104, Springer–Verlag, 1981, 167–183.
26. A. Salomaa, Two complete axiom systems for the algebra of regular events. J.

Assoc. Comput. Mach., 13(1966), 158–169.

Interactive Programs in Dependent Type Theory

Peter Hancock1 and Anton Setzer2

1 Dept. of Computing Science, University of Edinburgh, James Clerk Maxwell
Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland,
fax: +44 131 667 7209, phone: +44 131 650 5129, pgh@dcs.ed.ac.uk.

2 Dept. of Mathematics, Uppsala University, P.O. Box 480, SE-751 06 Uppsala,
Sweden, fax: +46 18 4713201, phone: +46 18 4713284, setzer@math.uu.se.

Abstract. We propose a representation of interactive systems in depen-
dent type theory. This is meant as a basis for an execution environment
for dependently typed programs, and for reasoning about their construc-
tion. The inspiration is the ‘I/O-monad’ of Haskell. The fundamental no-
tion is an I/O-tree; its definition is parameterised over a general notion of
dependently typed, command-response interactions called a world. I/O-
trees represent strategies for one of the parties in a command/response
interaction – the notion is not confined to functional programming. We
present I/O-trees in two forms. The first form, which is simpler, is suit-
able for Turing-complete functional programming languages with general
recursion, but is non-normalising. The second is definable within (ordi-
nary) normalising type theory and we identify programs written in it
as ‘normalising I/O-programs’. We define new looping constructs (while
and repeat), and a new refinement construct (redirect), which permits
the implementation of libraries. We introduce a bisimulation relation be-
tween interactive programs, with respect to which we prove the monad
laws and defining equations of while. Most definitions in this article make
essential use of the expressive strength of dependent typing.

Keywords. Functional programming, reactive programming, interac-
tion, dependent types, monadic I/O, repetition constructs, refinement.

1 I/O Concepts in Type Theory

Programming languages based on dependent types. Some 20 years ago, Martin-
Löf [6] suggested that his type theory, originally a framework for constructive
mathematics, could be considered as a programming language, and his suggestion
has been taken up and explored in a number of ways (see for example [9]). A
question which seems to have received little attention is the form of the input-
output interface of such programs. Indeed it is only in the last 10 years that this
question has been satisfactory answered in the context of conventional functional
programming, through the efforts of Moggi [8], Wadler [13], and others.

Dependent types give us the ability to express with full precision any exten-
sional property of a program, which can be defined mathematically. For example,
we can express the requirement for a function which maps lists to sorted lists

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 317–331, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

318 P. Hancock and A. Setzer

using a dependent type [9]. Remarkably, with certain provisos of largely aca-
demic interest, we can still check the type of a program mechanically, and type-
correctness carries full assurance that it satisfies its specification. In the past few
years, implementations of dependent type systems for functional programming
have begun to appear [1]. So far however the implications of dependent types
for specification of interfaces and programs have not been examined.

Conventions, and plan of paper. In the following, we will work in a standard
dependent type theory (for example [9]) with the usual introduction and elim-
ination rules, including intensional equality, extended by some other rules. We
will refer to it simply as ‘type theory’. The notation we use, which is for the
most part standard, is summarised in the appendix of the paper. Note that we
sometimes omit indices and superscripts.

The plan of the paper is as follows. In the remainder of this section, we explain
why one needs a model of interaction in type theory, and recall the approach
taken in the functional programming language Haskell, using a monadic type
form whose values are I/O-programs. In the next section, we present our exten-
sion of this notion, making use of type dependency. The third section introduces
two repetition constructs (while and repeat), and a refinement or redirection
construction. In the fourth, we point out that the repetition constructs can de-
stroy normalisation, and develop an alternative formulation, which preserves it.
Finally there is a concluding section, followed by a summary of our notation.

The need for interactive programs in type theory. Traditional ‘batch’ pro-
grams may be written in type theory as functions from input values (given in
advance) to output values. The output from such a program is the result of ap-
plying the function to its input. This batch model is adequate for a large class of
programs, typically numerical search or optimisation programs. It is not however
adequate for a program which runs, say, in the guidance system of an airplane.

The programs one is ordinarily confronted with interact with their environ-
ment while they are running. We give input via devices like keyboard or micro-
phone and get output via devices like monitor or loudspeaker, and this input-
output cycle is repeated again and again. Programs may also interact with the
file system, the network or via physical sensors and actuators of some kind. So
if we want to use type theory as a practical functional programming language,
we have to consider how to use it to write interactive (or reactive) programs.

Some approaches to interactive programs in type theory. In conventional func-
tional programming, several approaches to interaction have been pursued. A
good survey of some of these approaches is made in [10]: dialogues (or lazy
streams), continuations, and monadic I/O. Mention should also be made of the
‘uniqueness types’ of the language Concurrent Clean1. In this paper we follow
the monadic approach, introduced by E. Moggi [8], upon which the input/output
(I/O-) system of the language Haskell2 has been erected. A monad (the concept
comes from category theory) is a triple (M, ∗, η), whose components, written in

1 http://www.cs.kun.nl/˜clean
2 http://haskell.org

Interactive Programs in Dependent Type Theory 319

dependent type theory, have types

M : Set→ Set ,
∗ : (A,B : Set, p : MA, q : A→ MB)→ MB ,
η : (A : Set, a : A)→ MA ,

such that the following laws hold with respect to a given equivalence relation =.
(Instead of η Aa we will write ηAa).

ηAa ∗A,B q = q a ,

p ∗A,B λx.ηAx = p ,

(p ∗A,B q) ∗B,C r = p ∗A,B (λx.q x ∗B,C r) .
A special case of a monad is the I/O-monad. When referring to the I/O-monad,
we write (IOA) instead of (MA). The interpretation of IO is as follows.

(a) For a given set A, (IOA) is the set of interactive programs that may or may
not terminate, but terminate only with a result a of type A.

(b) The program p ∗ q first executes p. If p terminates with result a, then the
program continues with (q a). The result of the whole program is the result
of (q a).

(c) The program ηa simply terminates with result a, without any interaction.

Additionally, one adds functions for specific interactions. For example, we can
deal with programs that communicate by writing and reading strings (such as
text lines): write : String → IO1, read : IOString. Here (write s) is the program
that outputs s on some device and returns •, and read : IOString is the program
that reads a string and returns it.

For the reader unfamiliar with type checking programs written using an I/O-
monad, it is worth stressing that type checking interactive programs does not
require itself any interaction, since we type check the programtext.

For the I/O-monad, one sees that the laws mentioned above should hold with
respect to an equality that identifies behaviourally equivalent programs.

Interactive programs are written in Haskell by using a form of the I/O-monad
that gives access to the usual facilities of an operating system, including files,
graphics, and time, as well as control features like exception handling or multi-
threading.

The I/O-monad seems to be the most promising approach for the represen-
tation of interactive programs within dependent type theory. To add it as a new
concept would however involve adding besides new typing judgements also new
judgement level equations for the monad laws. This is more than the relativisa-
tion of type theory to a context of typed variables. The implications of this for
the metamathematical properties of type theory are unclear to the authors.

Since we have access to powerful data type constructions in type theory, an
easier approach is to define the I/O-monad and derive the monad laws directly
in type theory. We still need something beyond mere evaluation of expressions,
namely the ability to actually run an I/O-program. However we can use elimi-
nation rules for modifying I/O-programs and we shall make substantial use of

320 P. Hancock and A. Setzer

it in the following. Note that for efficiency reasons one might implement the
execution of I/O programs in a different way, using for example a continuation
monad with an ‘answer’ type of I/O programs. The paper [4] describes some of
the options one has for implementing datatypes such as monads.

2 I/O-Trees

Worlds. Interactive programs are built from interactive commands. In dependent
type theory we can define such sets of interactive commands in a very general
way, parameterise over them and switch between command sets.

Let C be a set of instructions or commands. These include commands to
obtain input, commands to produce output, and commands with a mixed effect.
For commands c : C let (Rc) be a type of responses produced when command c
has been performed. 〈C,R〉 will be called a world:

General assumption and definition 2.1. A world w is a pair 〈C,R〉 such
that C : Set and R : C → Set. In the following w is always a world 〈C,R〉. We
will in most cases omit the parameter w.

Examples for constructors of C might be

(a) write : String→ C with R(write s) = 1: write s is the command for writing s
and returning • : 1 for success.

(b) read : C, with (R read = String): read a string and return it.

Of course in practice the commands would be more complex. For example, there
might be an embellishment of write whereR(write s) = {success, fail} and (write r)
returns the information whether the output was performed successfully or not.
We might as well have commands for interaction with file systems, network etc.

I/O-trees. We want to define the I/O-monad as a data type constructed in
type theory. It seems particularly suitable to define it as an inductive data type,
because we can then carry out program transformations using the elimination
rule associated with such types. A näıve idea would be to take ∗, η and the
additional primitive instructions such as read and (write a) as constructors for
this type. However we need to verify the monad laws, and it turns out that the
näıve approach would require us to define a rather complicated equality relation.
The situation is analogous to the definition of the set of natural numbers. We
could define it from 0, 1 and +, which correspond in the I/O-monad to η, the
primitive instructions and ∗. It is however much better to take 0 and successor
S as constructors, and to define 1 and addition. What corresponds now to S in
the IO-monad? This should be the operation which takes an instruction and a
family or ‘jump table’ of programs depending on the result of performing that
instruction, and creates a new program that begins by issuing this instruction
and then, when the instruction has been performed, continues with the program
determined by its result. Instructions are given by C, where w = 〈C,R〉 is a

Interactive Programs in Dependent Type Theory 321

world, and R provides the result type. So we have the following rules for IOw A:

IOw : Set→ Set, where IOw A has constructors

leaf : A→ IOw A ,

do : (c : C, p : Rc→ IOA)→ IOA .

The constructor (leaf a) is what was written ηAa before, and (do c p) denotes the
program that first issues the command c, and depending on the result r : Rc
returned by the environment continues with (p r). Note that (IOw A) is now
parameterised with respect to w, a feature expressible only with dependent types.

(IOw A) is the set of well-founded I/O-trees with leaves in A and inner nodes
labelled by some c : C and with branching degree (Rc) (ie. the subtrees of
that node are indexed over (Rc)). (IOw A) is a near variant of the “W-type” in
standard type theory: The type expression Wx : A.B denotes the type of well-
founded trees with nodes labelled by elements a : A and having then branching
degree B[x := a], see [9, pages 109–114]and [7, pages 79–86] for details. In proof
theory, the W-type turns out to be a very powerful construction: see [11]

Execution of I/O-programs. Up to now we have defined an inductive data
type of I/O-programs within constructive type theory, but there is still no way
to actually run such a program. Execution is an external operation rather than
a constant within type theory. Just as an implementation of type theory will
provide an external operation or facility to compute (and display) the (head-)
normal form of a term, so we propose to provide a second operation that executes
a term denoting an I/O-program.

More precisely, this works as follows. Let w0 = 〈C0, R0〉 be a world corre-
sponding to the real commands, so that to every c : C0 there corresponds a real
I/O-command having some value r : R0 c as result. If we have derived p : IOw0 A
then the external operation execute can be performed upon p. The operation
execute does the following. It reduces p to canonical form, i.e. to a term of con-
structor form. This form must be either (leaf a) or (do c q). If it is (leaf a), then
a : A and execution terminates, yielding as result a (which, when running the
program from a command line will be displayed in a similar way as the result
of the evaluation of an expression). If it is (do c q), then first the interactive
command corresponding to c is performed obtaining a result r : Rc, after which
execution continues with (q r).

Roughly speaking a program p is evaluated to normal form, as it were ‘fetch-
ing’ the next instruction. The instruction is ‘executed’, and the result used to
select the next program to be evaluated. So through successive interactions we
trace out a descending chain through the tree p.

A first example. In the following example we assume commands readstr and
(writestr s) for reading and writing strings and a Boolean valued equality =String

on strings. The following program prompts for the root-password. If the user
types in the right one (“Wurzel”3) the program terminates successfully, otherwise

3 This really happened.

322 P. Hancock and A. Setzer

it responds with “Login incorrect” and fails. We use some syntactic sugar.

C = { readstr } ∪ {writestr s | s : String } : Set ,
R : C → Set ,

R readstr = String ,

R (writestr s) = 1 ,

Wurzel = do writestr “Password (root):”
λa. do readstr

λs. if s =String “Wurzel”
then leaf success
else do (writestr “Login incorrect”)

λa. leaf fail
: IO { success, fail } .

η, ∗. It is now easy to define η and ∗ and verify the monad laws for well-founded
trees with extensional equality (by [4] this is not the most efficient solution):

ηAa = leaf a ,

leaf a ∗A,B q = q a ,

do c p ∗A,B q = do c (λx.p x ∗A,B q) .

3 Constructions for Defining I/O-Trees

It should be possible to define interactive programs with infinitely many inter-
actions. For instance, if we execute an editor and never terminate the program,
the execution should go on forever. So we need constructions for defining such
programs. This will however destroy normalisation. We will see in Sect. 4 how to
modify the concept in order to obtain a normalising type theory. The definitions
of all constructions in this section are possible only in the presence of dependent
types, which demonstrate their expressive power.

repeat. Assume A,B : Set, b : B, p : B → IOw (B + A). We want to define a
program repeatAB b p : IOw A, which, when executed, operates as follows. First,
program (p b) is executed. If it has result (inl b′), then the program continues
with (repeatAB b

′ p). If it has result (inr a), the program terminates and returns
a.

However, if p b = leaf a for some b : B, we might get an expression that does
not evaluate to constructor form, e.g. (repeatB b λx.leaf (inl b)). So we have to
restrict p, and the easiest way is to replace (IOw (B + A)) by (IO+

w (B + A)).
Here for D : Set let IO+

w D = Σc : C.R c → IOwD be the set of I/O-programs
with results in D, with at least one interaction (command c). Let do+ c p =
〈c, p〉 : IO+

w D and, if p : IO+
w D, let p

− : IOwD be defined by (do+ c p)− = do c p.
The definition (which uses general recursion and so allows us to define non-

well-founded trees and form non-normalising terms) of repeat is as follows:

repeatw : (A,B : Set, b : B, p : B → IO+
w (B +A))→ IOw B ,

Interactive Programs in Dependent Type Theory 323

repeatw,AB b p = (p b)− ∗w,B+A,A q ,

where q (inl b′) = repeatw,AB b
′ p ,

q (inr a) = leaf a .

Example. As an example we define a rudimentary editor. The only command
is readChar, which has as result either a character c typed in, cursorLeft for the
cursor-left-button or done for some key associated with termination. The pro-
gram reads the text created using these keys and returns the result. ((truncate s)
will be the result of deleting the last character from string s, (append s c) an
operation which appends character c to the end of string s, and “ ” the empty
string.)

C = {readChar} : Set ,
R : C → Set ,
R c = {ch c | c : Char} ∪ {cursorLeft, done} .

editor = repeat〈C,R〉,String String “ ”λs.do+ readChar q ,

where q (ch c) = leaf (inl (append s c)) ,
q cursorLeft = leaf (inl (truncate s)) ,

q done = leaf (inr s) .

While loop. While loops are defined similarly to repeat loops.

whilew : (A,B : Set, b : B, p : B → (IO+
w B + IOw A))→ IOw A .

The definition proceeds by cases on the value of (p b). If it is of the form (inl q),
then q is executed, and, once it terminates with result b′, the program continues
with (whilew,AB b′ p). If it is (inr q), q is executed and its result returned as final
result. The definition, which uses again general recursion, is

whilew,AB b p = f (p b) ,
where f (inl q) = q− ∗w,B,A λb′.whilew,AB b′ p ,

f (inr q) = q .

It is now an easy exercise to express while by repeat and vice versa.
Redirect. ∗ can be regarded as “horizontal composition” of programs. There

is also a “vertical composition”: Assume worlds w = 〈C,R〉 and w′ = 〈C ′, R′〉,
A : Set and p : IOw A. We want to refine p to a program in world w′, by replacing
every command c : C by a program (q c) in world w′ with a result r : Rc. So
q has type (c : C) → IOw′(Rc). However, if we allow (q c) to be a leaf and p
has infinitely many commands, this will allow us to construct an expression that
cannot be evaluated to constructor form. To avoid this, we replace the type of q
by (c : C)→ IO+

w′(Rc). The construction that results is

redirectw,w′ : (A : Set, p : IOw A, q : (c : C)→ IO+
w′(Rc))→ IOw′ A ,

where redirectw,w′,A (leaf a) q = leaf a ,

324 P. Hancock and A. Setzer

redirectw,w′,A (do c p) q = (q c)− ∗w′,R c,A λr.redirectw,w′,A (p r) q .

Using redirect for building libraries. We can now define a world in which high
level I/O-commands are first class objects – they do not evaluate directly into
low level commands – together with an interpretation of each command as a
program in the basic language used by execute, and so construct libraries. To
implement execute one can therefore restrict oneself to a basic world with simple
commands.

Example. Let the high level world be w0 = 〈C0, R0〉, with C0 = {read} ∪
{write s | s : String}. Here read is a command for reading a string, R0 read =
String, and (write s) an instruction for writing a string, R0 (write s) = 1. Let
the low level world w1 have commands for reading a key, writing a symbol, and
movements of the cursor left and right. Let q : (c : C0) → IOw1 (R0 c), where
(q read) is an editor that uses the keys to manipulate a string and has as result
that string, and (q (write s)) is an output routine for strings. Then (redirect p q)
translates a program using high level commands into one that uses the basic
ones.

Equality. With while− and repeat−loops we introduce non-well-founded I/O-
trees. Even with extensional equality it seems that it is no longer possible to prove
the monad laws. (We do not yet have a proof of this.) So extensional equality
seems to be too weak for dealing with non-well-founded programs. Instead we use
bisimulation as equality. In [5] I. Lindström has given a very elegant definition
of such an equality. The definition is based on an idea that occurs in work on
non-wellfounded sets by Lars Hallnäs [2]. Transferred to our setting, the equality
is defined as ∀n.p �′w,A,n q, where p �′w,A,n q expresses that p and q coincide up
to height n. In the following the world w will be a parameter in all definitions,
and will be omitted for clarity. We will use equality-types =C and =A on C and
A. (We will in a follow-up to this article consider a generalisation where instead
of assuming =C we establish C with a setoid structure; in this case we need a
reindexing map, which replaces JCR below. Additional reindexing maps will be
needed to establish the properties of the equality which we define.)

� : (A : Set, p, q : IOA)→ Set ,
�′ : (A : Set, n : N, p, q : IOA)→ Set ,

(p �A q) = ∀n : N.p �′A,n q,
(p �′A,0 q) = ,

(leafa �′A,n+1 do c p) = (do c p �′A,n+1 leaf a) =⊥ ,
(leaf a �′A,n+1 leaf a′) = (a =A a′) ,
(do c p �′A,n+1 do c′ p′) = ∃x : (c =C c′).∀r : Rc.p r �′A,n p′ (JC Rc c′ x r) .

Definition 3.1. (a) Let case-distinction for IO be the rule (under the assump-
tions that A : Set, B : (p : IOA)→ Set):

CIO
A,B : ((a : A)→ B (leaf a), (c : C, q : Rc→ IOA)→ B (do c q),

p : IOA)→ B p .

Interactive Programs in Dependent Type Theory 325

(b) Let TT(IO) be (intensional) Martin-Löf type theory extended by the defining
rules for IO and case-distinction for IO.

Lemma 3.2. TT(IO) proves the following (under the assumptions that A,B :
Set and all other variables are of appropriate type)

(a) �A is reflexive, symmetric and transitive.
(b) p �A p′ → (∀a : A.q a �B q′ a)→ p ∗A,B q �A p′ ∗A,B q′.
Proof. (a): First we prove the lemma with �A replaced by �′A,n by induction
on n : N, using the elimination rules for equality. Then the assertion follows by
the definition of �. (b) Show that p �′A,n p′ and ∀a : A.q a �′B,m q′ a imply
do p q �′B,min{n,m} do p′ q′ by induction on n. ��

Theorem 3.3. TT(IO) proves the monad laws with respect to �A.
Proof. The first law holds definitionally and by reflexivity therefore with respect
to �A. The second and third laws are proved first with �A replaced by �′A,n by
induction on n. Then the assertion follows from the definition of �A. ��

I/O-trees as a general concept for command/response-interaction. It seems
that the applications of I/O-trees, which are in general non-well-founded trees,
are not limited only to functional programming languages. I/O-trees cover in a
general way command/response-interaction with one agent (a program) having
control over the commands. Every I/O-behaviour corresponds, up to the equal-
ity we have introduced above, to exactly one I/O-tree. Therefore I/O-trees are
suitable models for this kind of interaction.

4 Normalising Version

Counterexample to normalisation. If we take standard reduction rules corre-
sponding to the equalities given above (by directing the equations in an obvi-
ous way), the above definitions give non-normalising programs. Let for instance
A = B = C = N, (Rc) be arbitrary, w = 〈C,R〉, f : N → N. We omit the
parameter w.

p := λn.do+ (f n)λx.leaf (inl (n+ 1)) : N→ IO+ (A+B) ,
repeat 0 p −→ do (f 0)λx.repeat (S 0) p

−→ do (f 0)λx.do (f (S 0))λy.repeat (S (S 0)) p
−→ do (f 0)λx.do (f (S 0))λy.do (f (S (S 0)))λz.repeat (S (S (S 0))) p
−→ · · · .

We see that definitional equality is now undecidable, since we cannot decide
whether two functions N → N are extensionally equal. This implies the un-
decidability of type checking, since with an type checking algorithm we can

326 P. Hancock and A. Setzer

decide definitional equality (for a, b : A, the term λB, f.f a is of type (B :
(x : A)→ Set, f : (x : A)→ B x)→ B b if and only if a = b : A).

One solution would be to extend dependent type theory by coinductive types
with rules chosen such that normalisation is preserved. This requires extensive
meta-theoretical investigations that have not yet been completely carried out.
Instead we represent non-well-founded trees in normalising standard type theory.

How to regain normalisation. In type theory with inductive types and stan-
dard elimination rules for them, while and repeat cannot be defined. We can
however add one of them as a constructor to (IOw A). We choose while, for
which the definition of ∗ and the proofs of equalities turn out to be easier. We
can then define repeat by using while. We modify execute, so that it operates on
(whileu a p) in the same way as it operated on the non-well-founded trees de-
fined using the function while in the previous version. One problem is however
that while (the same is the case with repeat) defines an element of (IOw A) by
referring to (IOw B) for an arbitrary set B. To demand that (IOw A) is a set
means to define a set by referring negatively to all sets, which is problematic.
(The typing rules require that if A is a set, (IOw A) is a type).

To fix this, we will restrict the sets referred to in while to elements of a
universe. A universe is a set-indexed collection of sets, ie. a pair 〈U, T 〉 s.t.
U : Set and T : U → Set. The elements of U represent “small sets”. With such
a restriction (IOw A) no longer refers to the collection of all sets, and can now
be typed as a set. We will however extend U to a slightly bigger universe with
representatives for 1+Rc, and this extension will be called set, since it is in the
definition of (IOw A) the “collection of small sets”.

General assumption and definition 4.1. (a) Let w = 〈C,R〉 be a world.
(b) Let U : Set, T : U→ Set be some fixed collection of sets (i.e. a universe).
(c) Let set := U + C, el : set → Set, el (inlu) = Tu, el (inr c) = 1 + Rc, R

according to the world w. We write ̂(1+R c) for (inr c).

For simplicity, in the following we will omit the parameters w, U, and T.
We can now omit the constructor do (which can be simulated by while) and

obtain the following definition of IOA:

IO : Set→ Set , where (IOA) has constructors

leaf : A→ IOA ,

while : (u : set, a : elu, n : elu→ (IO+ (elu) + IOA))→ IOA ,

and IO+ : Set→ Set ,
IO+A = Σc : C.R c→ IOA .

Monad operations. In the monad operations sets have to be replaced by
elements of the universe:

ηAa := leaf a ,

leaf a ∗A,B q = q a ,

Interactive Programs in Dependent Type Theory 327

whileu a p ∗A,B q = whileu a (p©∗ A,B,uq) ,
where ©∗ : (A,B : Set, u : set, p : elu→ (IO+ (elu) + IOA),

q : A→ IOB)→ elu→ (IO+(elu) + IOB) ,
if p b = inl p′, then (p©∗ A,B,uq) b = inl p′ ,
if p b = inr p′, then (p©∗ A,B,uq) b = inr (p′ ∗A,B q) .

Do.Now we define the operation (doA c p). (Note that do is not a constructor):

doA c p = while ̂(1+R c) (inl •) q ,

where q (inl •) = inl 〈c, λr.leaf (inr r)〉 ,
q (inr r) = inr (p r) .

Split. In the non-normalising theory, each element of (IOA) according to
the new definition can be interpreted as a non-well-founded tree; we replace all
occurrences of the constructor while with the function while defined before. In
normalising type theory this is not possible. Instead we can obtain the structure
of the represented non-well-founded trees by defining a function splitA, which
determines for every p : IOA whether its interpretation as a non-well-founded
tree is that of a leaf labelled by a : A (splitA p = inr a) or whether it is an inner
node labelled by c : C, which has for r : Rc subtree q r (splitA p = inl 〈c, q〉):

split : (A : Set, p : IOA)→ (IO+A+A) ,
splitA (leaf a) = inr a ,
If p a = inr q, then splitA (whileu a p) = splitA q ,
If p a = inl 〈c, q〉, then
splitA (whileu a p) = inl 〈c, λr.q r ∗el(u),A λx.whileux p〉 .

Execution of I/O-programs. Assume a fixed world w0 = 〈C0, R0〉 correspond-
ing to real commands, as before. execute, adapted to the new setting, operates as
follows: Applied to a program p : IOC0,R0 A it evaluates splitA p. If the result is
(inr a), then execute stops with result a. If splitA p = inl 〈c, q〉, then c is executed,
and depending on the result r, execute continues with (q r).

Normalising I/O-programs. With only inductive data types with their elimi-
nation rules, type theory is normalising. Therefore splitA q reduces to a value of
the form (inr a) or (inl 〈c, q〉). So when a program is executed, and it is its ‘turn
to go’ (ie. at the beginning and after obtaining a response to a command), after
a finite time, either it terminates, or it issues another command. (Whether a re-
sponse to a command c is obtained after a finite time depends firstly on whether
a response is even possible – the response set Rc may be empty – and secondly
on what happens in the real world – the user may walk away from the keyboard
and never return.) However, it may still be that infinitely many commands are
executed. As trees, I/O-programs are not necessarily well-founded. We call an
I/O-program normalising if both initially and after the result of a command is
obtained, it either terminates, or issues the next command after a finite amount

328 P. Hancock and A. Setzer

of time. The set (IOA) (together with execute) represents a class of normalising
I/O-programs.

Equality. Under the same assumptions as in Sect. 3 we can define now an
equality on elements of IOA. However, we use split in order to get access to the
corresponding tree-structure:

� : (A : Set, p, q : IOA)→ Set ,
�′ : (A : Set, n : N, p, q : IOA)→ Set ,

(p �A q) = ∀n : N.p �′A,n q ,
p �′A,0 q = ,

p �′A,n+1 q = (splitA p �′′A,n splitA q) , where

�′′ : (A : Set, n : N, p, q : IO+A+A)→ Set ,
(inr a �′′A,n inl 〈c, p〉) = (inl 〈c, p〉 �′′A,n inr a) =⊥ ,

(inr a �′′A,n inr a′) = (a =A a′) ,
(inl 〈c, q〉 �′′A,n inl 〈c′, q′〉) = ∃p : (c =C c′).∀r : Rc.q r �′A,n q′ (JC Rc c′ p r) .

Note that �′A,n identifies programs which behave identically in the first n steps,
and therefore �A identifies exactly behaviourally equal programs. Note however
that we identify only those commands c : C which are equal with respect to =C .

Proof of the monad laws, defining equalities for while and other standard
properties with respect to bisimulation. The following can be proved inside type
theory. (Some indices or superscripts have been left implicit).

Lemma 4.2. (a) ηa ∗ p �A p a.
(b) �A and �′A,n are reflexive, symmetric and transitive.
(c) If p a =IO (elu)+IOA inr q, then whileu a p �A q.
Proof. (a) is trivial. (b) follows with �A replaced by �′A,n by induction on n – in
case of symmetry and transitivity one uses additionally the elimination rules for
=C . From this the assertion follows. (c) split (whileu a p) =IO+ A+A split q. ��
For stating and proving the next lemmata we introduce an equality on the type
of p in (whileu a p), i.e. (elu)→ (IO+ (elu) +A):

Definition 4.3.

�w : (A : Set, u : set,
p, q : (elu)→ (IO+ (elu) + IOA))→ Set ,

p �w
A,u q = ∀x : elu.p x �w,aux

A,u q x , where

�w,aux : (A : Set, u : set, p, q : IO+ (elu) + IOA)
→ Set ,

(inl q �w,aux
A,u inr q) = (inr q �w,aux

A,u inl q) = ⊥ ,

(inr q �w,aux
A,u inr q) = (q �A q′) ,

(inl 〈c, q〉 �w,aux
A,u inl 〈c′, q′〉) = ∃p : (c =C c′).∀r : Rc.

q r �elu q
′ (JC Rc c′ p r) .

Interactive Programs in Dependent Type Theory 329

Similarly we define �w′, �w,aux′ with an additional argument n : N and refer to
�′A,n, �′elu,n instead of �A, �elu.

Lemma 4.4. (a) (p0 �A p1 ∧ ∀a : A.q0 a �B q1 a)→ (p0 ∗ q0 �B p1 ∗ q1).
(b) p0 �w

A,u p1 → whileu a p0 �A whileu a p1.
(c) For p : IOA, q : A→ IOB, r : B → IOD it follows

(p ∗ q) ∗ r �D p ∗ λx.((q x) ∗ r).
Proof. We prove (a) – (c), with λx. �x, λx. �w

x,u replaced by λx. �′x,n,
λx. �′wx,u,n, simultaneously by induction on n. The case n = 0 is trivial, so we
assume the assertion has been proved for n and prove it for n+ 1:
(a) Side-induction on p0, side-side-induction on p1:
If p0 = leaf a0 and p1 = leaf a1, then a0 =A a1 and q0 a0 �′B,n+1 q1 a1.
If p0 = whileu a p̃0 with p̃0 a = inr p̂0, then p0 �A p̂0, and by
p0 ∗ q0 = whileu a (p̃0©∗ q0), (p̃0©∗ q0) a = inr (p̂0 ∗ q0) it follows
p0 ∗ q0 �B p̂0 ∗ q0, and the assertion follows by side-IH for p̂0 instead of p0.
Similarly the assertion follows if p1 is of a similar form.
Otherwise pi = whileui ai p̃i, with p̃i ai = inl 〈ci, p̂i〉,

split pi = inl 〈ci, λr.p̂i r ∗ λx.whileui x p̃i〉.
By pi �A,n+1 p

′
i there exists pc0c1 : (c0 =C c1), and for

r0 : Rc0, r1 := JC Rc0 c1 pc0c1 r0 there exist proofs of
p̂0 r0 ∗ λx.whileu0 x p̃0 �′A,n p̂1 r1 ∗ λx.whileu1 x p̃1.

split (pi ∗ qi) = inl 〈ci, λr.p̂i r ∗ λx.whileui x (p̃i©∗ qi)〉
= inl 〈ci, λr.p̂i r ∗ λx.whileui x p̃i ∗ qi〉.

We have to show that for r0, r1 as above
p̂0 r0 ∗ λx.whileu0 x p̃0 ∗ q0 �′n p̂1 r1 ∗ λx.whileu1 x p̃1 ∗ q1.
By IH (c) and symmetry p̂i ri∗λx.whileui x p̃i∗qi �′B,n (p̂i ri∗λx.whileui x p̃i)∗qi,
and by IH (a) (p̂0 r0 ∗ λx.whileu0 x p̃0) ∗ q0 �′B,n (p̂1 r1 ∗ λx.whileu1 x p̃1) ∗ q1.
The assertion follows now by transitivity and symmetry.

(b) If pi ai = inr qi, then whileu ai pi = qi, q0 �′A,n+1 q1.
Otherwise pi ai = inl 〈ci, qi〉, split (whileu ai pi) = inl 〈ci, λr.qi r ∗λx.whileux pi〉.
By assumption there exists pc0,c1 as in (a) and for r0 and r1 as in (a) proofs of
q0 r0 �′elu q1 r1, and furthermore by IH (b) proofs of whileux p0 �′A,n
whileux p1 for x : el(u). The assertion follows by IH (a).

(c) is proved by side-induction on p. If p = leaf a this follows by reflexivity.
Otherwise p = whileu a p̃, (p ∗ q) ∗ r = whileu a ((p̃©∗ q)©∗ r), p ∗ λx.q x ∗ r =
whileu a (p̃©∗ λx.q x©∗ r), by side-IH (p̃©∗ q)©∗ r�w′

D,u,n+1p̃©∗ λx.q x©∗ r,
and by (b) for n+ 1, as just proved, the assertion follows. ��

Lemma 4.5. (a) p ∗ λx.ηx �A p.
(b) split (do c p) =IO+ A+A inl 〈c, p′〉 for some p′ s.t. ∀r : Rc.p r �A p′ r.
(c) If p a =IO+ (elu)+IOA inl 〈c, q〉 then

whileu a p �A do c λr.q r ∗ λx.whileux p.

Proof. (a) follows by straightforward induction on p and Lemma 4.4 (b).
(b) split (do c p) = 〈c, λr.(leaf (inr r)) ∗ λx.while ̂(1+R c)x q〉

330 P. Hancock and A. Setzer

= 〈c, λr.while ̂(1+R c) (inr r) q〉,
where q is as in the definition of (do c p). For r : Rc we have by Lemma 4.2 (c)
while ̂(1+R c) (inr r) q �A p r.
(c) follows by (b) and split (whileu a p) = inl 〈c, λr.q(r) ∗ λx.whileux p〉.

��

5 Conclusion

We have identified a need for a general and workable way of representing and
reasoning about interactive programs in dependent type theory. We introduced
in dependent type theory the notion of an I/O-tree, parameterised over a world,
making essential use of type dependency. We gave it in two forms. The first
breaks normalisation, but is conceptually simpler and suitable if one is tol-
erant of a programming language with ‘bottom’, or divergent programs. The
second preserves normalisation. We called programs of this kind “normalising
I/O-programs”. We introduced an equality relation identifying behaviourally in-
distinguishable programs and showed that the monad laws hold, modulo this
equality. (For the normalising version these are Lemma 4.2 (a), 4.5 (a) and 4.4
(c)). We introduced while-loops in both versions and repeat-loops and redirect
in the first version (and leave it as an interesting exercise to extend the last two
constructions to the normalising version). In the non-normalising version the
characteristic equations for while and repeat are fulfilled by definition, whereas
in the normalising version we have shown them for while (Lemma 4.2 (c) and 4.5
(c)). We have characterised do as well in the latter version (Lemma 4.5 (b)).

In a future paper we will show how to move from one universe to another
in the normalising version and explore what happens if C is a setoid with a
specific equivalence relation. In addition we will introduce state-dependent I/O-
programs, in which the set of commands available depends on the current state
of knowledge about the world.

Appendix: Notations

In the paper we do not distinguish between Σ and Π-type on the logical frame-
work level and as set-constructions. The empty set is denoted by 0, the set
containing one element by 1 (with element •). The set of natural numbers is
denoted by N. The injections for the disjoint union A + B of sets A and B are
written inl : A→ (A+B), inr : B → (A+B). The elements of Σx : A.B are de-
noted by 〈a, b〉. The dependent function type (sometimes written as Πx : A.B)
is denoted by (x : A) → B, with abbreviations like (x : A, y : B) → C for
(x : A) → (y : B) → C, (x : A,B) → C for (x : A, y : B) → C with y new, and
(x, y : A) → B for (x : A, y : A) → B. We use juxtaposition (f a) for applica-
tion, having a higher precedence than all other operators do, so that for example
f a = g b means (f a) = (g b). The scope of variable-binding operators λx., ∀x.,
∃x., Σx. is maximal (so λx.f a =A b stands for λx.((f a) =A b)). Some functions

Interactive Programs in Dependent Type Theory 331

are represented as infix operators, writing some of the first few arguments as
indices. (For instance we write p∗A,B q for (∗AB p q).) Arguments that are writ-
ten as indices are often omitted. We will omit the type in equality judgements,
writing r = s instead of r = s : A. An equation sign = without indices denotes
definitional equality, whereas we write r =A s (never omitting the A) for equal-
ity types (which are actually sets). The intensional equality has introduction
rule ref : (A : Set, a : A) → a =A a expressing reflexivity, and elimination rule
J : (A : Set, B : A→ Set, a, a′ : A, p : (a =A a′), B a)→ B a′, which corresponds
to the second equality axiom: from a =A a′ and B a we can conclude B a′. The
equality rule is JAB aa refAa b = b. Note that with extensional equality J could
be defined trivially as λA,B, a, a′, p, b. b.

References

1. L. Augustsson. Cayenne — a language with dependent types. In Proc. of the Inter-
national Conference on Functional Programming (ICFP’98). ACM Press, Septem-
ber 1998.

2. L. Hallnäs. An intensional characterization of the largest bisimulation. Theoretical
Computer Science, 53:335–343, 1987.

3. P. Hancock and A. Setzer. The IO monad in dependent type theory. DTP’99,
http://www.md.chalmers.se/Cs/Research/Semantics/APPSEM/dtp99/proceedings.html, 1999.

4. J. Hughes. The design of a pretty-printing library. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, volume 925 of LNCS, pages 53–93.
Springer, 1995.

5. I. Lindström. A construction of non-well-founded sets within Martin-Löf’s type
theory. Journal of Symbolic Logic, 54(1):57–64, 1989.

6. P. Martin-Löf. Constructive mathematics and computer programming. In J. L. Co-
hen, J. HLos̀, H. Pfeiffer, and K.-D. Podewski, editors, Proceedings 6th Intl. Congress
on Logic, Methodology and Philosophy of Science, Hannover, FRG, 22–29 Aug
1979, pages 153–175. North Holland, Amsterdam, 1982.

7. P. Martin-Löf. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory:
Lecture Notes. Bibliopolis, Napoli, 1984.

8. E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

9. B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf ’s Type
Theory: An Introduction. Clarendon Press, Oxford, 1990.

10. S. L. Peyton Jones and P. Wadler. Imperative functional programming. In 20’th
ACM Symposium on Principles of Programming Languages, Charlotte, North Car-
olina, January 1993.

11. A. Setzer. Well-ordering proofs for Martin-Löf type theory. Annals of Pure and
Applied Logic, 92:113 – 159, 1998.

12. P. Wadler. The essence of functional programming. In 19’th Symposium on Prin-
ciples of Programming Languages, Albuquerque, volume 19. ACM Press, January
1992.

13. P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, volume 925 of LNCS. Springer Verlag,
1995.

Modal Satisfiability
Is in Deterministic Linear Space

Edith Hemaspaandra�

Department of Computer Science,
Rochester Institute of Technology, Rochester, NY 14623, USA.

eh@cs.rit.edu

Abstract. In recent years, there has been a lot of interest in analyzing
the space requirements for modal logics. In this paper, we prove that
modal satisfiability is in deterministic linear space. This improves the
best previously-known O(n logn) bound and it is the first linear space
result in this area.

1 Introduction

In 1977, Ladner [5] showed that the modal satisfiability problems for K, T,
and S4 are PSPACE-complete. His decision procedures for K, T, and S4 use
deterministic space O(n2), O(n3), and O(n4) respectively. Since the goal of his
paper was to prove PSPACE-completeness, it is not surprising that these upper
bounds are not optimal.

Hudelmaier [6] proved that K and T satisfiability can be decided in determin-
istic space O(n log n) and that S4 satisfiability can be decided in deterministic
space O(n2 log n). A deterministic O(n2 log n) space upper bound for K4 was
proven by Vigano [12]. The O(n2 log n) bounds for K4 and S4 satisfiability were
recently improved to O(n log n) deterministic space upper bounds by Nguyen [7].
See also Basin et al. [1,2] for uniform methods to obtain space upper bounds for
non-classical logics. The first question that this paper addresses is whether these
ubiquitous O(n log n) bounds are optimal.

It is interesting to note that all these papers use proof-theoretic methods
rather than semantic methods. This is unusual, since semantic methods are much
more common in proving complexity results for logics. The second question that
this paper addresses is whether semantic methods are unsuitable for proving
precise space bounds.

In this paper, we provide a negative answer to both these questions. We
will show that modal satisfiability (i.e., K satisfiability) is in deterministic linear
space, using purely semantic arguments.

The paper is organized as follows. In the next section, we give some basic
background and terminology about modal logic and about space complexity. In
Section 3, we give a quadratic space algorithm for modal satisfiability. This algo-
rithm will be the starting point for the non-deterministic linear space algorithm
� Supported in part by grant NSF-INT-9815095/DAAD-315-PPP-gü-ab.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 332–342, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Modal Satisfiability Is in Deterministic Linear Space 333

from Section 4, which in Section 5 will be converted into a deterministic linear
space algorithm.

2 Preliminaries

2.1 Modal Logic

We will briefly review syntax, Kripke semantics, and some basic terminology for
modal logic.

Syntax

The set of (modal) formulas is inductively defined as follows.

– p is a formula for every propositional variable p,
– if φ and ψ are formulas, then so are φ ∧ ψ and ¬φ, and
– if φ is a formula, then ��φ is a formula.

The modal depth of a formula φ (denoted by md(φ)) is the depth of nesting
of the modal operator ��. Formally,
– md(p) = 0 for every propositional variable p
– md(¬φ) = md(φ)
– md(φ ∧ ψ) = max(md(φ),md(ψ))
– md(��φ) = md(φ) + 1

Semantics

A (Kripke) model is of the formM = <W,R, π> such thatW is a non-empty set
of possible worlds, R is a binary relation on W called the accessibility relation,
and π is a valuation, i.e., a function from the set of propositional variables to
Pow(W). π(p) is the set of worlds in which p is true. For a formula φ, we will write
M,w |= φ for φ is true/satisfied at w in M . The truth relation |= is inductively
defined on the structure of φ in the following way.

– M,w |= p iff w ∈ π(p) for p a propositional variable.
– M,w |= ¬φ iff not M,w |= φ.
– M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ.
– M,w |= ��φ iff ∀w′ ∈W [wRw′ ⇒M,w′ |= φ].

A modal formula φ is satisfiable (K satisfiable) if and only if there exists a
model M = <W,R, π> and a world w ∈ W such that M,w |= φ. It is easy to
see that a formula φ is satisfiable if and only if it is satisfiable in the root of a
tree.

Since we want to restrict the amount of space needed, we will, during the
construction of the model, only look at formulas that are relevant in each con-
structed world. Of course, the only formulas that are relevant form a subset of
the set of subformulas of φ, usually denoted by Cl(φ). But we need to be more
precise than that. In order to do so, we introduce the following definition.

334 E. Hemaspaandra

Definition 1. Define Cl(φ, d) where φ is modal formula and depth d ≥ 0 as
follows:

1. φ ∈ Cl(φ, 0)
2. If ¬ψ ∈ Cl(φ, d), then ψ ∈ Cl(φ, d)
3. If ψ ∧ ξ ∈ Cl(φ, d), then ψ ∈ Cl(φ, d) and ξ ∈ Cl(φ, d)
4. If ��ψ ∈ Cl(φ, d), then ψ ∈ Cl(φ, d+ 1)

As mentioned before, φ is satisfiable if and only if φ is satisfiable in the root
of a tree. If a modelM is a tree, and the root of the tree satisfies φ, then for every
world w at depth d, the only formulas that are relevant are those in Cl(φ, d).

2.2 Space Complexity

In this subsection, we review some well-known relationships between time and
space classes.

1. P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME.
The equality PSPACE = NPSPACE follows from Savitch’s theorem [9]. It
is known that P is a strict subset of EXPTIME, but it is not known which
of the inclusions are strict.

2. For linear time/space, the inclusions are as follows:
DTIME (O(n)) � NTIME (O(n)) ⊆ DSPACE(O(n)) ⊆ NSPACE(O(n)) ⊆
DTIME(2O(n)).
DTIME (O(n)) � NTIME (O(n)) is due to Paul, Pippinger, Szemerédy, and
Trotter [8]. The strictness of the other inclusions is unknown. In addition,
Savitch’s theorem gives NSPACE (O(n)) ⊆ DSPACE (O(n2)).

3. Stearns, Hartmanis, and Lewis [10] proved the following hierarchy the-
orem for deterministic space: If S2(n) is a space-constructible function,
S1(n) ≤ S2(n) for all n, and infn→∞

S1(n)
S2(n)

= 0, then DSPACE(S1(n)) �

DSPACE(S2(n)) [10].

PSPACE features prominently in the complexity of modal satisfiability prob-
lems. For example, the satisfiability problems for K, T, K4, and S4 are all
PSPACE-complete [5] and so are their multi-modal analogues and multi-modal
S5 [4].

3 Satisfiability in Quadratic Space

In this section, we will give a quadratic space algorithm for modal satisfiability.
This algorithm forms the basis for the linear space algorithm that will be given in
the next section. In addition, it introduces some notation, tools, and observations
that will be built upon in the next sections.

It is easy to show with induction on depth d, that for all Γ ⊆ Cl(φ, d), Γ is a
maximal satisfiable subset of Cl(φ, d) if and only if MaxSat(Γ, d) is true, where
MaxSat(Γ, d) is recursively defined as follows. MaxSat(Γ, d) is true if and only if

Modal Satisfiability Is in Deterministic Linear Space 335

1. (ψ �∈ Γ iff ¬ψ ∈ Γ) for all ¬ψ in Cl(φ, d),
2. (ψ ∧ ξ ∈ Γ iff ψ ∈ Γ and ξ ∈ Γ) for all ψ ∧ ξ ∈ Cl(φ, d), and
3. for all ��ψ in Cl(φ, d) \ Γ , there exists a set Γ¬ψ ⊆ Cl(φ, d+ 1) such that

(a) ψ �∈ Γ¬ψ,
(b) for all ��ξ ∈ Γ , ξ ∈ Γ¬ψ,
(c) MaxSat(Γ¬ψ, d+ 1).

This definition is the starting point for our space efficient algorithms for
modal satisfiability, since φ is satisfiable if and only if there exists a set of for-
mulas Γ ⊆ Cl(φ, 0) such that φ ∈ Γ and MaxSat(Γ, 0).

This definition is close to Ladner’s tableau construction [5]. The main dif-
ferences are that we have replaced the tableau rules for the propositional part
by one nondeterministic step, and that we are explicit about the set of formulas
relevant at each recursive depth. The definition is even closer to Vardi’s construc-
tion [11]. The main difference is that we are explicit about the set of formulas
relevant at each recursive depth.

Of course, the recursive definition of MaxSat given above is not quite an
algorithm, but that is easy to fix. Here is a nondeterministic algorithmic version
of MaxSat, closely related to Vardi’s alternating polynomial time algorithm [11].
(Alternating polynomial time = PSPACE [3].) The conversion from definition to
algorithm is straightforward, and it will make the transition to the linear space
algorithm easier.

For all Γ ⊆ Cl(φ, d), the algorithm will accept MaxSat(Γ, d) if and only if Γ
is a maximal satisfiable subset of Cl(φ, d).

MaxSat(Γ, d):
For every φ′ ∈ Cl(φ, d),
1. if φ′ = ¬ψ and not [ψ �∈ Γ iff ¬ψ ∈ Γ], then reject
2. if φ′ = ψ ∧ ξ and not [ψ ∧ ξ ∈ Γ iff ψ ∈ Γ and ξ ∈ Γ], then reject
3. if φ′ = ��ψ and φ′ �∈ Γ , then guess a set Γ¬ψ ⊆ Cl(φ, d+ 1) such that

(a) ψ �∈ Γ¬ψ,
(b) for all ��ξ ∈ Γ , ξ ∈ Γ¬ψ, and
(c) MaxSat(Γ¬ψ, d+ 1) accepts.

Accept (that is, if the algorithm got though the loop without rejecting, then
accept).

We will now briefly and informally analyze the space required for this algo-
rithm. A more formal analysis of the linear space algorithms will be given in the
next sections.

To analyze the space required by the algorithm, first note that the maximum
number of nested recursive calls is md(φ) + 1, since Cl(φ,md(φ) + 1) = ∅. The
amount of space required for each call to MaxSat without the recursive calls is
dominated by the space required to store Γ¬ψ. It is well-known that every subset
of subformulas of φ can be represented as a bitstring of length |φ|, since every
position in φ corresponds to at most one subformula of φ, and every subformula

336 E. Hemaspaandra

of φ corresponds to at least one position in φ. (We leave the exact details of the
representation and implementation for the next section.)

These observations lead to a quadratic nondeterministic space upper bound.
In general, this would give a quartic deterministic space upper bound via Sav-
itch’s theorem [9]. However, in this algorithm, the nondeterminism is used in a
rather restricted way. The only nondeterminism in the algorithm is in step 3:
“guess a set Γ¬ψ ⊆ Cl(φ, d+ 1) such that ...”

We can remove this nondeterminism without increase in space in the following
way. Replace step 3 by

3. if φ′ = ��ψ and φ′ �∈ Γ , then cycle through all sets Γ¬ψ ⊆ Cl(φ, d + 1). For
each of these subsets, check if
(a) ψ �∈ Γ¬ψ,
(b) for all ��ξ ∈ Γ , ξ ∈ Γ¬ψ, and
(c) MaxSat(Γ¬ψ, d+ 1) accepts.
If we find that one of the sets Γ¬ψ ⊆ Cl(φ, d + 1) satisfies these three re-
quirements, then proceed with the algorithm. Otherwise, reject.

We will leave the details about how to deterministically cycle though all
subsets of Cl(φ, d+ 1) to Section 5.

4 Satisfiability in Nondeterministic Linear Space

The quadratic deterministic space bound from the previous section ties Ladner’s
bound, which is not surprising, since our algorithm is close to Ladner’s. How
can we do better? In the analysis, we looked at the space used for each nested
recursive call separately. In order to improve the space efficiency, we will have
to combine the space used at the different recursion depths. Since recursion in
combination with global variables is hard to follow, we will give an iterative
version for satisfiability that is based on MaxSat and work from there.

One problem is to simulate the multiple recursive calls MaxSat(Γ¬ψ, d + 1)
without using too much space. For example, if we keep track of the number
of recursive calls made at each depth, we need space n log n, and this is too
much. Our solution is the following. For each depth d, assume an ordering on
the formulas in Cl(φ, d). It then suffices to keep track of the formula currently
being processed. We will call this formula curForm(d). One might think that we
will then need log n bits at each depth d to keep track of curForm(d), in which
case we would have gained nothing. But we will show in the sequel that all these
formulas together can be combined into one length n bitstring.

The remainder of the simulation is fairly straightforward. Depth d corre-
sponds to d in MaxSat and Γ (d) corresponds to Γ at depth d in MaxSat. We
will use newWorld to denote that a new world is being built, i.e., all formulas in
Cl(φ, d) still have to be processed.

Here is the non-recursive and nondeterministic algorithm to determine if φ
is satisfiable.

Modal Satisfiability Is in Deterministic Linear Space 337

d := 0; newWorld := true
guess Γ (0) ⊆ Cl(φ, 0) such that φ ∈ Γ (0)
while d ≥ 0 do

if not newWorld and curForm(d) is the last formula in Cl(φ, d) then
d := d− 1

else
if newWorld then

curForm(d) := the first formula in Cl(φ, d)
newWorld := false

else
curForm(d) := the next formula in Cl(φ, d)

if curForm(d) = ¬ψ and not [ψ �∈ Γ (d) iff ¬ψ ∈ Γ (d)] then reject
if curForm(d) = ψ ∧ ξ and

not [ψ ∧ ξ ∈ Γ (d) iff ψ ∈ Γ (d) and ξ ∈ Γ (d)] then reject
if curForm(d) = ��ψ and curForm(d) �∈ Γ (d) then

guess a set Γ (d+ 1) ⊆ Cl(φ, d+ 1) such that
ψ �∈ Γ (d+ 1) and for all ��ξ ∈ Γ (d), ξ ∈ Γ (d+ 1)

d := d+ 1
newWorld := true

accept

The space used by this algorithm depends on the implementation of Γ and
curForm.

In the previous section, we mentioned that every subset of subformulas of φ
can be represented as a bitstring of length |φ|, since every position in φ corre-
sponds to at most one subformula of φ, and every subformula of φ corresponds
to at least one position in φ. We can store even more information in such a
bitstring, since every position in φ corresponds to at most one occurrence of a
subformula of φ, and every occurrence of a subformula of φ corresponds to ex-
actly one position in φ. Since the sets of occurrences of formulas in Cl(φ, d) and
Cl(φ, d′) in φ are disjoint for all d �= d′, this implies that we can represent the
sequence of sets Γ (0), Γ (1), Γ (2), . . . by a length |φ| bitstring and also that we
can represent curForm(0), curForm(1), curForm(2), . . . by a length |φ| bitstring.

This is looking good, since we are now using linear space to represent all
relevant information of the algorithm. It remains to give the exact details of
the representation and to show that we can encode and decode the relevant
information into and from our representation without using more than linear
space.

We will start with the definition of the representation. For φ a formula and
1 ≤ i ≤ |φ| such that the ith symbol in φ (denoted by φ[i]) is not a parenthesis,
let φi be the φ subformula with φ[i] as main connective. The depth of i in φ,
written as depthφ(i) (or simply as depth(i) if φ is clear from context) is defined
as the modal nesting depth of the occurrence of the φ subformula with as main
connective the ith symbol in φ.

The sequence of sets Γ (0), Γ (1), Γ (2), . . . will be encoded by bitstring Γ of
length |φ| as follows.

338 E. Hemaspaandra

– For all i, if φ[i] is a parenthesis, then Γ [i] = 0.
– If φi = φj and depth(i) = depth(j), then Γ [i] = Γ [j].
– Γ (d) = {ψi | Γ [i] = 1 and depth(i) = d}.
The sequence of currently active formulas curForm(0), curForm(1),

curForm(2), . . . will be encoded by bitstring curForm of length |φ| as follows.
– For all i, if φ[i] is a parenthesis, then curForm[i] = 0.
– If curForm(d) is defined, then curForm(d) = φi, where i is the unique i such
that curForm[i] = 1 and depth(i) = d.

– If curForm(d) is undefined, then there is no i such that curForm[i] = 1 and
depth(i) = d.

It is easy to see that given an index i, we can compute φi and depth(i) in
linear space, for example by a simple modification of the standard infix-to-postfix
conversion algorithm.

Now look carefully at the satisfiability algorithm. It is not hard to see that
the whole algorithm can be implemented in linear space. (See below for the
implementation of the relevant parts of the algorithm.)

Implementation of the Relevant Parts of the Algorithm

Computing curForm(d):
for i := 1 to |φ| do

if curForm[i] = 1 and depth(i) = d then
curForm(d) := φi

Setting curForm(d) to the next formula in Cl(φ, d):
for i := 1 to |φ| do

if curForm[i] = 1 and depth(i) = d then break
curForm[i] := 0
for j := i+ 1 to |φ| do

if depth(j) = d then curForm[j] := 1; break

Checking if ψ ∈ Γ (d):
for i := 1 to |φ| do

if depth(i) = d and φi = ψ then
ψ ∈ Γ (d) if and only if Γ [i] = 1

Guessing a set Γ (d) ⊆ Cl(φ, d):
for i := 1 to |φ| do

if depth(i) = d then
new := true
for j := 1 to i− 1 do

if depth(j) = d and φi = φj then
new := false; Γ [i] := Γ [j]; break

if new then nondeterministically set Γ [i] to 0 or 1

Modal Satisfiability Is in Deterministic Linear Space 339

5 Satisfiability in Deterministic Linear Space

In this section, we will show how to remove the nondeterminism from the nonde-
terministic linear space algorithm from Section 4, without increasing the amount
of space used. Just as in Section 3, note that the nondeterminism in the algo-
rithm from Section 4 is used in a restricted way, namely in guessing a subset of
Cl(φ, d) such that certain properties are satisfied. As mentioned in Section 3, we
can remove this nondeterminism without increase in space by cycling through
all possible subsets of Cl(φ, d).

The following deterministic version of the algorithm from Section 4 algorithm
makes this more precise. Implementation details of the new parts will follow.

d := 0; reject := false; newWorld := true
Γ (0) := the first subset of Cl(φ, 0)
while d ≥ 0 do

if reject then
if Γ (d) is the last subset of Cl(φ, d) then

if d = 0 then reject else d := d− 1
else

Γ (d) := the next subset of Cl(φ, d)
reject := false
newWorld := true

elseif not newWorld and curForm(d) is the last formula in Cl(φ, d) then
d := d− 1

else
if newWorld then

if d = 0 and φ �∈ Γ (0) then reject := true
// if curForm(d− 1) = ��ψ, then we need a witness for ��ψ �∈ Γ (d− 1)
if d > 0 and curForm(d− 1) = ��ψ and ψ ∈ Γ (d) then reject := true
if d > 0 and for some ξ, ��ξ ∈ Γ (d− 1) and ξ �∈ Γ (d) then

reject := true
if not reject then

if newWorld then
curForm(d) := the first formula in Cl(φ, d)
newWorld := false

else
curForm(d) := the next formula in Cl(φ, d)

if curForm(d) = ¬ψ and not [ψ �∈ Γ (d) iff ¬ψ ∈ Γ (d)] then
reject := true.

if curForm(d) = ψ ∧ ξ and not [ψ ∧ ξ ∈ Γ (d) iff
ψ ∈ Γ (d) and ξ ∈ Γ (d)] then reject := true.

if curForm(d) = ��ψ and curForm(d) �∈ Γ (d) then
Γ (d+ 1) := the first subset of Cl(φ, d+ 1)
d := d+ 1
newWorld := true

accept

340 E. Hemaspaandra

We will use newWorld to denote that Γ (d) is a new subset of Cl(φ, d). If
newWorld is true, then we need to verify the desired properties of Γ (d). Since
we are simulating all possible nondeterministic choices of sets Γ (d), we will use
a variable reject that will be true if the current choice of Γ ’s rejects. If reject is
true, we need to proceed to the next possible choice of Γ ’s.

We will use the same encoding as in the previous section. It should be clear
that we are using deterministic linear space to keep track of all the relevant
information in the algorithm. It remains to show that we can implement the
new steps in the algorithm in linear space. This proves the main result of this
paper.

Theorem 1. Modal satisfiability is in deterministic linear space.

Implementation of the New Parts of the Algorithm

Setting Γ (d) to the first subset of Cl(φ, d), that is, setting Γ (d) to ∅:
for i := 1 to |φ| do

if depth(i) = d then
Γ [i] := 0

Setting reject to true if for some ξ, ��ξ ∈ Γ (d− 1) and ξ �∈ Γ (d):
for i := 1 to |φ| do

if depth(i) = d− 1 and φi = ��ξ and Γ [i] = 1 then
for j := 1 to |φ| do

if depth(j) = d and φj = ξ and Γ [j] = 0 then
reject := true

It remains to show how to set Γ (d) to the next subset of Cl(φ, d) and how to
detect if Γ (d) is the last subset of Cl(φ, d). Basically, we will view the bits Γ [i]
such that depth(i) = d as a binary number, and set these bits to the next binary
number, that is, we traverse the bits from right to left, changing every 1 to a until
we see the first 0. Then change that 0 to a 1. However, we have to ensure that
bitstring Γ properly encodes Γ (d), that is, if φi = φj and depth(i) = depth(j) =
d, then Γ [i] = Γ [j]. We will repeat computing the next binary number until this
is the case.

repeat
found := false
for i := |φ| downto 1 do

if depth(i) = d then
if Γ [i] = 1 then

Γ [i] := 0
else

Γ [i] := 1
found := true
break

Modal Satisfiability Is in Deterministic Linear Space 341

if found then
// check if Γ properly encodes Γ (d)
correct := true
for i := 1 to |φ| do

for j := 1 to |φ| do
if depth(i) = depth(j) = d and φi = φj and Γ [i] �= Γ [j] then

correct := false; break
until correct or not found
if not found then

Γ (d) was the last subset of Cl(φ, d)
else

Γ (d) was set to the next subset of Cl(φ, d).

6 What about Other Modal Logics?

In the linear space encoding of the algorithms for modal satisfiability, we crucially
used the fact that every satisfiable formula is satisfiable in the root of a tree and
that every world in the satisfying model is at a unique distance from the root. It is
easy to see that, using the methods from this paper, one can obtain deterministic
linear space upper bounds for, for example, satisfiability with respect to those
models where every world has at most k successors, and for the disjoint union of
any number of K logics. (This satisfiability problem was shown to be PSPACE-
complete in [4].)

On the other hand, the constructions from this paper don’t directly apply to
satisfiability with respect to all reflexive models (T satisfiability), or transitive
models (K4 satisfiability), since in these cases worlds will not be at a unique
distance from the root. Without this property, we are not able to encode all
relevant formulas on a branch of the model in one linear length bitstring.

However, we can construct satisfying K4 (transitive) and S4 (reflexive and
transitive) models in quadratic space. In addition, we can keep track of all
currently active �� formulas as one length n bitstring, as in the construction
for curForm in this paper. This will lead to an O(n log n) space upper bound
for these two logics. The details of these constructions are tedious, and these
O(n log n) bounds only tie the best-known bounds [6,7], so we will not go into
details. However, it does show that our methods are more widely applicable.

Acknowledgment

I would like to thank anonymous referees for useful comments and suggestions.

References

1. D. Basin, S. Matthews, and L. Viganò. A new method for bounding the complexity
of modal logics. In Proceedings of KGC’97, pp. 89–102. Springer, LNCS 1289, 1997.

342 E. Hemaspaandra

2. D. Basin and L. Viganò. A recipe for the complexity analysis of non-classical logics.
In Proceedings of FroCoS’98, pp. 57–75. Wiley, Studies in Logic and Computation
7, 2000.

3. A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternation. Journal of the ACM,
28, pp. 114–133, 1981.

4. J.Y. Halpern and Y. Moses. A guide to completeness and complexity for modal
logics of knowledge and belief. Artificial Intelligence, 54, pp. 319–379, 1992.

5. R. Ladner. The computational complexity of provability in systems of modal propo-
sitional logic. SIAM Journal on Computing, 6(3), pp. 467–480, 1977.

6. J. Hudelmaier. Improved decision procedures for the modal logics K, T and S4. In
Proceedings of CSL’95, pp. 320–334. Springer, LNCS 1092, 1996.

7. L.A. Nguyen. A new space bound for the modal logics K4, KD4, and S4. In Pro-
ceedings of MFCS’99, pp. 321–331. Springer, LNCS 1672, 1999.

8. W.J. Paul, N. Pippinger, E. Szemerédy, and W.T. Trotter. On determinism versus
non-determinism and related problems. In Proceedings of FOCS’83, pp. 429–438,
1983.

9. W. J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities, JCSS, 4, pp. 177-192, 1970.

10. R.E. Stearns, J. Hartmanis, and P.M. Lewis II. Hierarchies of memory limited
computations. In Proceedings of FOCS’65, pp. 179–190, 1965.

11. M. Y. Vardi. On the complexity of epistemic reasoning. In Proceedings of LICS’89,
pp. 243–252, 1989.

12. L. Viganò. A framework for non-classical logics. PhD thesis, Universität des Saar-
landes, Saarbrücken, Germany, 1997.

Logic Programming and Co-inductive Definitions

Mathieu Jaume

Cermics –École Nationale des Ponts et Chaussées
Champs sur Marne 77455 Marne-La-Vallee Cedex 2, France

jaume@cermics.enpc.fr

Abstract. This paper aims to define a complete semantics for a class of
non-terminating logic programs. Standard approaches to deal with this
problem consist in concentrating on programs where infinite derivations
can be seen as computing, in the limit, some ”infinite object”. This is
usually done by extending the domain of computation with infinite ele-
ments and then defining the meaning of programs in terms of greatest
fixpoints. The main drawback of these approaches is that the semantics
defined is not complete. The approach considered here is exactly the op-
posite. We concentrate on the infinite derivations that do not compute
an infinite term: this paper studies the operational counterpart of the
greatest fixpoint of the one-step-inference operator for the C-semantics.
The main result is that such fixpoint corresponds to the set of atoms
that have a non-failing fair derivation with the additional property that
complete information over a variable is obtained after finitely many steps.

1 Introduction – Motivations

In computer science, termination of programs is a traditional requirement. Logic
programming does not escape from this influence and there exist many works
about termination of logic programs. However, infinite behaviour of programs
can be useful to model some situations and the study of nonterminating “com-
putations” has received an increasing interest in the context of many program-
ming paradigms: λ-calculus, rewrite systems, logic programming, concurrent con-
straint programming [4] ... In this paper, we focus on reactive logic programs (i.e.,
definite logic programs for which the behaviours of interest are both termninat-
ing and non-termninating ones). In the field of logic programming, infinite SLD-
derivations can be useful to model the infinite computation of an infinite object.
As a typical example, with the program P = {LN(x, [x|l])← LN(S(x), l)} we can
obtain, from the query LN(k, l0), an infinite derivation computing at every step
a better approximation of the second argument. The “final result” is the “limit”
of the sequence of approximations and corresponds to the infinite sequence of
integers starting from k. However, there exist infinite derivations which do not
compute an infinite object. Such derivations can be useful to model a certain
class of infinite processes. For example, let us consider the famous (simple) dining
philosophers problem, introduced by Dijkstra as a model for resource sharing.
In this problem, 3 philosophers P1, P2 and P3 are sitting around a table in the

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 343–355, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

344 M. Jaume

P1

P3P2

1 3

2

Fig. 1. The dining philosophers problem

center of which there is a plate of spaghetti. Between each philosopher and his
(or her) neighbour there is exactly one fork. A philosopher requires two forks to
be able to eat and since there are exactly as many forks as there are philosophers
it is not possible for all philosophers to eat in the same time. We can describe
this problem by the logic program containing the following clauses, expressing
that a philosopher can take a fork, drop a fork, or eat:

p(0, x, y)← p(1, x, y) p(0, x, y)← p(2, x, y) p(x, 0, y)← p(x, 3, y)
p(x, y, 0)← p(x, y, 1) p(x, 0, y)← p(x, 2, y) p(x, y, 0)← p(x, y, 3)
p(1, x, y)← p(0, x, y) p(2, x, y)← p(0, x, y) p(x, 3, y)← p(x, y, 0)
p(x, y, 1)← p(x, y, 0) p(x, 2, y)← p(x, 0, y) p(x, y, 3)← p(x, y, 0)
eat(1)← p(1, x, 1) eat(2)← p(2, 2, x) eat(3)← p(x, 3, 3)

(1)

where p is a 3-ary predicate whose three arguments describe respectively the
state of the 3 forks (0 means the fork is free, i ∈ {1, 2, 3} means the fork is
taken by the philosopher Pi) and eat(i) means that the philosopher Pi can eat.
With this program, every derivation from the query eat(i) is infinite and does
not compute an infinite object. It just describes an infinite sequence of actions
done by the philosophers1.

The main approaches to assign some meaning to infinite derivations in “pure”
logic programming occurring in the literature [1,7,8,15,16] concentrate on the
aspects related to the semantics of infinite objects and to the models for logic
programs which take them into account. In this setting, the relevant notion is the
one of computation (in the limit) of an infinite object. The sense of a “useful”
infinite derivation is given by the notion of atom computed at infinity (i.e., an
infinite atom A such that there exists a finite atom from which there exists an
infinite derivation which “computes at infinity” A). However, these approaches
are not satisfactory since if we consider a greatest fixpoint semantics over the
domain of infinite terms, then programs like program

P = {p(x)← p(x)} (2)

have a non-empty denotation even if no atom can be computed at infinity with
P . In fact, p(fω) is in the greatest fixpoint of the classical one-step-inference
1 This behaviour may correspond to a livelock situation, however, our interest in this
problem is different.

Logic Programming and Co-inductive Definitions 345

operator associated to P even if p(fω) is not computable by an infinite derivation.
The construction of the greatest fixpoint does not reflect how the infinite terms
are constructed during a derivation. Hence, either such semantics [7,8,16] are not
complete, since there exist infinite atoms in the denotation of a program which
are not computable by an infinite derivation, or the completeness is expressed
as follows [1,10,11]:

A ∈ gfp(TP)⇔ A is the root of a fair derivation

where A is a possibly infinite atom. Nevertheless, in this case, this “complete-
ness” result is obtained by allowing infinite terms in queries2 which start SLD-
derivations. For example, with program (2), we can consider the derivation:

p(fω)→P · · · →P p(fω)→P · · · (3)

This requirement is clearly stated in [18]. Nevertheless, this does not correspond
to the standard operational semantics of logic programs as defined in [16] and
one may wonder how queries containing infinite terms can be given.

It is now well-known that standard semantics of logic programs can be ex-
pressed by purely proof-theoretic methods [9]. The most immediate way to give
such a semantics is to consider clauses as inference rules, rather than logic for-
mulas, and then a logic program as a formal system. From this point of view,
the denotation of a program is the set of theorems which can be derived in this
system. Within this framework, (co-)inductive definitions are a natural way to
define the denotation of logic programs. Since, proof-theoretically, we can look at
a clause A← B1, · · · , Bn as an introduction rule for A (or similarly as a construc-
tor in an (co-)inductive definition), by following the Curry-Howard isomorphism,
it is possible to represent clauses by constructors of a functional language and
each proof can be viewed as a functional expression. Hence, in this paper, we
focus on the correspondence between co-inductive definitions and logic programs
(i.e., between proofs as functional expressions and proofs as SLD-derivations).
This will lead us to define a sound and complete semantics for the subclass
of infinite derivations over the domain of finite terms (i.e., infinite derivations
which do not compute any infinite term). One may question about the interest
of such derivations which are often outcast as meaningless. However, as we said,
such derivations are useful to model infinite processes which do not compute an
infinite object. Furthermore, it seems that incompleteness of usual approaches
comes from these derivations and this work complements the knowledge we have
in this area. Due to space limitations, most of proofs are incomplete or omit-
ted here. They can be found in a research report [12]. The rest of the paper
is organized as follows: the end of this section introduces the basic definitions
and notations. Section 2, which can be omitted during the first reading, contains
a (brief) discussion on the correspondence between SLD-derivations and proof
terms, and last, section 3 presents a sound and complete semantics for infinite
derivations over the domain of finite terms.
2 In an implicit way, this implies the use of an adequate unification algorithm and the
modification of the notion of atom computed at infinity.

346 M. Jaume

Background and notations We assume here familiarity with the standard notions
of (co-)inductive definitions and logic programming (Herbrand semantics and C-
semantics) as introduced in [2,6,14,16]. (Co-)inductive sets can be defined by
some rules for generating elements of the set and by adding that an object is
to be in the set only if it has been generated by applying these rules. Given
a rule set Φ (a rule is written e ← E, where E is a the set of premises, and
e is the conclusion) a set A is said to be Φ-closed (resp. Φ-dense) if each rule
in Φ whose premises are in A also has its conclusion in A (resp. if for every
a ∈ A there is a set E ⊆ A such that (a ← E) ∈ Φ). The set inductively
(resp. co-inductively) defined by Φ, written Ind(Φ) (resp. CoInd(Φ)), is defined
by Ind(Φ) = ∩{A | A is Φ-closed} (resp. CoInd(Φ) = ∪{A | A is Φ-dense}). These
sets can also be expressed by using monotone operators: if Φ is a rule set, we
may define a monotone operator TΦ : 2B → 2B, where B = ∪e←E∈Φ{{e} ∪ E},
by:

TΦ(A) = {e ∈ B | ∃ e← E ∈ Φ, E ⊆ A} (4)

and then Ind(Φ) = ∩TΦ(A)⊆AA = lfp(TΦ) and CoInd(Φ) = ∪A⊆TΦ(A)A = gfp(TΦ).
Σ, Π and X denote respectively a set of function symbols, a set of predicate
symbols, and a set of variable symbols. Elements of TΣ [X] are (finite) terms over
X∪Σ. A substitution θ is a mapping from X to TΣ [X] such that {x | x �= θx} =
dom(θ) is finite. range(θ) denotes the set {var(θx) | x ∈ dom(θ)}. Composition
of substitutions induces a preorder on substitutions (θ1 ≤ θ2 ⇔ ∃µ, µθ1 = θ2)
and on expressions (E1 ≤ E2 ⇔ ∃µ, µE1 = E2). A renaming substitution is a
mapping σ:X → X such that ∀x, y ∈ dom(σ), x �= y ⇒ σ(x) �= σ(y). A mgu is
a minimal idempotent unifier. The preorder ≤ induces an equivalence relation
≈ (called variance): E1 ≈ E2 iff there exist two renaming substitutions θ1 and
θ2 such that θ1E1 = E2 and θ2E2 = E1. AtΣ,Π [X] denotes the set of (finite)
atoms. Given a clause C ∈ P , we write C+ for its head and C− for its body. An
SLD-derivation with a program P is a possibly infinite sequence of transitions:

A1, · · · , Ak, · · · , An︸ ︷︷ ︸
R

C,θ→P θ(A1, · · · , Ak−1, B1, · · · , Bq, Ak+1, · · · , An)︸ ︷︷ ︸
θR[k←C−]

where θ is a mgu of C+ and Ak and where C is a variant of a clause in P , whose
body is B1, · · · , Bq. In an SLD-derivation from a goal R0, the sequence of clauses
C1, C2, · · · is such that3:

∀i ≥ 1 var(Ci) ∩ (∪j<ivar(Cj) ∪ var(R0)) = ∅
As defined in [16], an SLD-derivation is fair if it is either failed or, for every
atom B in the derivation, (some further instantiated version of) B is selected
within a finite number of steps. Given an atom A (resp. a program P), we write
�A� (resp. �P �) to denote the set of (not necessarily ground) finite instances of
A (i.e., of clauses in P). Furthermore P also denotes all the variants of clauses
in P .
3 As illustrated in [13], this renamning process is crucial and has been explicitely
considered in our proofs. All the derivations considered here satisfy this requirement.

Logic Programming and Co-inductive Definitions 347

2 Logic Programs as (Co-)inductive Definitions

The fixed point semantics has long been used as a technical device. However, it
corresponds to the “logic programs as inductive (co-)definitions” paradigm and
can be considered as the logic program’s intrinsic declarative content. Indeed,
many properties of logic programs are similar to these enjoyed by inductive defi-
nitions. Recall that, as proved in [6], a C-interpretation I (i.e., an upward closed
subset of AtΣ,Π [X]) is a C-model of P iff T CP (I) ⊆ I and the model intersection
property allows to consider the least C-model of P as the intersection of all C-
models of P . Since T CP is exactly the operator T�P	 obtained from the rule set �P �,
as described by (4), each C-model of P is a T�P	-closed set and, since Ind(T�P)
is defined as the intersection of all T�P	-closed sets, we have MCP = Ind(�P �).
Now, since the body of each clause contains a finite number of atoms, T�P	 is
continuous and we have the well-known result MCP = lfp(T�P) = T ↑ω�P	 which
only follows from properties of inductive definitions: the least C-model can be
directly expressed by an inductive definition. This proof-theoretic approach is
now well-known [9,17,5] and has been used to extend logic programming lan-
guages in order to increase the power of “pure” declarative programming. Now
let us consider the “logic programs as co-inductive definitions” paradigm, from
which the usual greatest fixpoint semantics is defined. The greatest fixpoint of
the operator, defined over the completed Herbrand base (i.e., containing infi-
nite atoms), associated to a program P , corresponds to the co-inductive set
CoInd([[P]]), where [[P]] denotes all the ground instances of clauses occurring in
P over the completed Herbrand base. Hence, incompleteness follows from pro-
grams like program (2) since for this program, the clause p(fω) ← p(fω) is
in [[P]] and therefore {p(fω)} is [[P]]-dense (i.e., T[[P]]-dense) and then we have
p(fω) ∈ CoInd([[P]]). The incompleteness comes from the fact that clauses of [[P]]
are expressed over a language richer than the language of programs and queries:
by allowing infinite elements in queries, such an approach becomes complete
(since we can obtain the derivation (3)).

In the context of type theory, T. Coquand [3], note that infinite objects
can be constructively understood, without the consideration of partial elements
or greatest fixed-points, through the explicit consideration of proof objects. As
said in section 1, by following the proofs-as-programs principle, we can look at
a clause as a constructor of a functional language and then each proof can be
represented as a functional expression. Like in a programming language, such
expressions can be defined by recursion which corresponds to proofs where the
result proved is used recursively. Of course, this cannot be considered to be a
valid proof in general, and has to satisfy the guardedness property: “[3] in order
to establish that a proposition φ follows from other propositions φ1, · · · , φq, it
is enough to build a proof term e for it, using not only natural deduction, case
analysis, and already proven lemmas, but also using the proposition we want
to prove recursively, provided such a recursive call is guarded by introduction
rules.”. Hence, by considering clauses as introduction rules, and since a clause
is applied at each resolution step of a derivation, it is possible to establish a

348 M. Jaume

correspondence between guarded (proof) terms in a co-inductive set and SLD-
derivations (more formally, a term is said to be guarded (by constructors) if its
definition is such that all the recursive calls of the definition are done after having
explicitly mentioned which is (at least) the first rule to start building the element
and such that no other functions apart from constructors are applied to recursive
calls). Let us introduce two examples. With the program P = {p(x)← p(f(x))},
we can obtain the derivation:

p(z) C→P

[
x1

f(x1)

]
p(x1)

C→P · · · C→P

[
xi

fi(xi)

]
p(xi)

C→P · · ·︸ ︷︷ ︸
proof of ∀x1 p(f(x1))

which can be viewed as a proof of ∀x p(x), since the term:

π:=λz.C
(
z, π

([
z

f(z)

]
p(z)

))

is guarded by the clause (i.e., the rule) C and then defines for any z a proof of
p(z) which belongs to CoInd(�P �). The correspondence is immediate: the appli-
cation of the constructor C corresponds to the first transition of the derivation,
while the recursive call corresponds to the next ones (i.e., the derivation starting
from the query p(f(x1)) – a proof of ∀x p(f(x))). Such derivations correspond
to co-inductive proofs. However, this correspondence cannot be observed for in-
finite SLD-derivations which compute infinite terms. Consider for example the
program P = {p(f(x))← p(x)} from which we can obtain the following infinite
derivation computing the infinite term fω:

p(z)

[
z

f(x1)

]
−→P p(x1)

[
x1

f(x2)

]
−→P · · ·

[
xi−1
f(xi)

]
−→P p(xi)

[
xi

f(xi+1)

]
−→P · · ·

Such a derivation is both a computation (of the infinite term fω) and a proof
that this infinite term is such that p(fω). However, the proof term of p(fω) is
defined by:

π:= eq ind(f(fω), p, C(fω, π), fω, (ω)

where C is the clause in P , where (ω is a proof of fω = f(fω)4, and where eq ind
corresponds to Leibniz’equality:

eq ind : ∀x ∈ E, ∀P predicate on E, P (x)⇒ ∀y ∈ E (y = x)⇒ P (y)

Clearly, this proof term does not correspond to the infinite derivation computing
the term fω. However, proof terms over finite objects do not use eq ind and can
be viewed as definitions of the sequences of clauses used in the corresponding
derivations.

4 Note that fω is defined by a guarded by constructors definition (fω:=f(fω)) – pos-
sibly infinite terms are co-inductively defined with function symbols as constructors.

Logic Programming and Co-inductive Definitions 349

3 Infinite SLD-Derivations
over the Domain of Finite Terms

Since the presence of infinite elements in the Herbrand base leads to incomplete-
ness of the approaches based on greatest fixpoints, we focus in the following on
infinite derivations which do not compute infinite terms.

3.1 Proof Trees and Fair Derivations

First, we define SLD-proofs (for the operational semantics based on SLD-resolu-
tion) and proof trees (for the declarative semantics based on greatest fixpoint
methods) as follows:

Definition 1. An SLD-proof is either a refutation or a fair infinite derivation.

Definition 2. Let Φ be a rule set over B. A proof tree of x ∈ B for Φ is a
possibly infinite tree T such that x is the root of T , and for every node z occurring
in T with z1, · · · , zn as children, there exists a rule z ← z1, · · · , zn ∈ Φ (if z is a
leaf, there exists a rule z ←∈ Φ).

In the following, we say that T is a partial proof tree if T is a proof tree whose
leaves do not necessarily correspond to a (unit) rule. We have the following
well-known lemma.

Lemma 1. x ∈ CoInd(Φ) iff x is the root of a proof tree for Φ.

Furthermore, the proof tree is finite iff x ∈ Ind(Φ) (for finitary Φ).
In the next subsection, in order to prove the completeness result, we will

need to be able to “translate” a proof tree into an SLD-derivation. The following
lemma shows how this translation can be done.

Lemma 2. Given a rule set Φ and an atom A ∈ CoInd(Φ), there exists an SLD-
proof from A with Φ as program such that, for all i ≥ 1, the mgu used during the
i-th resolution step of the SLD-proof, is a renaming substitution whose domain
coincides with the variables occurring in the head of the rule (i.e., the clause)
used.

Proof. If A ∈ CoInd(Φ), then, by lemma 1, A is root of a proof tree T for Φ.
Number the arcs emanating from each node from left to right, starting with 1.
Each node can be designated (indexed) by the word obtained by concatenating
the numbers of the arcs of the path leading from the root to the node (ε is the
empty word). The breadth-first traversal of T produces a list L. Since T is a
proof tree for Φ, for each node Aı̄ in T , there exists a clause CT,̄ı ∈ Φ which can
be written Aı̄ ← Aı̄1, · · · , Aı̄nı̄ . Indexes of T can be ordered as follows: ı̄ ≺ ̄ iff Aı̄
occurs before Ā in L. ZT = ∪var(CT,̄ı) is the set, possibly infinite, of variables
occurring in T . It can be proved [12] that given a clause CT,̄ı ∈ Φ, a renaming
substitution rı̄0, such that range(rı̄0) ∩ var(CT,̄ı) = ∅, and a set of variables Zı̄,

350 M. Jaume

there exists a substitution θı̄, a clause Cı̄ and a renaming substitution rı̄1 = rı̄rı̄0
such that:

var(Cı̄) ∩ (var(rı̄0CT,̄ı) ∪ Zı̄) = ∅ rı̄1C
−
T,̄ı = θı̄C

−
ı̄

dom(θı̄) = var(C+
ı̄) range(rı̄) = var(C−ı̄)\var(C+

ı̄)

where θı̄ is an idempotent renaming substitution which is a mgu of C+
ı̄ and

rı̄0C
+
T,̄ı. From L, we can define the following sequence of resolution steps:

tε = T (CT,ε, sid, ZT), tı̄k = T
(
CT,̄ık, r

ı̄k
0 , Zı̄k

)

1 ≤ k ≤ nı̄
rı̄k0 = rı̄1
Zı̄k = ZT ∪

⋃
̄≺ı̄k

var(C̄)

where T (CT,̄ı, rı̄0, Zı̄) denotes the transition rı̄0C
+
T,̄ı

Cı̄,θı̄,Zı̄→Φ θı̄C
−
ı̄ and where sid is

the empty substitution. This definition is sound since we can prove by induction
that ∀ı̄, range(rı̄0) ∩ var(CT,̄ı) = ∅. Furthermore, it can be proved [12] that this
sequence defines an SLD-proof satisfying the desired properties (fairness follows
from the breadth-first traversal of T).

In this section, proof trees for a rule set Φ have been related to SLD-proofs
with Φ viewed as a program. The SLD-proofs obtained are such that the clauses
used are not instantiated (they are just renamed). We will see that the ap-
propriate rule set allowing to study infinite derivations, which do not compute
infinite terms, is the rule set obtained from a program P by considering all the
(finite) instances, not necessarily ground, of clauses in P . This corresponds to
the C-semantics approach [6].

3.2 SLD-Proofs over the Domain of Finite Terms

SLD-proofs over the domain of finite terms are SLD-derivations which do not
compute infinite terms. In a more formal way, they can be defined by:

Definition 3. An SLD-proof over the domain of finite terms is either a
refutation or a fair infinite derivation:

R0
C1,θ1→P R1 →P · · · →P Ri−1

Ci,θi→P Ri →P · · ·

such that ∀k ≥ 0 ∃p > k ∀q ≥ p θq · · · θp · · · θk+1Rk ≈ θp · · · θk+1Rk.

It is important to note that it does not suffice that the condition holds for
the initial query. For example, with P = {q ← p(x); p(f(x)) ← p(x)}, even if
during the derivation starting from q, each mgu θi used is such that θiq = q,
this derivation computes the infinite term fω. A different characterisation of
SLD-proofs over the domain of finite terms can be obtained from the following
lemma, proved in [12], and used during the proof of lemma 4.

Logic Programming and Co-inductive Definitions 351

Lemma 3. A derivation R0
C1,θ1→P R1 →P · · · →P Ri−1

Ci,θi→P Ri →P · · · is an
infinite SLD-proof over the domain of finite terms iff ∀i ≥ 0, ∃R, ∀n ≥ i + 1,
θnθn−1 · · · θi+1Ri ≤ R, where R is a query (i.e., R does not contain infinite
atoms).

C-semantics results correspond to SLD-refutations :

SCP = {A (finite atom) | A ∗,θ→ and θA = A} = lfp(T�P) = Ind(�P �)
Let us investigate infinite SLD-proofs over the domain of finite terms. The sound-
ness theorem can be proved directly by using proof trees.

Theorem 1 (Soundness). If there exists an SLD-proof over the domain of

finite terms A1, · · · , An C1,θ1→P R1 →P · · · →P Ri−1
Ci,θi→P Ri →P · · ·, then there

exists k ≥ 0, such that for all i (1 ≤ i ≤ n) θk · · · θ1Ai ∈ gfp(T�P).

Proof. We first prove the theorem for n = 1. By Tarski’s theorem and by
lemma 1, it suffices to prove that for a natural k, there exists a proof tree
of θk · · · θ1A1 for �P �. For this, let us define the sequence T1, · · · , Ti, · · · of par-
tial proof trees, such that every atom occurring in Ri is a leaf in Ti, which is a
partial proof tree of θi · · · θ1A1 for �P �. T1 is obtained from the first transition:
its root is θ1A1 whose children (which are leaves) are all the atoms occurring
in θ1C

−
1 . Since θ1C1 ∈ �P � and θ1A1 = θ1C

+
1 , T1 is a partial proof tree of

θ1A1 for �P �. Suppose now that Tn−1 is a partial proof tree of θn−1 · · · θ1A1
for �P � (corresponding to the n − 1 first transitions) such that atoms in Rn−1
are leaves of Tn−1. By applying the substitution θn to each node of Tn−1, we
get a partial proof tree of θn · · · θ1A1 for �P � such that atoms in θnRn−1 are
leaves. If A is the selected atom in Rn−1, then A is a leaf of Tn−1 and θnA
is a leaf in the new partial proof tree. Now, it suffices to add all the atoms in
θnC

−
n as children of θnA (these children are leaves). In this way, we obtain a

partial proof tree Tn satisfying the desired properties. Because the derivation
does not compute infinite terms and therefore there exists a natural k ≥ 0 such
that for all q ≥ k, θq · · · θk · · · θ1A1 ≈ θk · · · θ1A1, by iterating this process, we
obtain a proof tree of θk · · · θ1A1 for �P �. Furthermore each leaf corresponds to
a unit clause of �P � since the derivation is fair. For n > 1, the proof is sim-
ilar: instead of building a sequence of partial proof trees, we build a sequence
((T 1

1 , · · · , Tn1), · · · , (T 1
i , · · · , Tni), · · ·) of tuples of n partial proof trees for �P �

such that θi · · · θ1Aj is the root of T ji (1 ≤ j ≤ n) and each atom occurring in
Ri is a leaf of T ji for a j.

Since, by lemma 2, there exists an SLD-proof with the program �P � from
each atom occurring in CoInd(�P �), lemma 4 describes how to “translate” an
SLD-derivation with �P � into an SLD-derivation with P . It can be viewed as a
“program lifting lemma” playing the same role as the (classical) lifting lemma
in the proof of the (classical) completeness theorem.

Lemma 4 (Program lifting lemma). If there exists an SLD-proof: A0
C1,θ1→�P	

R1 →�P	 · · · →�P	 Ri−1
Ci,θi→�P	 Ri →�P	 · · · such that for all i ≥ 1, θi is

352 M. Jaume

an idempotent renaming substitution such that dom(θi) = var(C+
i), then there

exists an SLD-proof over a the domain of finite terms: A0
CP,1,σ1→P R′1 →P · · · →P

R′i−1
CP,i,σi→P R′i →P · · · such that for all i ≥ 1, σiA0 = A0, Ci = µiCP,i and

Ri = ρiR
′
i where ρi is the restriction of θiµiθi−1µi−1 · · · θ1µ1 to the variables

occurring in R′i.

Proof. It can be proved [12] that there exists a set {CP,1, · · · , CP,i, · · ·} of variants
of clauses of P such that each CP,i satisfies Ci = µiCP,i where µi is an idempotent
substitution such that dom(µi) = var(CP,i) and

∀i > 0 var(CP,i) ∩ (var(A0) ∪ ∪1≤j<ivar(CP,j) ∪ ∪j≥1var(Cj)) = ∅

• For the first transition. By definition θ1A0 = θ1C
+
1 = θ1µ1C

+
P,1. Further-

more, since var(CP,1) ∩ var(A0) = ∅, and var(C1) ∩ var(A0) = ∅, we have
θ1µ1A0 = A0 = θ1µ1C

+
P,1. It can be proved [12] that the restriction σ1 of θ1µ1

to var(C+
P,1) is a mgu of A0 and C+

P,1 and we get the transition A0
CP,1,σ1→P R′1.

σ1A0 = A0 follows from θ1µ1A0 = A0. Now, let ρ1 be the restriction of θ1µ1 to
var(R′1) and let us prove that ρ1R

′
1 = ρ1σ1C

−
P,1 = θ1µ1C

−
P,1 = θ1C

−
1 = R1. Let

v ∈ var(C−P,1), two cases are possible. If v ∈ var(C+
P,1), then σ1v = θ1µ1v and

we can conclude since θ1µ1θ1µ1v = θ1µ1v. Else, if v �∈ var(C+
P,1), then we have

ρ1σ1v = ρ1v = θ1µ1v which settles the claim.
• For the i-th transition. If A is the selected atom in Ri−1 at position k, then
there exists an atom A′ occurring at position k in R′i−1 such that A = ρi−1A′

and we get θiρi−1A′ = θiµiC
+
P,i. From dom(ρi−1) ⊆ var(R′i−1) and var(R′i−1) ⊆

(∪1≤j<ivar(CP,j)∪var(A0)), it follows ρi−1CP,i = CP,i and therefore θiρi−1A′ =
θiµiρi−1C+

P,i. Furthermore, dom(µi) = var(CP,i) and we have µiA = A. Hence
we have θiµiρi−1A′ = θiµiρi−1C+

P,i, and since θiµi · · · θ1µ1A0 = A0, there ex-
ists a mgu σi of A′ and C+

P,i such that σiA0 = A0 and for a substitution

ηi, we have ηiσi = θiµiρi−1. Hence, we get the transition R′i−1
CP,i,σi→P R′i.

Since σi is idempotent, we have θiµiρi−1σi = ηiσiσi = ηiσi = θiµiρi−1 and
it follows θiµiρi−1R′i = Ri. Finally, we prove by induction that ∀n ≥ i + 1,
ρnσnσn−1 · · ·σi+1R

′
i = Ri. Hence, since Ri contains only finite atoms and for all

n ≥ i+1, we have σnσn−1 · · ·σi+1R
′
i ≤ Ri, by lemma 3, the derivation obtained

is a derivation over the domain of finite terms.

We are now in position to prove the completeness theorem.

Theorem 2 (Completeness). If A ∈ gfp(T�P), then there exists an SLD-
proof over the domain of finite terms:

A
CP,1,σ1→P R′1 →P · · · →P R′i−1

CP,i,σi→P R′i →P · · ·

such that for all i ≥ 1, σiA = A

Proof. Immediate by Tarski’s theorem, lemma 2 and lemma 4.

Logic Programming and Co-inductive Definitions 353

Hence, if we consider program (1), since eat(i) ∈ gfp(T�P), there exists an
SLD-proof over the domain of finite terms from eat(i). Another typical example
is the program containing the clauses :

path(x, x)← ; path(x, z)← edge(x, y), path(y, z)

and testing connectivity in a directed graph. When the graph considered is cyclic,
there exists an infinite derivation over the domain of finite terms from the query
path(s, x), where s is an arbitrary node occurring in the cycle, which can be
viewed as a proof of ∀x path(s, x).

3.3 Infinite SLD-Derivations Which Do Not Compute Anything

The derivation obtained by lemma 2 is a special case of a derivation which does
not compute infinite terms: such a derivation does not compute anything since
the mgu’s used are just renaming substitutions. For this subclass of derivations,
we can prove a supplementary result concerning unfair derivations. For this, let
�P �+ = {θC | C ∈ P , dom(θ) ⊆ var(C+)} and from which we can define a
monotone operator T�P	+ , as described by (4). Unfair infinite derivations which
do not compute anything can be viewed as partial proofs. Recall that given a
derivation:

R0
C1,θ1→ P R1 →P · · · →P Ri−1

Ci,θi→ P Ri →P · · ·
for all i ≥ 1 we have P |= Ri ⇒ P |= θi · · · θ1R0. This result can be generalised
by considering R∞ = ∪p≥0 ∩p≤n Rn.

Theorem 3. Let P be a program and A0 be an atom. If there exists an infinite
derivation R0 = A0

C1,θ1→ P R1 →P · · · →P Ri−1
Ci,θi→ P Ri →P · · · such that for

all i > 0, dom(θi) ⊆ var(C+
i), then:

R∞ ⊆ gfp(T�P	+)⇒ A0 ∈ gfp(T�P	+)

Proof. Suppose that ∪p≥0 ∩p≤n Rn ⊆ gfp(T�P	+) and let us prove that A0 ∈
gfp(T�P	+). For this, by Tarski’s theorem and by lemma 1, it suffices to prove
that there exists a proof tree T of A0 for �P �+. Let us define the sequence
T1, · · · , Ti, · · · of partial proof trees such that every atom occurring in Ri is a
leaf in Ti. T1 is obtained by considering the first transition: its root A0 = θ1A0
has atoms in R1 = θ1C

−
1 as children. We show now how we can obtain Tn from

Tn−1. We know that atoms occurring in Rn−1 are leaves in Tn−1. Let A be the
selected atom in Rn−1, since dom(θn) ⊆ var(C+

n), Tn is obtained by adding
atoms occurring in θnC

−
n as children of A. Since, Rn = θnRn−1[k ← C−n] =

Rn−1[k ← θnC
−
n], Tn is a partial proof tree of A0 for �P �+ such that every atom

occurring in Rn is a leaf in Tn. By iterating this process, we obtain a partial
proof tree T∞ whose leaves are either the head of a unit clause in �P �+ or an
atom in R∞, which is, by hypothesis, in gfp(T�P	+) and correspond, by Tarski’s
theorem and by lemma 1, to the root of a proof tree for �P �+. Therefore, by
adding in T∞ these proof trees at the corresponding leaf, we obtain a proof tree
of A0 for �P �+.

354 M. Jaume

This theorem is not a special case of theorem 2, it just gives another way to
interpret a subclass of infinite derivations. For example, if we consider the deriva-
tion we can obtain with program (2), from the query p(x), then, by theorem 2,
we have p(x) ∈ gfp(T�P) while by theorem 3, we just have p(x) ∈ gfp(T�P	+)⇒
p(x) ∈ gfp(T�P	+) since for this derivation we have R∞ = p(x). Such a semantics
works well for programs whose clauses do not contain existential variables (i.e.,
var(C−) ⊆ var(C+)), since in this case we have �P � = �P �+.

4 Conclusion

In this paper, semantics of nonterminating derivations has been investigated
within a proof-theoretic framework: clauses have been considered as construc-
tors of a co-inductive definition. Following this approach, a semantics for the
class of infinite derivations which do not compute infinite terms has been de-
fined and proved sound and complete by using purely proof-theoretic methods:
an atom is the starting point of an infinite derivation over the domain of finite
terms if and only if it is in the greatest fixpoint of the transformation T�P	. The
restriction to the class of derivations over the domain of finite terms is justi-
fied by incompleteness results of other approaches, considering infinite terms, in
which the greatest fixpoint construction, corresponding to the “logic programs
as co-inductive definitions” paradigm, is not equivalent to the operational se-
mantics. In fact, in section 2, by considering this identification at a deeper level,
we have seen that co-induction is too rich to give a semantics to nonterminating
SLD-derivations. This observation explains why most attempts to give a com-
plete semantics to derivations computing infinite terms have not been successful.
Therefore, while all the approaches existing in this area are based on the concept
of “atoms computable at infinity”, we have presented a semantics based on the
concept of “atoms provable at infinity”.

It seems that the operational notion of “computability at infinity” (associ-
ated with infinite derivations computing infinite terms) is better captured by
a least fixpoint characterisation. This idea has been developped by G. Levi
and C. Palamidessi in [15]. In an order-theoretic framework (involving algebraic
CPO), they consider the “final result” of an infinite derivation as the limit of
a sequence of approximations, characterised by a least fixpoint semantics based
on a modified version of the programs. Then, infinite objects in the denotation
of a program are characterised by the topological closure of lfp(TP∪C(P)) (where
C(P) is the set of added clauses): each infinite element is the least upper bound
of a directed set (of finite elements which are its partial approximations) included
in lfp(TP∪C(P)). However, the semantics obtained is sound but not complete.

Of course, a satisfactory semantics for all infinite derivations from a logic
program has not yet been found. However, even if the results proved in this
paper may seem unsurprising, they allow us to gain a better understanding of
the problem. In fact, current approaches in this area only give meaning to infinite
derivations that compute at least an infinite term and ignore derivations over
the domain of finite terms.

Logic Programming and Co-inductive Definitions 355

Acknowledgements. Many thanks to René Lalement and Catherine Dubois
for enlightening discussions about this work.

References

1. M.A. Nait Abdallah. On the interpretation of infinite computations in logic pro-
gramming. In J. Paredaens, editor, 11th International Colloquium on Automata,
Languages and Programming, ICALP’84, volume 172 of LNCS, pages 358–370.
Springer-Verlag, 1984.

2. P. Aczel. An introduction to inductive definitions. In K.J. Barwise, editor, Hand-
book of Mathematical Logic, Studies in Logic and Foundations of Mathematics.
North Holland, 1977.

3. T. Coquand. Infinite objects in type theory. In H. Barendregt and T. Nipkow,
editors, 1st International Workshop on Types for Proofs and Programs, TYPES’93,
volume 806 of LNCS, pages 62–78. Springer-Verlag, 1994.

4. F.S. de Boer, A. Di Pierro, and C. Palamidessi. Nondeterminism and infinite com-
putations in constraint programming. Theoretical Computer Science, 151(1):37–78,
1995.

5. P. Deransart and J. Maluszynski. A Grammatical View of Logic Programming.
The MIT Press, 1993.

6. M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli. Declarative modeling of the
operational behavior of logic languages. Theoretical Computer Science, 69(3):289–
318, 1989.

7. W.G. Golson. Toward a declarative semantics for infinite objects in logic program-
ming. Journal of Logic Programming, 5(2):151–164, 1988.

8. J. Hein. Completions of perpetual logic programs. Theoretical Computer Science,
99(1):65–78, 1992.

9. G. Huet. A Uniform Approach to Type Theory, volume Logical Foundations of
Functional Programming, pages 337–398. Addison-Wesley, 1990.

10. J. Jaffar and J.L. Lassez. Constraint Logic Programming. Technical Report 86/74,
Monash University, Victoria, Australia, June 1986.

11. J. Jaffar and P.J. Stuckey. Semantics of infinite tree logic programming. Theoretical
Computer Science, 46(2-3):141–158, 1986.

12. M. Jaume. Logic programming and co-inductive definitions. Research Report
98-140, Enpc-Cermics, 1998.

13. M. Jaume. A full formalisation of SLD-resolution in the calculus of inductive
constructions. Journal of Automated Reasoning, 23(3–4):347–371, 1999.

14. R. Lalement. Computation as Logic. Prentice Hall International Series in Computer
Science, 1993.

15. G. Levi and C. Palamidessi. Contributions to the semantics of logic perpetual
processes. Acta Informatica, 25(6):691–711, 1988.

16. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
17. L.C. Paulson and A.W. Smith. Logic programming, functional programming, and

inductive definitions. In P. Schroeder-Heister, editor, International Workshop on
Extensions of Logic Programming, volume 475 of LNCS, pages 283–310. Springer-
Verlag, 1989.

18. A. Podelski, W. Charatonik, and M. Müller. Set-based failure analysis for logic
programs and concurrent constraint programs. In S. Doaitse Swierstra, editor, 8th
European Symposium on Programming, ESOP’99, LNCS, pages 177–192. Springer-
Verlag, 1999.

A Theory of Explicit Mathematics
Equivalent to ID1

Reinhard Kahle1 and Thomas Studer2

1 WSI, Universität Tübingen,
Sand 13, D-72076 Tübingen, Germany

Tel. +49-7071-29 74036, Fax: +49-7071-29 5060
kahle@informatik.uni-tuebingen.de

2 IAM, Universität Bern,
Neubrückstr. 10, CH-3012 Bern, Switzerland
Tel. +41-31-631 4976, Fax: +41-31-631 3965

tstuder@iam.unibe.ch

Abstract. We show that the addition of name induction to the theory
EETJ + (LEM-IN) of explicit elementary types with join yields a theory
proof-theoretically equivalent to ID1.

Keywords: Proof theory, explicit mathematics, inductive definitions.

1 Introduction

In this paper, we introduce a theory of explicit mathematics which is proof-
theoretically equivalent to the well-known theory ID1 of non-iterated positive
arithmetical inductive definitions.

Explicit mathematics was introduced by Feferman to formalize Bishop-style
constructive mathematics [Fef75,Fef79]. In the following, it turned out that this
framework is important for proof-theoretic studies of subsystems of analysis and
Kripke-Platek set theory. Moreover, it provides a very useful account to theoret-
ical computer science, particularly, it is well-suited for the study of functional
and object-oriented programming, cf. [Fef90,Fef91,Fef92,Stä97,Stä98,Stu0x].

Theories of explicit mathematics are formulated in a two sorted language. The
first-order part, consisting of so-called applicative theories, is based on partial
combinatory logic which can be extended axiomatically by additional constants,
cf. [JKS99]. Types build the second sort of objects in explicit mathematics. They
are extensional in the usual set-theoretic sense, but a special naming relation due
to Jäger [Jäg88] allows us to deal with names of the types on the first-order level.
These names show an intensional behaviour.

There exist a wide variety of theories of explicit mathematics. The proof-
theoretic strength of the different theories cover a broad part of the landscape of
mathematical theories. Nevertheless, the theory presented here is the first theory
of explicit mathematics equivalent to ID1.

The well-known theory ID1 of non-iterated inductive definitions is one of
the most prominent theories in proof theory. Formalizing least fixed points of

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 356–370, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A Theory of Explicit Mathematics Equivalent to ID1 357

positive arithmetical operator forms, it can be regarded as the most elementary
impredicative theory. Going back to Kreisel [Kre63], its proof-theoretic study
(and the study of its iterations) can be found in [Fef70,BFPS81,Poh89].

In order to get a theory with the proof-theoretic strength of ID1, we will add
the concept of name induction to the theory EETJ of explicit elementary types
with join. That means that names of types can be built by use of generators
only, i.e. that the naming relation � is, so to say, least.

In the context of Martin-Löf’s type theory, this leastness condition corre-
sponds to certain elimination rules which have first been considered by Palm-
gren and later by Rathjen, also in connection with universes, [Pal98,GR94]. For
applicative theories, the concept of name induction in the presence of universes
is studied in detail in a joint work with Jäger, [JKS0x]. The theories studied
in that paper exceed the strength of ID1 substantially by having proof-theoretic
strength of Feferman’s theory T0. For the notion of proof-theoretic strength, we
refer to Feferman [Fef88,Fef0x].

In type systems dealing with record or object types the concept of structural
rule is important. Simplifying, we can say that these rules rely on the assumption
that the universe of types consists of record or object types only, cf. e.g. [AC96].
Name induction can be seen as a generalization of this idea since it allows us
to prove that the only types that exists are those which are created by the
generators.

The structure of the paper is as follows. In the next section, we introduce the
theory NEM of explicit mathematics with name induction and state some basic
results. As the core of the paper, we prove in Section 3 that NEM allows for the
definition of accessible parts. This result is used in the fourth section to give an
interpretation of IDacc

1 , a theory equivalent to ID1, in NEM. In the final section,
we describe a model of NEM which can be formalized in ID1.

A substantial part of the work of the first author was elaborated while visiting
Sol Feferman at Stanford University under support of the Deutsche Forschungs-
gemeinschaft. The work of the second author is supported by the Schweizerische
Nationalfonds. This article benefits from fruitful discussion with Gerhard Jäger.

2 The Theory NEM of Explicit Mathematics
with Name Induction

2.1 Explicit Mathematics

In this section, we present the theory EETJ of explicit elementary types with
join.

The underlying language LEM is comprised of

– individual variables a, b, c, f, u, v, w, x, y, z, . . .,
– type variables A,B, S, T, U, V,X, Y, Z, . . .,
– individual constants k, s (combinators), p, p0, p1 (pairing and projections),
0 (zero), sN (successor), pN (predecessor) and dN (definition by numerical
cases),

358 R. Kahle and T. Studer

– generators which are special individual constants, namely nat (natural num-
bers), id (identity), co (complement), int (intersection), dom (domain), inv
(inverse image) and j (join),

– one binary function symbol · for (partial) application of individuals to indi-
viduals,

– unary relation symbols ↓ (defined) and N (natural numbers) and
– binary relation symbols ∈ (membership), = (equality) and � (naming or
representation).

Individual terms (r, s, t, r1, s1, t1, . . .) of LEM are built up from individual
variables and individual constants by means of the function symbol ·. We use
(st) or st as an abbreviation for (s · t) and adopt the convention of association
to the left, i.e. s1s2 . . . sn stands for (. . . (s1 · s2) . . . sn).

Atomic formulae of LEM are N(s), s↓, s = t, U = V , s ∈ U and �(s, U). N(s)
means that s is a natural number. s↓ means that s is defined or s has a value.
�(s, U) is the naming relation, expressing that the individual s represents the
type U or is a name of U .

The formulae of LEM (ϕ,ψ, . . .) are built up from the atomic formulae by
use of the usual propositional connectives and quantification in both sorts, over
individuals as well as over types.

A formula which contains neither quantifiers over types nor the naming re-
lation � is called elementary.

As abbreviations, we use:

t′ := sNt,

(s, t) := pst,

s � t := s↓ ∨ t↓ → s = t,
s 	= t := s↓ ∧ t↓ ∧ ¬(s = t),
s ∈ N := N(s),

∃x ∈ N.ϕ(x) := ∃x.x ∈ N ∧ ϕ(x),
∀x ∈ N.ϕ(x) := ∀x.x ∈ N→ ϕ(x),

s ∈̇ t := ∃X.�(t,X) ∧ s ∈ X,
∃x ∈̇ s.ϕ(x) := ∃x.x ∈̇ s ∧ ϕ(x),
∀x ∈̇ s.ϕ(x) := ∀x.x ∈̇ s→ ϕ(x),

�(s) := ∃X.�(s,X).

The logic for the first-order part of theories of explicit mathematics is Bee-
son’s classical logic of partial terms, cf. [Bee85,TvD88]. The second order part is
based on classical logic with equality.

The nonlogical axioms of EETJ can be divided into the following groups.

A Theory of Explicit Mathematics Equivalent to ID1 359

I. Applicative axioms.

(1) kab = a,
(2) sab↓ ∧ sabc � ac(bc),
(3) p0(a, b) = a ∧ p1(a, b) = b,
(4) 0 ∈ N ∧ ∀x ∈ N.x′ ∈ N,
(5) ∀x ∈ N.x′ 	= 0 ∧ pN(x′) = x,
(6) ∀x ∈ N.x 	= 0 → pNx ∈ N ∧ (pNx)′ = x,
(7) a ∈ N ∧ b ∈ N ∧ a = b→ dNxyab = x,
(8) a ∈ N ∧ b ∈ N ∧ a 	= b→ dNxyab = y.

II. Explicit representation and extensionality.

(1) ∃x.�(x, U),
(2) �(a, U) ∧ �(a, V)→ U = V ,
(3) (∀x.x ∈ U ↔ x ∈ U)→ U = V .

III. Basic type existence axioms.

Natural numbers

�(nat) ∧ ∀x.x ∈̇ nat↔ N(x).

Identity

�(id) ∧ ∀x.x ∈̇ id↔ ∃y.x = (y, y).

Complements

�(a) → �(co(a)) ∧ ∀x.x ∈̇ co(a)↔ x /̇∈ a.
Intersections

�(a) ∧ �(b) → �(int(a, b)) ∧ ∀x.x ∈̇ int(a, b)↔ x ∈̇ a ∧ x ∈̇ b.
Domains

�(a) → �(dom(a)) ∧ ∀x.x ∈̇ dom(a)↔ ∃y.(x, y) ∈̇ a.
Inverse images

�(a) → �(inv(a, f)) ∧ ∀x.x ∈̇ inv(a, f)↔ fx ∈̇ a.
Joins

�(a) ∧ (∀x ∈̇ a.�(fx)) → �(j(a, f)) ∧Σ(a, f, j(a, f)),
where Σ(a, f, b) means that b names the disjoint union of f over a, defined as

Σ(a, f, b) := ∀x.x ∈̇ b↔ ∃y, z.x = (y, z) ∧ y ∈̇ a ∧ z ∈̇ fy.

IV. Uniqueness of generators. With respect to LEM, it is given by the collection
(LEM-UG) of the following axioms for all syntactically different generators r0 and
r1 and arbitrary generators s and t of LEM:

360 R. Kahle and T. Studer

(1) r0 	= r1,
(2) ∀x.sx 	= nat ∧ sx 	= id,
(3) ∀x, y.sx = ty → s = t ∧ x = y.

EETJ is the theory consisting of all axioms of the groups I. – IV.
As addition to the axioms of EETJ, we will consider the induction principle

(LEM-IN), the schema of complete induction on N for arbitrary formulae ϕ(u):

(LEM-IN) ϕ(0) ∧ (∀x ∈ N.ϕ(x)→ ϕ(x′)) → ∀x ∈ N.ϕ(x)

It is a well-known result that we can introduce λ abstraction and recursion using
the combinator axioms (1) and (2), cf. [Fef75,Bee85].

Proposition 1.
1. For every variable x and every term t of LEM, there exists a term λx.t of
LEM whose free variables are those of t, excluding x, such that

EETJ � λx.t ↓ ∧ (λx.t)x � t.

2. There exists a term rec of LEM such that

EETJ � rec f ↓ ∧ ∀x.rec f x � f (rec f)x.

Our definition EETJ is based on a finite axiomatization of elementary compre-
hension. This approach is essential for the formulation of name induction below.
In contrast, the original definition of EETJ employed an infinite axiom schema.
A theorem of Feferman and Jäger [FJ96] shows that this schema is derivable
from the finite axiomatization.

Lemma 1 (Elementary comprehension). Let ϕ be an elementary LEM for-
mula with no (distinct) individual variables other than z1, . . . , zm+1 and no (dis-
tinct) type variables other than Z1, . . . , Zn. Then there exists a closed individual
term t of LEM, depending on ϕ, such that EETJ proves for all individual terms
a = a1, . . . , am, b = b1, . . . , bn and type terms S = S1, . . . , Sn that:

1. �(b,S) → �(t(a, b)),
2. �(b,S) → ∀x(x ∈̇ t(a, b)↔ ϕ[x,a,S]).

Informally, we will write {x : ϕ(x)} for the collection of all individuals c
satisfying ϕ(c). Using this notation, the lemma expresses that, for elementary
formulae ϕ[u,y,Y], the following hold:

1. {x : ϕ[x,a,S]} is a type,
2. there is a name t(a, b) for this type which is given uniformly in the individual
parameters and the names of the type parameters.

A Theory of Explicit Mathematics Equivalent to ID1 361

2.2 Name Induction

In this section, we define the schema of name induction. This induction principle
states that names can be defined by means of generators only. Because, in a
certain sense, names can be seen as intensional representations of sets, we get
an intensional version of ∈ induction.

In order to state the formal definition of name induction, we introduce as
auxiliary notation the closure condition C(ϕ, a) as the disjunction of the following
formulae:

(1) a = nat ∨ a = id,
(2) ∃x.a = co(x) ∧ ϕ(x),
(3) ∃x, y.a = int(x, y) ∧ ϕ(x) ∧ ϕ(y),
(4) ∃x.a = dom(x) ∧ ϕ(x),
(5) ∃f, x.a = inv(f, x) ∧ ϕ(x),
(6) ∃f, x.a = j(x, f) ∧ ϕ(x) ∧ ∀y ∈̇ x.ϕ(fy).
The schema of name induction is now given by

(LEM-I�) (∀x.C(ϕ, x)→ ϕ(x))→ ∀x.�(x)→ ϕ(x),

for arbitrary formulae ϕ(x) of LEM.
The theory NEM of explicit mathematics with name induction consists of the

axioms of EETJ plus (LEM-IN) and (LEM-I�).
As a first consequence of (LEM-I�), we prove name strictness which, more

explicitly, says the (appropriate) arguments of generators of names are names,
too. This is represented by the conjunction Str(�) of the following clauses:
(1) ∀x.�(co(x))→ �(x),
(2) ∀x, y.�(int(x, y))→ �(x) ∧ �(y),
(3) ∀x.�(dom(x))→ �(x),
(4) ∀f, x.�(inv(f, x))→ �(x),
(5) ∀f, x.�(j(x, f))→ �(x) ∧ ∀y ∈̇ x.�(fy).

To show Str(�) in NEM, we first note that the closure of the names under
condition C is guaranteed by the type existence axioms of EETJ:

EETJ � C(�, x)→ �(x).

Lemma 2. NEM � Str(�).
Proof. The proof is straightforward using (LEM-I�) on the formula C(�, x), i.e.
we have

(∀x.C(C(�, x), x)→ C(�, x))→ ∀x.�(x)→ C(�, x).
The premise follows immediately from the preceding remark and the fact that
ϕ occurs only positively in C(ϕ, x). From the consequence ∀x.�(x) → C(�, x)

362 R. Kahle and T. Studer

we get the required conclusion Str(�) by substituting the different names. For
example, for clause (5) we have

�(j(x, f))→ C(�, j(x, f))
→ ∃g, z.j(x, f) = j(z, g) ∧ �(z) ∧ ∀y ∈̇ z.�(gy)
→ ∃g, z.x = z ∧ f = g ∧ �(z) ∧ ∀y ∈̇ z.�(gy)
→ �(x) ∧ ∀y ∈̇ x.�(fy)

For this argument, the uniqueness of generators (LEM-UG) is essential.

3 Accessible Parts in NEM

For the proof-theoretic analysis of NEM, the crucial property is the possibility
of defining accessible parts. This will be used in the next section to embed the
theory IDacc

1 in NEM.
Let us introduce the following abbreviation:

Closed(a, b, ϕ) := ∀x ∈̇ a.(∀y ∈̇ a.(y, x) ∈̇ b→ ϕ(y))→ ϕ(x).

If b is a name for a binary relation, then Closed(a, b, ϕ) expresses that ϕ holds
for all elements c ∈̇ a if it holds for all predecessors of c in a with respect to the
relation named by b.

Using this abbreviation we can state the following proposition which is the
essential step of the embedding of IDacc

1 .

Theorem 1. There exists a formula Acc(a, b, x) such that NEM proves for ar-
bitrary formulae ϕ(x):

(Acc.1) �(a) ∧ �(b)→ Closed(a, b,Acc(a, b, ·)),
(Acc.2) �(a) ∧ �(b) ∧ Closed(a, b, ϕ)→ ∀x.Acc(a, b, x)→ ϕ(x).

Proof. Let us assume �(a,A) and �(b, B). We set Ax = {y ∈ A|(y, x) ∈ B}, i.e.
the subset of A consisting of all B-predecessors of x. By elementary comprehen-
sion, there exists a closed term pd so that �(pd (a, b, x), Ax).

By use of the recursion theorem, we can define a term f satisfying the equa-
tion:

f (a, b, c) � j (pd (a, b, c), λy.f(a, b, y)). (�)

Hence, f maps an element c ∈ A to the disjoint union of all f-images of B-
predecessors of c. Using f, we define the formula Acc in the following way:

Acc(a, b, c) := c ∈̇ a ∧ �(f (a, b, c)).
If Acc(a, b, c) holds we say that “c is accessible”. The idea of its definition is
the following. pd (a, b, c) is the name of the set Ac which contains of all B-
predecessors of c in A. Using join, we associate this set with a set of elements
which can be proven to be names if f (a, b, c) is a name. This trick allows us to
encode arbitrary objects of our language by names, and then name induction
can be used to prove the required properties.

A Theory of Explicit Mathematics Equivalent to ID1 363

(Acc.1) To show Closed(a, b,Acc(a, b, ·)), we choose an element c of A such that

∀y ∈̇ a.(y, c) ∈̇ b→ Acc(a, b, y).

The definition of pd yields

∀y.y ∈̇ pd (a, b, c)→ Acc(a, b, y).

This implies by the definition of Acc that

∀y.y ∈̇ pd (a, b, c)→ �(f (a, b, y)).
From the axioms about join, we obtain

�(j (pd (a, b, c), f)).
By the equation (�), this means �(f (a, b, c)). Together with the assump-
tion c ∈̇ a we have Acc(a, b, c). Since c was chosen arbitrarily, the proof
of Closed(a, b,Acc) is completed.

(Acc.2) To prove the second assertion we first show two auxiliary statements
(A) and (B).
(A) says that if c is accessible, then all its b predecessors are accessible,
too.

Acc(a, b, c)→ (∀x ∈̇ pd (a, b, c).Acc(a, b, x)). (A)

Assuming Acc(a, b, c), we get by (�) that �(j (pd (a, b, c), λy.f(a, b, y)))
holds. Then ∀x ∈̇ pd (a, b, c).�(f(a, b, x)) is a consequence of Lemma 2
about name strictness. To complete the proof of (A), we have to check
that ∀x ∈̇ pd (a, b, c).x ∈̇ a, which immediately follows from the defini-
tion of pd.
In order to formulate the assertion (B), we define an additional formula
ψϕ(u, v, w) depending on a formula ϕ(x) which will be used as induction
formula in the schema of name induction. Using the definition of f, here
we “replace” an arbitrary objects by their associated names.

ψϕ(a, b, u) := ∀y.Acc(a, b, y) ∧ f (a, b, y) = u→ ϕ(y).

Now, the statement (B) reads as

Closed(a, b, ϕ) ∧ C(ψϕ(a, b, ·), u)→ ψϕ(a, b, u). (B)

For the proof of (B), we assume Closed(a, b, ϕ) ∧ C(ψϕ(a, b, ·), u) and
Acc(a, b, c) ∧ f (a, b, c) = u, from which we have to show ϕ(c). From the
last assumption, we get by (�):

u = j (pd (a, b, c), λy.f(a, b, y)).

Uniqueness of generators and clause (5) of C(ψϕ(a, b, ·), u) yield
∀x ∈̇ pd (a, b, c).ψϕ(a, b, f(a, b, x))).

364 R. Kahle and T. Studer

By the definition of ψϕ, this reads

∀x ∈̇ pd (a, b, c).∀y.Acc(a, b, y) ∧ f (a, b, y) = f(a, b, x)→ ϕ(y).

Choosing x for y, we get

∀x ∈̇ pd (a, b, c).Acc(a, b, x)→ ϕ(x).

Assuming Acc(a, b, c), we obtain by (A) that ∀x ∈̇ pd (a, b, c).Acc(a, b, x)
holds. So we have

∀x ∈̇ pd (a, b, c).ϕ(x).

But this is the premise of the assumption Closed(a, b, ϕ) and we get A(c).
Thus, (B) is proven.

To prove the second assertion (Acc.2), we now take an arbitrary formula
ϕ(x) and assume Closed(a, b, ϕ) and Acc(a, b, x). For the first assumption
(B) yields

∀y.C(ψϕ(a, b, ·), y)→ ψϕ(a, b, y).

This is just the premise of name induction for ψϕ(a, b, y) and we get
from (LEM-I�)

∀y.�(y)→ ψϕ(a, b, y).

By the definition of ψϕ(a, b, y), this is

∀y.�(y)→ ∀x.Acc(a, b, x) ∧ f (a, b, x) = y → ϕ(x).

Since the assumption Acc(a, b, x) implies �(f (a, b, x)), we can choose y
as f (a, b, x) and all premises are satisfied. Therefore we finally obtain
the required result ϕ(x).

In this proof we followed the presentation of the corresponding proof in [JKS0x],
where the principle of inductive generation is verified in the presence of universes.

4 Modelling IDacc
1 in NEM

To show the lower bound of NEM, we will embed the theory IDacc
1 of accessibility

elementary inductive definitions, cf. [BFPS81,Can96]. Let L1 be the language
of Peano arithmetic. In order to obtain LID, we extend this language by adding
new unary predicate symbols Pϕ for every formula ϕ(x, y) of L1 containing two
distinct free variables. For the definition of IDacc

1 , we extend the axioms of PA to
the new language, including formulae induction for arbitrary LID formulae, and
add for each new predicate symbol Pϕ and each LID formula ψ the following two
axioms:

∀x.(∀y.ϕ(x, y)→ Pϕ(y))→ Pϕ(x)(IDacc
1 .1)

(∀x.(∀y.ϕ(x, y)→ ψ(y))→ ψ(x))→ ∀x.Pϕ(x)→ ψ(x)(IDacc
1 .2)

A Theory of Explicit Mathematics Equivalent to ID1 365

It is well-known that Peano arithmetic can be embedded in EETJ + (LEM-IN),
indeed in its applicative fragment BON+(LEM-IN), using an interpretation ·N , cf.
[FJ93]. This interpretation translates formulae of L1 into elementary formulae
of LEM. Thus, by elementary comprehension we get for every binary formulae
ϕ(x, y) of L1 a name tϕN for the corresponding type, i.e. EETJ proves that tϕN

is a name for {(x, y)|x ∈ N ∧ y ∈ N ∧ ϕN (x, y)}. These names will be employed
in the proof of the following theorem to represent the binary relations which are
used in the definition of IDacc

1 .

Theorem 2. There exists a translation ·N from LID to LEM such that

IDacc
1 � ϕ ⇒ NEM � ϕN

for all LID formulae ϕ.

Proof. To interpret IDacc
1 in NEM we extend the translation ·N by setting

[Pϕ(x)]N := Acc(nat, tϕN , x),

where Acc(x, y, z) is defined as in Theorem 1. Then the proof runs by induction
on the length of the derivation of IDacc

1 � ϕ. In addition to the embedding of PA
in EETJ, we need only to check the axioms for the new predicate symbols. The
translation of (IDacc

1 .1) reads as

[∀x.(∀y.ϕ(x, y)→ Pϕ(y))→ Pϕ(x)]N
↔ ∀x ∈̇ nat.(∀y ∈̇ nat.ϕN (x, y)→ Acc(nat, tϕN , y))→ Acc(nat, tϕN , x)
↔ Closed(nat, tϕN ,Acc(nat, tϕN , ·)).

Since the last line is an instance of (Acc.1) of Theorem 1, this axiom is verified.
In the same way, (IDacc

1 .2)N follows from (Acc.2):

[(∀x.(∀y.ϕ(x, y)→ ψ(y))→ ψ(x))→ ∀x.Pϕ(x)→ ψ(x)]N

↔ (∀x ∈̇ nat.(∀y ∈̇ nat.ϕN (x, y)→ ψN (y))→ ψN (x))
→ ∀x ∈̇ nat.Acc(nat, tϕN , x)→ ψN (x)

↔ Closed(nat, tϕN , ψN)→ ∀x.Acc(nat, tϕN , x)→ ψN (x).

The last line is an instance of (Acc.2), and we have finished the embedding of
IDacc

1 .

5 Modelling NEM in ID1

In this section, we embed NEM in the theory ID1 of non-iterated inductive defini-
tions. This extension of Peano arithmetic postulates the existence of least fixed
points for positive arithmetical operator forms. These are formulae ϕ(R, x) in
the language L1 with one additional relation symbol R that has only positive
occurrences in ϕ. The language of ID1 is L1 extended by new predicate symbols

366 R. Kahle and T. Studer

Pϕ for each positive operator form ϕ(R, x). As axioms, we choose those of PA,
including formulae induction extended to the new language and the following
two principles for each new predicate symbol Pϕ and arbitrary formulae ψ:

∀x.ϕ(Pϕ, x)→ Pϕ(x)(ID1.1)
(∀x.ϕ(ψ/R, x)→ ψ(x))→ ∀x.Pϕ(x)→ ψ(x)(ID1.2)

Here ϕ(ψ/R, x) denotes the result of substituting any occurrence of R(t) in ϕ
by ψ(t/x).

In [Fef75], Feferman presented an inductive model construction for explicit
mathematics. Beeson showed in [Bee85] that for the system EETJ + (LEM-IN)
this construction can be carried out in the theory ÎD1, cf. also [Mar94,MS98].
This theory stating only the existence of (not necessarily least) fixed points of
positive arithmetical operator forms can be obtained from ID1 by replacing the
axioms (ID1.1) and (ID1.2) by

∀x.ϕ(Pϕ, x)↔ Pϕ(x).(ÎD1)

In fact, we can use Beeson’s formalization for the analysis of NEM using, in
addition, the induction principle of ID1 to verify name induction (LEM-I�). The
only differences are the adaption to the finite axiomatization of elementary com-
prehension and the (trivial) verification of uniqueness of generators (LEM-UG)
which was not part of the original formulation of EETJ.

We start with a standard interpretation ·� of the applicative structure us-
ing the relation App(x, y, z) := {x}(y) � y in the sense of ordinary recursion,
cf. [FJ93]. Here, the constants of LEM are interpreted by numerals of L1 coding
appropriate number-theoretic functions satisfying the axioms of EETJ. With re-
spect to the generators we have to choose numerals according to the following
codes which will be used for the interpretation of the type structure:

– 〈1〉 codes the type of numerals,
– 〈2〉 codes the type of pairs with identical elements,
– 〈3, a〉 codes the complement of the type coded by a,
– 〈4, a, b〉 codes the intersection of the two types coded by a and b,
– 〈5, a〉 codes the domain of a function given as a type of ordered pairs coded
by a

– 〈6, f, a〉 codes the inverse images of f , i.e. the type of all individuals x with
fx is an element of the type coded by a,

– 〈7, a, f〉 codes the join of f over the type coded by a.
By choosing the codes for the generators according to these conditions, the
axioms about uniqueness of generators are obviously satisfied.

To interpret the second order part of NEM we define three relations Typ, In
and In, using appropriate operator forms. The meaning of these predicates and
their relation to LEM is as follows. Let s, t be terms of ID1 interpreting types S, T
of LEM, respectively, and let r be the interpretation of an arbitrary LEM term,
then we have:

A Theory of Explicit Mathematics Equivalent to ID1 367

– Typ(t) represents that t is a code of a type.
– In(r, t) interprets the formula r ∈ T .
– In(r, t) holds for ¬r ∈ T .
– We have to introduce the relation In in order to guarantee that the defining
operator forms are positive. As a consequence, we have to prove that In(r, t)
is equivalent to ¬In(r, t).

– T = S is interpreted by Typ(t) ∧ Typ(s) ∧ ∀x.In(x, t) ↔ In(x, s), i.e. as
extensional equality.

– �(t, S) is also modelled by Typ(t) ∧ Typ(s) ∧ ∀x.In(x, t)↔ In(x, s).

In order to define Typ(x), In(x, y) and In(x, y) we need some coding. Let us
use ϕ0(x), ϕ1(x, y) and ϕ2(x, y) as abbreviations for ϕ(〈0, x〉), ϕ(〈1, 〈x, y〉〉) and
ϕ(〈2, 〈x, y〉〉), respectively. With this notation we can define Typ(x), In(x, y) and
In(x, y) as the “projections” P0

ϕ(x), P1
ϕ(x, y) and P2

ϕ(x, y) of the fixed point
Pϕ of the positive operator form:

ϕ(ψ, z) := (∃y.z = 〈0, y〉 ∧ CTyp(ψ, y)) ∨
(∃x, y.z = 〈1, 〈x, y〉〉 ∧ CIn(ψ, x, y)) ∨
(∃x, y.z = 〈2, 〈x, y〉〉 ∧ CIn(ψ, x, y))

with the following closure conditions (where it is helpful to keep in mind the in-
tended meanings of ψ0, ψ1 and ψ2, namely Typ, In and In, respectively). CTyp(ψ, z)
is the disjunction of the following clauses:

– z = 〈1〉,
– z = 〈2〉,
– ∃x.z = 〈3, x〉 ∧ ψ0(x),
– ∃x, y.z = 〈4, x, y〉 ∧ ψ0(x) ∧ ψ0(x),
– ∃x.z = 〈5, x〉 ∧ ψ0(x),
– ∃f, x.z = 〈6, f, x〉 ∧ ψ0(x),
– ∃f, x.z = 〈7, x, f〉 ∧ ψ0(x) ∧ ∀y.¬ψ2(y, x)→ ψ0({f}(y)).
CIn(ψ, u, z) is the disjunction of the following clauses:
– z = 〈0〉,
– z = 〈1〉 ∧ ∃y.u = 〈y, y〉,
– ∃x.z = 〈2, x〉 ∧ ψ0(x) ∧ ψ2(u, x),
– ∃x, y.z = 〈4, x, y〉 ∧ ψ0(x) ∧ ψ0(x) ∧ ψ1(u, x) ∧ ψ1(u, y),
– ∃x.z = 〈5, x〉 ∧ ψ0(x) ∧ ∃v.ψ1(〈u, v〉, x),
– ∃f, x.z = 〈6, f, x〉 ∧ ψ0(x) ∧ ψ1({f}(u), x),
– ∃f, x.z = 〈7, x, f〉 ∧ ψ0(x) ∧ (∀y.¬ψ2(y, x)→ ψ0({f}(y))) ∧

∃v, w.u = 〈v, w〉 ∧ ψ1(v, x) ∧ ψ1(w, {f}(v)).
The defining clauses for CIn are analogous, also containing positive occurrences
of ψ only.

Without the leastness property for the fixed point defined by ϕ we cannot
prove that In and In are complementary. Hence, for embedding EETJ+(LEM-IN)
in ÎD1 one has to make use of Aczel’s trick of sorting out all codes a for types
where In(·, a) is not the complement of In(·, a). However, in ID1 the leastness
condition allows for a direct proof that In and In are complements, cf. [Bee85].

368 R. Kahle and T. Studer

Lemma 3. ID1 � Typ(y)→ ∀x.In(x, y)↔ ¬In(x, y).

Theorem 3. NEM can be embedded in ID1.

Proof. The interpretation ·� is chosen according to the remarks above. The ver-
ification of the axioms of EETJ and the induction schema (LEM-IN) is straight-
forward, cf. [Bee85] and [Mar94]. It only remains to check the principle of name
induction,

(LEM-I�) (∀x.C(χ, x)→ χ(x))→ ∀x.�(x)→ χ(x).

This can be derived from the leastness principle for Pϕ

(∀z.ϕ(ψ, z)→ ψ(z))→ ∀z.Pϕ(z)→ ψ(z)

by choosing a formula ψ(z) so that

ψ(〈0, x〉)↔ χ�(x),
ψ(〈1, 〈x, y〉〉)↔ In(x, y),
ψ(〈2, 〈x, y〉〉)↔ In(x, y),

ψ(z)↔ 0 = 0 for every other argument z.

Starting from the premise [∀x.C(χ, x)→ χ(x)]� we obtain (∀z.ϕ(ψ, z)→ ψ(z)):
assume ϕ(ψ, z) holds with z = 〈0, x〉 for some x. Then we get CTyp(ψ, x) which
implies [C(χ, x)]�. So χ�(x) follows by our premise and ψ(〈0, x〉) holds by the
definition of ψ. If ϕ(ψ, z) holds and there is no x with z = 〈0, x〉, then ψ(z)
is trivially fulfilled. Hence we conclude by the leastness condition for Pϕ that
∀z.Pϕ(z) → ψ(z) holds. Let z be 〈0, x〉, then we have Pϕ(〈0, x〉) → ψ(〈0, x〉)
which reads as Typ(x) → χ�(x). Because �(x) is interpreted as Typ(x) we are
finished.

This theorem, together with Theorem 2 and the well-known proof-theoretic
equivalence of IDacc

1 and ID1, yields the final result:

Theorem 4. The theory NEM of explicit mathematics with name induction
is proof-theoretically equivalent to ID1, and its proof-theoretic ordinal is the
Bachmann-Howard ordinal.

References

AC96. Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.
Bee85. Michael Beeson. Foundations of Constructive Mathematics. Ergebnisse der

Mathematik und ihrer Grenzgebiete; 3.Folge, Bd. 6. Springer, Berlin, 1985.
BFPS81. Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried Sieg.

Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-
Theoretical studies, volume 897 of Lecture Notes in Mathematics. Springer-
Verlag, 1981.

A Theory of Explicit Mathematics Equivalent to ID1 369

Can96. Andrea Cantini. Logical Frameworks for Truth and Abstraction, volume 135
of Studies in Logic and the Foundations of Mathematics. North-Holland,
1996.

Fef70. Solomon Feferman. Formal theories for transfinite iterations of generalized
inductive definitions and some subsystems of analysis. In A. Kino, J. My-
hill, and R. Vesley, editors, Intuitionismus and Proof Theory, pages 303–326.
North Holland, Amsterdam, 1970.

Fef75. Solomon Feferman. A language and axioms for explicit mathematics. In
J. Crossley, editor, Algebra and Logic, volume 450 of Lecture Notes in Math-
ematics, pages 87–139. Springer, 1975.

Fef79. Solomon Feferman. Constructive theories of functions and classes. In
M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium 78,
pages 159–224. North–Holland, Amsterdam, 1979.

Fef88. Solomon Feferman. Hilbert’s program relativized: Proof-theoretical and
foundational reductions. Journal of Symbolic Logic, 53(2):364–384, 1988.

Fef90. Solomon Feferman. Polymorphic typed lambda-calculus in a type-free ax-
iomatic framework. In W. Sieg, editor, Logic and Computation, volume 106
of Contemporary Mathematics, pages 101–136. American Mathematical So-
ciety, 1990.

Fef91. Solomon Feferman. Logics for termination and correctness of functional
programs. In Y. Moschovakis, editor, Logic from Computer Sciences, pages
95–127. Springer, 1991.

Fef92. Solomon Feferman. Logics for termination and correctness of functional
programs II: Logics of strength PRA. In P. Aczel, H. Simmons, and S. S.
Wainer, editors, Proof Theory, pages 195–225. Cambridge University Press,
1992.

Fef0x. Solomon Feferman. Does reductive proof theory have a viable rationale?
Erkenntnis, 200x. To appear.

FJ93. Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics
with non-constructive µ-operator. Part I. Annals of Pure and Applied Logic,
65(3):243–263, 1993.

FJ96. Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics with
non-constructive µ-operator. Part II. Annals of Pure and Applied Logic,
79:37–52, 1996.

GR94. Ed Griffor and Michael Rathjen. The strength of some Martin-Löf type
theories. Archive for Mathematical Logic, 33:347–385, 1994.

Jäg88. Gerhard Jäger. Induction in the elementary theory of types and names. In
E. Börger, H. Kleine Büning, and M.M. Richter, editors, Computer Science
Logic ’87, volume 329 of Lecture Notes in Computer Science, pages 118–128.
Springer, 1988.

JKS99. Gerhard Jäger, Reinhard Kahle, and Thomas Strahm. On applicative theo-
ries. In A. Cantini, E. Casari, and P. Minari, editors, Logic and Foundation
of Mathematics, pages 83–92. Kluwer, 1999.

JKS0x. Gerhard Jäger, Reinhard Kahle, and Thomas Studer. Universes in explicit
mathematics. 200x. Submitted.

Kre63. Georg Kreisel. Generalized inductive definitions. Technical report, Stanford
Report, 1963.

Mar94. Markus Marzetta. Predicative Theories of Types and Names. Dissertation,
Universität Bern, Institut für Informatik und angewandte Mathematik, 1994.

370 R. Kahle and T. Studer

MS98. Markus Marzetta and Thomas Strahm. The µ quantification operator in
explicit mathematics with universes and iterated fixed point theories with
ordinals. Archive for Mathematical Logic, 37:391–413, 1998.

Pal98. Erik Palmgren. On universes in type theory. In G. Sambin and J. Smith,
editors, Twenty Five Years of Constructive Type Theory, pages 191–204.
Oxford University Press, 1998.

Poh89. Wolfram Pohlers. Proof Theory, volume 1407 of Lecture Notes in Mathemat-
ics. Springer, 1989.

Stä97. Robert Stärk. Call-by-value, call-by-name and the logic of values. In D. van
Dalen and M. Bezem, editors, Computer Science Logic CSL ’96: Selected
Papers, volume 1258 of Lecture Notes in Computer Science, pages 431–445.
Springer, 1997.

Stä98. Robert Stärk. Why the constant ‘undefined’? Logics of partial terms for strict
and non-strict functional programming languages. Journal of Functional
Programming, 8(2):97–129, 1998.

Stu0x. Thomas Studer. A semantics for λ
{}
str: a calculus with overloading and late-

binding. Journal of Logic and Computation, 200x. To appear.
TvD88. Anne Troelstra and Dirk van Dalen. Constructivism in Mathematics, vol-

ume II. North Holland, Amsterdam, 1988.

On the Complexity of Explicit Modal Logics

Roman Kuznets�

Moscow State University, Moscow 119899, Russia

Abstract. Explicit modal logic was introduced by S. Artemov. Whereas
the traditional modal logic uses atoms ��F with a possible semantics
“F is provable”, the explicit modal logic deals with atoms of form t:F ,
where t is a proof polynomial denoting a specific proof of a formula F .
Artemov found the explicit modal logic LP in this new format and built
an algorithm that recovers explicit proof polynomials corresponding to
modalities in every derivation in K. Gödel’s modal provability calcu-
lus S4. In this paper we study the complexity of LP as well as the
complexity of explicit counterparts of the modal logics K, D, T , K4, D4
found by V. Brezhnev. The main result: the satisfiability problem for
each of these explicit modal logics belongs to the class Σp

2 of the polyno-
mial hierarchy. Similar problem for the original modal logics is known to
be PSPACE-complete. Therefore, explicit modal logics have much better
upper complexity bounds than the original modal logics.

1 Introduction and Main Definitions

The idea to describe provability by means of modal logic was formulated by
K. Gödel in [6]. He axiomatized the general properties of provability in the
modal language and obtained the modal logic coinciding with S4. However the
problem of finding the exact provability semantics for S4 remained open.
The explicit logic of proofs LP formulated in terms of the predicate “t is

a proof of A” was introduced by S. Artemov in [2]. It incorporates proofs into
propositional language by means of proof polynomials constructed with the help
of elementary computable operations corresponding to modus ponens, proof-
checking and non-deterministical choice. LP is supplied with the appropriate
arithmetical semantics and is proved to be complete with respect to this se-
mantics (cf. [2]). LP is proved to be an explicit counterpart of logic of informal
provability S4. Namely, LP is sufficient to realize the whole S4 by assigning
explicit proof polynomials to the occurrences of �� in S4-derivation (cf. [2]). So
Logic of Proofs LP provides S4 with the intended provability reading.
Explicit analogues of modal logics weaker than S4 (in particular of K, D, T ,

K4, D4) were introduced by V. Brezhnev in [5]. He suggested axiomatization for
them and proved that they suffice to realize the corresponding modal logics (in
the same way as LP realizes S4).
� The author is partially supported by the grant DAAH04–96–1–0341, by DAPRA
under program LPE, project 34145.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 371–383, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

372 R. Kuznets

Decidability of LP was proved by A. Mkrtychev in [7]. In this paper we adapt
this algorithm to the explicit logics introduced in [5] and evaluate its complexity.
It turned out that the derivability problem for all of these logics belongs to the
class Πp

2 in the polynomial hierarchy while all the corresponding modal logics
are known to be PSPACE-complete.
In this section we will formulate the language of explicit modal logics (or the

language of LP) and give axiomatics for them. In Section 2 we will describe the
semantics for the explicit logics and prove their completeness with respect to it.
This semantics for LP was suggested by Mkrtychev in [7]. We adapt it for all
the other explicit logics. Finally, in Section 3 we describe the decision algorithm
and evaluate its complexity.
Let us describe the modal logics we deal with. First, we give the full list of

modal axioms:
A0 Axioms of classical propositional logic

in the monomodal language
AN ��(F → G)→ (��F → ��G)
AD ��⊥ → ⊥
AT ��F → F
A4 ��F → ����F

normality
seriality

reflexivity
transitivity

The minimal logic K contains axioms A0 and AN and the rules of inference

modus ponens and necessitation F
��F . All the other logics are extensions of K

with the additional axioms: D = K + AD, T = K + AT, K4 = K + A4,
D4 = D +A4 and S4 = T +A4.
Now we turn to the description of the explicit modal logics (cf. [2], [5]). They

are formulated in the language of LP that contains proof variables xi, proof
constants ai and operations on proofs (binary ·, + and monadic !); sentence let-
ters Si, boolean connectives, boolean constant ⊥, and the binary proof operator
(polynomial):(formula). Proofs are represented by polynomials generated from
proof variables and constants by means of operations on proofs. Formulae are
constructed from the sentence letters and boolean constants in the usual way
with the additional rule: if F is a formula and t is a polynomial then t : F is
a formula. Let SVar stand for the set of all sentence letters, Pn for the set of
polynomials and Fm for the set of formulae.
Now we are going to define the following explicit logics:

LP(K),LP(D),LP(T),LP(K4),LP(D4),LP(S4). (1)

In what follows by explicit logic we mean any of these six logics. As before, first
we give the list of explicit axioms (cf. [2], [5])
A0 Axioms of classical propositional logic in the language of LP
A1 t : (F → G)→ (s : F → (t · s) :G)
A2 ti : F → (t1 + t2) : F , i = 1, 2
A3 t :⊥ → ⊥
A4 t : F → ! t : (t : F)
A5 t : F → F

On the Complexity of Explicit Modal Logics 373

There are two explicit versions of the modal necessitation rule for an explicit
logic L
ONec

!n a : (!n−1 a : . . . (! a : (a :A)) . . .)
;

ONec′
a :A ,

where a is a proof constant, A is an axiom of L.
All the explicit logics contain axiomsA0,A1,A2 and the rulemodus ponens.

To obtain the axiom system for them one has to add ONec for LP(K); A3
and ONec for LP(D); A5 and ONec for LP(T); A4 and ONec′ for LP(K4);
A4, A3 and ONec′ for LP(D4); A4, A5 and ONec′ for LP(S4).
It may be easily observed that all explicit axioms except for A2 can be ob-

tained by replacing �� in a corresponding modal axiom for a certain proof poly-
nomial. So we use names of modal axioms referring to their explicit analogues.
For example, we call LP(K4), LP(D4) and LP(S4) transitive explicit logics
since they contain the explicit axiom A4 corresponding to the modal axiom of
transitivity A4.
By an explicit realization r of a modal formula F we mean an assignment

of proof polynomials to all occurrences of modality in F , the image of F under
such a realization is denoted by F r. Now we formulate the main result about
the connection between modal logics and their explicit analogues.

Theorem 1 (Artemov). S4 � F iff LP � F r for some realization r (cf. [2]).

Theorem 2 (Brezhnev). Let L be one of modal logics K, D, T , K4, D4. Then
L � F iff LP(L) � F r for some realization r (cf. [5]).

2 Semantics for Explicit Logics
and Completeness Theorem

In this section we describe semantics for the logics (1). This semantics for the
logic LP(S4) = LP was introduced by Mkrtychev in [7]. He also proved com-
pleteness of LP with respect to this semantics. In this section his results are
generalized to all explicit logics.

Definition 1. A function ∗ : Pn→ 2Fm that assigns to every proof polynomial
a set of LP-formulae is called a proof-theorem assignment if it satisfies the
following two conditions:

1. if (F → G) ∈ ∗(t) and F ∈ ∗(s) then G ∈ ∗(t · s);
2. ∗(t) ∪ ∗(s) ⊆ ∗(t+ s).

A proof-theorem assignment is called transitive if it satisfies in addition a transi-
tivity condition: if F ∈ ∗(t) then (t : F) ∈ ∗(! t). A proof-theorem assignment is
serial if ⊥ /∈ ∗(t) for every proof polynomial t.

374 R. Kuznets

Remark 1. We do not require the sets ∗(t) to be finite.

Definition 2. A modelM is a triple (v, ∗, |=), where v is a truth-assignment,
i. e. a mapping v : SVar → {True,False }, ∗ is a proof-theorem assignment and
|= is a truth relation. The latter is defined in the following way.

1. For sentence letters |= S ⇔ v(S) = True and �|= ⊥;
2. |= F → G ⇔ �|= F or |= G;
3. |= t : F ⇔ F ∈ ∗(t).

Remark 2. In what follows we omit the cases concerning boolean connectives
other than implication. These missing cases can be easily restored using expres-
sions for the connectives in terms of implication and ⊥.

Definition 3. A model M = (v, ∗, |=) is called reflexive if F ∈ ∗(t) implies
M |= F for any polynomial t and any formula F .

Evidently, there is a precise correspondence between conditions imposed on
a proof-theorem assignment and the explicit axioms A1, A2. Transitive as-
signment satisfies axiom A4 which corresponds to the transitivity modal axiom.
Similarly, axiom A3 corresponding to seriality modal axiom is true for any serial
assignment. Finally, in a reflexive model axiom A5 expressing weak reflexivity
also holds.
Let us call any set of formulae introduced by the necessitation rule a Constant

Specification (CS) for the logic L. Namely, for the logics LP(K), LP(D), LP(T)
CS is any set of formulae of the form !n a:(!n−1 a:. . .:(! a:(a:A)) . . .), where a is a
proof constant, A is an axiom of the corresponding logic. For LP(K4), LP(D4),
LP(S4) formulae should be of the form a :A, where a is a proof constant, A is
an axiom of the corresponding logic.
For any explicit logic L let CSL denote a maximal constant specification,

namely

CSL = {!n a : . . . : (! a : (a :A)) | a is a proof constant, A is an axiom of L}
if L ∈ {LP(K),LP(D),LP(T)}, or

CSL = {a :A | a is an axiom constant, A is an axiom of L}
if L ∈ {LP(K4),LP(D4),LP(S4)}.
Remark 3. The specification CSL depends on the axiomatization chosen for
propositional logic in A0.

Definition 4. Let CS be a constant specification. A model M is called a
CS-model if M |= CS.

On the Complexity of Explicit Modal Logics 375

Table 1. Additional conditions on L-models

Explicit logic Proof-theorem assignment Model
LP(K)
LP(D) serial
LP(T) reflexive
LP(K4) transitive
LP(D4) serial transitive
LP(S4) transitive reflexive

Definition 5. Let L be one of the logics (1). L-model is any CSL-model satis-
fying additional conditions given in Table 1.

The following theorem states the completeness of explicit modal logics with
respect to the semantics described above.

Theorem 3 (completeness). Let L be an explicit logic. Then

L � F ⇔ F is true in all L-models.

The proof of Theorem 3 is standard, so we just give the main ideas in brief.

Definition 6. Let L be one of the logics (1).
The set F ⊂ Fm is called L-consistent if L �� ¬(A1 ∧ . . . ∧An) for any finite

subset {A1, . . . , An} ⊆ F . F is called maximal L-consistent if in addition either
F ∈ F or ¬F ∈ F holds for any LP-formula F .

The following lemma is standard.

Lemma 1.

1. Let F be an L-consistent set. Then there exists a maximal L-consistent set F ′
such that F ⊆ F ′.

2. Any maximal L-consistent set contains L and is closed under the inference
rules of L.

Lemma 2. Suppose F is a maximal L-consistent set. Then there exists an
L-model M such that M |= F .

Proof. In order to construct the desired model let us define the proof-theorem
assignment ∗(t) = {F ∈ Fm | t : F ∈ F} for any polynomial t. It can be
easily observed that ∗ is a proof-theorem assignment. Moreover, ∗ is serial
for L ∈ {LP(D),LP(D4)} and transitive for L ∈ {LP(K4),LP(D4),LP(S4)}.
For every sentence letter S let us put v(S) = True iff S ∈ F .
Let us consider the modelM = (v, ∗, |=). By induction on complexity of the

formula F it can be easily shown that M |= F iff F ∈ F . At the same time,
(t : F → F) ∈ L ⊂ F for the reflexive logics LP(T), LP(S4), that provides
reflexivity of the modelM for them. SoM is an L-model. ��

376 R. Kuznets

Proof (of Theorem 3). If L � F then obviously M |= F for any L-model M.
Suppose L �� F . In such a case the set {¬F} is L-consistent and we can extend
it to some maximal L-consistent set F . By Lemma 2 there exists an L-modelM
such thatM |= F , in particularM |= ¬F . ��

While dealing with reflexive logics LP(T) and LP(S4) one have to prove
reflexivity of a given model. The following notion allows avoiding this difficulty.

Definition 7. A pre-model P is a triple (v, ∗, |=p), where v is a truth-assign-
ment, ∗ is a proof-theorem assignment and the definition of a truth relation |=p
is similar to |= (see Definition 2) except for the case

|=p t : F ⇔ F ∈ ∗(t) and |=p F.

Definition 8. A model M = (v, ∗, |=) and a pre-model P = (v′, ∗′, |=p) are
called equivalent if the truth relations |= and |=p coincide.

The following lemma describes correlation between the notions of a model
and a pre-model.

Lemma 3. For any reflexive model M = (v, ∗, |=) there exists a pre-model
P = (v′, ∗′, |=p) equivalent to it. Conversely, for any pre-model P = (v′, ∗′, |=p)
there exists a reflexive model M = (v, ∗, |=) equivalent to it. Moreover, if ini-
tial model (pre-model) is transitive then the resulting pre-model (model) is also
transitive.

Proof. Suppose M = (v, ∗, |=) is a reflexive model. Then the pre-model
P = (v, ∗, |=p) is equivalent toM, i. e. P |=p F ⇔M |= F . Reason by induction
on the complexity of F . The case of sentence letters and boolean connectives is
trivial. Let F = t : G. If P |=p t : G then G ∈ ∗(t) and M |= t : G. Conversely,
if M |= t : G then G ∈ ∗(t). The model M is reflexive, so M |= G. By the
induction hypothesis P |=p G. Thus, we obtain P |=p t :G.
Conversely, being given a pre-model P = (v′, ∗′, |=p) we define F ∈ ∗(t)

iff F ∈ ∗′(t) and P |=p F for every polynomial t and every formula F . It is
easy to see that ∗ is a proof-theorem assignment. Now we can define the model
M = (v′, ∗, |=) and prove that it is equivalent to the initial pre-model P. As
before we consider only formulae of the form t :G.

M |= t : G⇔ G ∈ ∗(t) ⇔ G ∈ ∗′(t) and P |=p G ⇔ P |=p t :G.

Reflexivity of M immediately follows from reflexivity of P. The only thing we
have to show is that ∗ is transitive in case of transitive ∗′. Suppose F ∈ ∗(t). It
means that F ∈ ∗′(t) and P |=p F . Then (t :F) ∈ ∗′(! t) since ∗′ is transitive and
obviously P |=p t : F . So (t : F) ∈ ∗(! t). ��
Notion of a CS-pre-model is defined similarly to that of a CS-model (see De-

finition 4).

On the Complexity of Explicit Modal Logics 377

Definition 9. A pre-model P is called

– an LP(T)-pre-model if it is a CSLP(T)-pre-model;
– an LP(S4)-pre-model if it is a CSLP(S4)-pre-model with a transitive proof-

theorem assignment.

By Theorem 3 and Lemma 3 we have

Theorem 4. Let L ∈ {LP(T),LP(S4)}, then

L � F ⇔ F is true in all L-pre-models.

3 The Decision Algorithm

In this section we describe the decision algorithm for non-derivability problem in
explicit modal logics (this problem is dual to derivability problem) and evaluate
its complexity. The decision procedure is based on Theorem 3 (or on Theorem 4
for reflexive logics LP(T), LP(S4)). Given a formula F in order to establish
that L �� F one can construct an L-modelM such thatM �|= F if L is one of the
logics LP(K), LP(D), LP(K4), LP(D4) (or an L-pre-model P such that P �|=p F
for L ∈ {LP(T), LP(S4)}). The algorithm consists of two parts.

1. The saturation algorithm produces a set of requirements which should be
imposed on a counter-model for the formula F .

2. The completion algorithm constructs a counter-model satisfying these re-
quirements if such a model exists.

Along with formulae we also consider expressions of the form A ∈ ∗(t). We
call these expressions ∗-requirements. Formulae and ∗-requirements are called
metaformulae. A sequent is a pair Γ ⇒ ∆, where Γ and ∆ are finite sets of
metaformulae.

Definition 10. A sequent Γ ⇒ ∆ is true in a model (pre-model) if at least one
metaformula from Γ is false or at least one metaformula from ∆ is true in it.

Definition 11. A sequent Γ ⇒ ∆ is saturated if

1. (A→ B) ∈ Γ implies A ∈ ∆ or B ∈ Γ
2. (A→ B) ∈ ∆ implies A ∈ Γ and B ∈ ∆
3. (t :A) ∈ Γ implies (A ∈ ∗(t)) ∈ Γ
4. (t :A) ∈ ∆ implies (A ∈ ∗(t)) ∈ ∆

A sequent Γ ⇒ ∆ is reflexively saturated if in the previous list we replace the
conditions 3 and 4 by their reflexive analogues.

3′. (t :A) ∈ Γ implies A ∈ Γ and (A ∈ ∗(t)) ∈ Γ
4′. (t :A) ∈ ∆ implies A ∈ ∆ or (A ∈ ∗(t)) ∈ ∆

378 R. Kuznets

3.1 The Saturation Algorithm

In this subsection we describe saturation algorithm and evaluate its complexity.
We describe the algorithm in details for the case of LP(S4) = LP and then
point out the amendments that should be done to adapt the algorithm for other
logics.
Algorithm starts being given a sequent Γ ⇒ ∆. Every formula in it can

be discharged (unavailable) or undischarged (available for processing). Initially
all formulae are undischarged. Non-deterministically choose some undischarged
formula G from Γ ∪ ∆ and non-deterministically try to perform one of the
following instructions.

1. If G ≡ (A→ B) ∈ Γ then put A into ∆ or B into Γ
2. If G ≡ (A→ B) ∈ ∆ then put A into Γ and B into ∆
3. If G ≡ (t :A) ∈ Γ then put A and (A ∈ ∗(t)) into Γ
4. If G ≡ (t :A) ∈ ∆ then put A or (A ∈ ∗(t)) into ∆

After a step is performed discharge G (make it unavailable). Discharge G even
if it is a sentence letter or ⊥ and none of the clauses above could be applied.
Terminate if all formulae from Γ ∪ ∆ are discharged. Produce the obtained
sequent as a result.

Lemma 4. The saturation algorithm satisfies the following properties.

1. It terminates.
2. It produces a reflexively saturated sequent.
3. For every pre-model the initial sequent is false in it whenever the resulting

one is false.
4. For every pre-model if the initial sequent is false in it then one of the possible

computations produces a sequent, which is also false in it.

Proof. 1. Let us define the depth of a formula by induction d(Si) = d(⊥) = 1,
d(A → B) = d(A) + d(B) + 1, d(t : A) = d(A) + 1. Obviously, each step of
the algorithm decreases the sum of the depths of all available formulae in
the sequent. Therefore, the algorithm terminates.

2. Each step of the algorithm performs saturation for the chosen formula. Since
all formulae in the resulting sequent are discharged this sequent is reflexively
saturated.

3. It is easy to see from the definition of the saturation algorithm that if we
reverse the algorithm step by step the falseness of the sequent preserves. So
from the assumption that the resulting sequent is false we derive that the
initial one is necessarily false.

4. Suppose the initial sequent is false in a given pre-model. All metaformulae
are true or false in it. We start the algorithm. At every step we can put the
metaformula to Γ if it is true and to ∆ if it is false.

��

On the Complexity of Explicit Modal Logics 379

Corollary 1. Given a formula F put Γ := ∅, ∆ := {F}. Perform the saturation
algorithm for the sequent Γ ⇒ ∆. If the saturation algorithm produces a sequent
which is false in some LP(S4)-pre-model then F /∈ LP(S4). Otherwise, if every
possible computation leads to an LP(S4)-valid sequent, i.e. a sequent true in all
LP(S4)-pre-models, then F ∈ LP(S4).

Lemma 5. The saturation algorithm is an NP-algorithm (Σp
1 in the polynomial

hierarchy), i. e. it is a non-deterministic algorithm that works polynomial time.

Proof. The length of all branches of the computational tree is limited by the
number of subformulae of the initial sequent. The number of variants of pro-
cessing on every step of the algorithm is twice as large because some formulae
can be processed in two different ways. We only need to find the branch of the
computational tree that will produce a sequent that is not LP(S4)-valid. So the
computational tree is a NP-tree. ��
Now let us mention a useful property of the saturation algorithm.

Lemma 6. If performing instructions of the saturation algorithm one would
erase the discharged formula then Lemma 4 and Lemma 5 remain true.

In what follows, we will use this second variant of the saturation algorithm.

Remark 4. Now we describe how to adapt the saturation algorithm for non-ref-
lexive logics LP(K), LP(D), LP(K4) and LP(D4). Since we need to construct a
model (not a reflexive pre-model as before) we do not need a reflexively saturated
sequent and the instructions for processing t :A should be read as follows:

3′. If G ≡ (t :A) ∈ Γ then put (A ∈ ∗(t)) into Γ
4′. If G ≡ (t :A) ∈ ∆ then put (A ∈ ∗(t)) into ∆
This saturation algorithm has the same properties except for one. It produces a
saturated sequent (not a reflexively saturated one).

3.2 The Completion Algorithm

As before, first we discuss the completion algorithm for LP(S4) and then adapt
it for other explicit logics. The completion algorithm deals with the sequent
Γ ⇒ ∆ containing atomic formulae and ∗-requirements. It terminates with suc-
cess if there exists an LP(S4)-pre-model in which Γ ⇒ ∆ is false. Otherwise, it
terminates with failure. Let us clarify when such a pre-model exists and how it
should be constructed.
Of course, if Γ ∩ ∆ �= ∅ or ⊥ ∈ Γ then the counter-model in question

cannot exist. Indeed, ⊥ is always false and no formula can be true and false
simultaneously.
Suppose all of the assumptions above are wrong. Then we can define a truth-

assignment v as follows

v(Si) = True ⇔ Si ∈ Γ. (2)

380 R. Kuznets

Then sentence letters from Γ are true and the letters from ∆ are false. Thus, in
order to construct a counter-model it is sufficient to satisfy the ∗-requirements
including transitivity of it. Besides, the counter-model in question should be a
CSLP(S4)-pre-model which can also be expressed in terms of ∗-requirements.
Let CS∗LP(S4) denotes the set

CS∗LP(S4) = {A ∈ ∗(a) | a is a proof constant, A is an axiom of LP(S4)}.

Therefore, in order to construct the counter-model for Γ ⇒ ∆ it is sufficient
to produce a transitive proof-theorem assignment ∗ such that all ∗-requirements
from Γ and CS∗LP(S4) are true and all ∗-requirements from ∆ are false for ∗.
Definition 12. Let Φ be an arbitrary set of ∗-requirements. A proof-theorem
assignment ∗ is based on Φ if all requirements from Φ are true for ∗.

Lemma 7. For any set Φ there exists a minimal transitive proof-theorem assign-
ment ∗ based on it, i. e. ∗ is based on Φ and for every transitive proof-theorem
assignment ∗′ based on Φ we have ∗(t) ⊆ ∗′(t) for all polynomials t.

Proof. In order to construct such an assignment we should only close Φ under
the following rules.

R1
G ∈ ∗(t)

t :G ∈ ∗(! t)
R2

(A→ G) ∈ ∗(t) A ∈ ∗(s)
G ∈ ∗(t · s)

R3
G ∈ ∗(ti)

G ∈ ∗(t1 + t2)
, i = 1, 2 ��

Let Γ ′ and ∆′ denote sets of ∗-requirements from Γ and ∆ respectively.

Lemma 8. Let Γ ⇒ ∆ be a sequent containing only atomic formulae and
∗-requirements. It is refutable, i.e. there is an LP(S4)-pre-model that refutes
it, iff the following conditions are satisfied.

1. Γ ∩∆ = ∅
2. ⊥ /∈ Γ
3. All ∗-requirements from ∆′ are false for the minimal transitive proof-theorem

assignment ∗m based on Γ ′ ∪ CS∗LP(S4)
Proof. We consider the minimal transitive proof-theorem assignment ∗m based
on Γ ′∪CS∗LP(S4). If this assignment refutes all ∗-requirements from ∆′ then the
pre-model P = (v, ∗m, |=p) (see (2)) refutes Γ ⇒ ∆. Otherwise, if ∗m satisfies one
of the ∗-requirement from ∆′ then it is true for any other transitive assignment
based on Γ ′ ∪ CS∗LP(S4). So the desired counter-model does not exist.

In order to deal with axiom schemes we add to the language of LP formula
variables T1, . . . , Tn, . . . and polynomial variables r1, . . . , rn, It makes

On the Complexity of Explicit Modal Logics 381

possible writing one formula in the extended language instead of an infinite set
of formulae in the language of LP. Suppose we need to find an intersection of
the schemes A and B, i. e. the set of LP-formulae whose structure satisfies the
scheme A together with the scheme B. An obvious way of solving this problem
is to find the most general unifier (mgu) of A and B. This unification means
that we substitute polynomial variables by some polynomials in the extended
language and formula variables by some formulae in the extended language.
In what follows, by a formula we mean a formula in the extended language.
Now let us describe the completion algorithm.
Suppose that

Γ ′ = {A1 ∈ ∗(ti1), . . . , An ∈ ∗(tin)},
∆′ = {B1 ∈ ∗(sj1), . . . , Bm ∈ ∗(sjm)}.

Some of tik and sjl can coincide.
Preliminary operations. Terminate with failure if Γ ∩∆ �= ∅ or ⊥ ∈ Γ .
Otherwise, non-deterministically choose one of sjl , l = 1, 2, . . . ,m, and per-

form the following actions with it.
Initialization. Non-deterministically choose several non-intersecting occur-

rences of tik , k = 1, 2, . . . , n, as subpolynomials of sjl . Let us call the chosen
occurrences pseudo-elementary polynomials. Polynomial sjl is considered to be
built from pseudo-elementary polynomials, proof variables and constants. To ev-
ery chosen occurrence of tik non-deterministically assign one of the formulae A
such that (A ∈ ∗(tik)) ∈ Γ ′. Non-deterministically assign to every occurrence
of axiom constants (except those in pseudo-elementary polynomials) one of ax-
iom schemes written as one formula in the extended language. Choose different
formula and polynomial variables for different occurrences of axiom constants.
Assign to every occurrence of + (except those in pseudo-elementary poly-

nomials) one of two symbols ‘l’ or ‘r’. Assign null to the occurrences of proof
variables that are not assigned yet. So assigning null to a subpolynomial actually
means that nothing is assigned to this subpolynomial. Initialization is complete.

Assigning. Assign formulae to subpolynomials of sjl according to the fol-
lowing rules. Suppose formulae C1 and C2 are assigned to occurrences of sub-
polynomials q1 and q2 respectively. One of C1 and C2 or both of them may be
null.
1. Assign the formula C1 to q1 + q2 if ‘l’ was assigned to this occurrence of +.
Otherwise, assign C2.

2. Assign the formula q1 : C1 to ! q1 if C1 is not null. Otherwise, assign null.
3. Assign null to q1 · q2 if C1 is neither a formula variable nor a formula of the
form D → E, or if C2 is null. Otherwise, if the main connective in C1 is im-
plication then unify D and C2. If the formulae are unifiable find their mgu σ
and assign Eσ to q1 · q2. If unification is impossible assign null. Finally, if C1
is a formula variable T then assign some new formula variable T ′ to q1 · q2.
Checking. Finally, some formula is assigned to the polynomial sjl . Unify it

with the formula Bl. Terminate with failure if these formulae are unifiable. Oth-
erwise, if unification is impossible or null is assigned to sjl perform another
initialization and proceed as before.

382 R. Kuznets

If none of the initializational variants terminates with failure then choose
another polynomial sjl and perform initializations for it. Terminate with success
if processing none of the polynomials sjl , l = 1, . . . ,m, terminates with failure.

Lemma 9. Suppose a sequent Γ ⇒ ∆ consists of atomic formulae and
∗-requirements. The completion algorithm terminates with success on this se-
quent iff the sequent Γ ⇒ ∆ is not LP(S4)-valid.

Now let us evaluate the complexity of the completion algorithm. In the pro-
cess of its execution we need to perform multiple unifications. The length of the
unified formulae may increase exponentially.

Example 1. Suppose Γ ′ contains the following ∗-requirements.
(T1 → (T2 → . . .→ (TM → T1 ∧ T1 ∧ . . . ∧ T1︸ ︷︷ ︸

M

) . . .)) ∈ ∗(c1),

(T2 ∧ T2 ∧ . . . ∧ T2︸ ︷︷ ︸
M

) ∈ ∗(c2),
. . .
(TM ∧ TM ∧ . . . ∧ TM︸ ︷︷ ︸

M

) ∈ ∗(cM).

Then we should assign

(T2 → . . .→ (TM → T2 ∧ T2 ∧ . . . ∧ T2︸ ︷︷ ︸
M

∧ . . . ∧ T2 ∧ T2 ∧ . . . ∧ T2︸ ︷︷ ︸
M︸ ︷︷ ︸

M

) . . .)

to c1 · c2. All the initial requirements have the length O(M) while this one
is O(M2). Evidently, each step increases the length by M times. So the length
of formula assigned to c1 · c2 · . . . · cM is O(MM).

In order to reduce complexity of the completion algorithm we can store for-
mulae as direct acyclic graphs (dags). Then one can use the Robinson graph
algorithm (for details cf. [4]) for unification of formulae that is polynomial of the
sum of sizes of the dags. Using this algorithm for unification in the completion
algorithm we obtain the following result.

Lemma 10. The problem of realizing whether a given sequent containing only
atomic formulae and ∗-requirements is refutable is a co-NP problem (Πp

1 in the
polynomial hierarchy).

Proof. It follows from complexity evaluation of completion algorithm since this
algorithm solves the problem in question. ��

Remark 5. For serial logics LP(D), LP(D4) we need to check another trivial
condition before we start constructing ∗m: (⊥ ∈ ∗(t)) /∈ Γ for all polynomials t.

On the Complexity of Explicit Modal Logics 383

In case this condition is not satisfied terminate with failure. For non-transitive
logics LP(K), LP(D), LP(T) the set CS∗L is defined as follows:
CS∗L = {(!n−1 a : . . . :a :A) ∈ ∗(!n a) | a is a proof constant, A is an axiom of L}.
So instead of assigning axioms to occurrences of axiom constants during ini-
tialization we should non-deterministically assign formulae !n−1 a : . . . : a :A to
occurrences of polynomials !n a. Also we should not use the rule R1 for these
logics.

Let us describe the decision algorithm for LP. Given a formula F
1. Start the saturation algorithm on the sequent ⇒ F . It produces as a result
the sequent Γ ⇒ ∆.

2. Start the completion algorithm on the sequent Γ ⇒ ∆.
3. Terminate with success if the completion algorithm terminates with success.
Terminate with failure otherwise.

We summarize Corollary 1 and Lemma 9 in a theorem

Theorem 5. Suppose L is an explicit logic. Given a formula F the decision
algorithm terminates with success iff F �∈ L.

By Lemma 5 and Lemma 10 we have

Theorem 6. The problem of L-satisfiability is Σp
2 . Consequently, the problem

of derivability in L is Πp
2 .

Remark 6. Since all the logics under consideration are conservative extensions
of the classical propositional logic the problem of L-satisfiability is NP-hard
(Σp

1 -hard).

Corollary 2. The problem of L-satisfiability belongs to Σp
2 ∩Σp

1 -hard.

References

1. Artemov, S.: Operational Modal Logic. Technical Report MSI 95–29. Cornell Uni-
versity (1995)
<http://www.math.cornell.edu/∼artemov/MSI95-29.ps>

2. Artemov, S.: Logic of Proofs: a Unified Semantics for Modality and λ-terms. Tech-
nical Report CFIS 98–06. Cornell University (1998)
<http://www.math.cornell.edu/∼artemov/CFIS98-06.ps>

3. Artemov, S.: Explicit Provability and Constructive Semantics. To appear in the
Bulletin for Symbolic Logic
<http://www.math.cornell.edu/∼artemov/BSL.ps>

4. Bidoit, M., Corbin, J.: A Rehabilitation of Robinson’s Unification Algorithm. Infor-
mation Processing, Vol. 83. North-Holland (1983) 909–914

5. Brezhnev, V.: On Explicit Counterparts of Modal Logic. Manuscript (1999)
6. Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalkuls. Ergebnisse
Math. Colloq., Bd. 4 (1933) 39–40

7. Mkrtychev, A.: Models for the Logic of Proofs. Lecture Notes in Computer Science,
Vol. 1234. Springer-Verlag, Berlin Heidelberg New York (1997) 266–275

Finite Models and Full Completeness

J. Laird

COGS, University of Sussex
Brighton BN1 9QH, UK
jiml@cogs.susx.ac.uk

Abstract. A finite model property for fully complete denotational mod-
els of propositional logics is investigated using fully complete translations
to compare programming languages and logics. The main result is that
there can be no finite and fully complete models of linear or affine propo-
sitional logics. This is shown to be a consequence of Loader’s result that
contextual equivalence for finitary PCF is not decidable by giving a fully
complete translation from finitary PCF into a Λ(Ω)ωbda-calculus for a
dual affine/non-linear logic. It is shown that the non-linear part of this
logic does have a finite and fully complete model, and a conservative ex-
tension of the above translation is given from finitary PCF with control
(µPCF) into the non-linear fragment which shows that the fully abstract
model of µPCF is effectively presentable.

Keywords: linear logic, affine logic, full completeness, PCF, effective
presentability.

1 Introduction

This paper concerns the possibility of a denotational semantics providing com-
plete and effective information about proofs and programs. Completeness with
respect to proofs rather than provability has been introduced as full completeness
[3].

Definition 1. A model of a logic L in (a category) C is fully complete if every
morphism between objects [[A]]C and [[B]]C in C is the denotation of a proof of
A � B in L.
Fully complete models will exist for all sufficiently well-behaved logics — ‘term
models’ can be constructed from equivalence classes of the proofs themselves.
But the main interest in the full completeness problem is in finding models which
are ‘syntax-independent’. As in the case of the full abstraction problem for PCF
[24,4,14] it is not clear what syntax independence should mean. Is it sufficient to
have a re-presentation of the syntax in a semantic form — or should denotational
models have some inherently semantic quality?

A possible criterion is the following ‘finite model property’ for denotational
models.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 384–398, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Finite Models and Full Completeness 385

Definition 2. A (categorical) model of proofs C is finitary if for each pair of
formulas, A,B, there are finitely many elements f1, f2, . . . fn ∈ C([[A]], [[B]]) and
an effective procedure for listing them.

The property of having some fully complete finite model is essentially a stan-
dard ‘finite model property’ for languages (such as classical propositional logic)
with a traditional completeness theorem. To capture the finer detail of a denota-
tional semantics, we shall say that a language possesses the ‘finite denotational
model property’ only if it has a non-trivial finitary and fully complete models
C; i.e. there are some formulas such that C([[A]]C , [[B]]C) contains more than on e
morphism.

An effectiveness criterion has been incorporated (like the ‘Jung and Stoughton
condition’ of effective presentability for fully abstract models of PCF [15]) —
not only should the number of elements of the model be finite at each type but
it should be possible to generate them in a finite time. Taken together, finite-
ness and full completeness mean having full information about each type-object
of a model, making problems such as contextual equivalence for the language
decidable.

Call a logic finitary, if every proposition has finitely many different proofs
(modulo cut-elimination and commuting conversions). So intuitionistic logic, for
instance, is not finitary as there are infinitely many ‘different’ cut-free proofs of
(P ⇒ P) ⇒ (P ⇒ P) — the Church numerals. ‘Fully and faithfully complete
models’(such as several games models [3,1,2]) which are by definition isomorphic
to the term model will be finitary if and on ly if the logic is finitary.

Semantic models of propositional logics based on sets and functionals (possi-
bly with additional structure) will be finitary provided the atomic propositions
are represented as finite sets, and the the connectives as operations preserving
finiteness. This is the case for the standard interpretation of the simply-typed
λ-calculus or the coherence space models of propositional linear logic [10]. These
models also tend to contain ‘junk’ — elements which are not the interpretations
of proofs. Jung and Tiuryn [5] and others [12,28] have shown that it is possi-
ble to ‘cut down’ these models by constructing a definability predicate (in an
apparently syntax independent way) to get a full completeness result. But can
this be done effectively ? This is precisely the question posed by Streicher in [28]
with respect to the coherence space model of linear logic in which the atoms are
interpreted as finite cliques.

Is it decidable whether a clique in the coherence space model comes
from a proof?

In fact we can answer this question in the negative because there can be no
(effective) finite models of propositional linear logic which are complete in the
weaker traditional sense. This has been shown directly by Lafont [17] but is a
simple corollary of the well-known result that provability for linear logic is not
decidable.

Proposition 1. If a logic has a finite and fully complete model, then it is de-
cidable.

386 J. Laird

Theorem 1 (Lincoln et al. [20]). Propositional linear logic is undecidable.

Corollary 1. There are no finite and fully complete models of propositional
linear logic.

This paper will show that the converse to Proposition 1 is not true, however.
Undecidability of propositional linear logic relies heavily on the restriction of
weakening — affine propositional logic (which allows unrestricted weakening
but retains the restrictions on contraction) is decidable, as shown by Kopylov
[16]. The main result established here is that affine logic cannot, however, have
any non-trivial finitary and fully complete models.

The basis for proving this is Loader’s theorem that observational equivalence
in finitary PCF is not decidable [22]. This is an important limitative result for de-
notational semantics, as it shows that there can be no effective presentation of a
fully abstract model of PCF (and no finitary and fully complete model of finitary
PCF). The analogous property of affine logic can be shown by demonstrating a
tight connection between logic and programming language. Specifically, by giv-
ing a fully complete translation from finitary PCF into a fragment of linear logic.
Because this translation is effective, a finitary and fully complete model would
enable observational equivalence of PCF terms to be decided by comparing their
translations. But this is not possible, so the re can be no effective, fully complete
and finitary model of any part of linear logic containing the fragment in question.
Thus the translation sheds some light on both Loader’s result and decidability
questions for linear logic.

Next, it is shown that an infinitary logic with a finitary and fully complete
model does exist — intuitionistic propositional logic — using Padovani’s effec-
tive characterization of the minimal model of the λ-calculus [26]. This result is
used to show that the fully abstract model of finitary µPCF (PCF with control
operators) is effectively presentable (by contrast to PCF), by giving a fully com-
plete cps translation into the simply-typed λ-calculus with pairing whic h is a
conservative extension of the translation from PCF.

In summary, the paper shows that the finite denotational model property
is stronger than the simple finite model property, but not so strong that it
precludes all infinitary logics. It does so by establishing a strong ‘Curry-Howard
style’ correspondence with related results for simple λ-calculus based languages
which allows effective presentability and definability to be analyzed from both
perspectives.

2 A Linear/Non-linear λ-Calculus

The fragment of affine logic for which the translation will be given uses dual affine
and intuitionistic contexts (and connectives) in a natural deduction presentation.
(Similar to Benton’s LNL calculus [7], Barber’s DILL [6], and Girard’s LU [11].)
Formulas are generated from a single propositional atom ι by the connectives
⇒,�,× (intuitionistic implication, linear implication, and linear additive prod-
uct). Thus it is expressive — it contains elements of multiplicative (�), additive

Finite Models and Full Completeness 387

(×) and exponential (⇒) affine logic. But it is also simple because the connec-
tives which make difficulties for determining proof-equalities by giving rise to
‘commuting conversions — ! and ⊗ — have been avoided. So the term-language
is familiar — a λ-calculus with pairing — and the typing rules are based on a
simple intuition — the linear implication can be introduced on ly when binding
variables which occur linearly.

Definition 3. Define the λL/NL-types (propositions) by induction over the fol-
lowing grammar:

T ::= ι | T � T | T × T | T ⇒ T

Terms-in-context of the associated calculus have the form Γ ;Σ � t : T , with a
single typed formula on the right of the turnstyle, and two ‘zones’ of variables
to the left. This allows some control over the use of structural rules without
requiring explicit use of exponentials. The first zone is non-linear (Γ represents
a set of variables), allowing contraction to take place there. The second zone
is affine (Σ represents a multiset of variables) — contraction is not perm itted
here.

The term-language is just the simply-typed λ-calculus with pairing. A single,
standard notation for λ-abstraction is used, the distinction between the introduc-
tion rules for the two implication types being which zone the abstracted variable
comes from. (The affine implication types are implicitly subtypes of non-linear
implication types.) Similarly, a single (standard) notation for application is used
for both linear and non-linear implication types. The only difference here be-
tween the elimination rules for the two versions of the implication is that a term
of non-linear type can only be applied to terms containing no free linear vari-
ables, as non-linear application incorporates the ‘promotion’ rule of linear logic.

;x:T�x:T Linear Axiom
Γ ;Σ,x:S�t:T
Γ,x:S;Σ�t:T Dereliction

Γ ;Σ�t:T
Γ ;Σ,x:S�t:T Weakening

Γ,x:S,y:S;Σ�t:T
Γ,z:s;Σ�t[z/x,z/y]:T Contraction

Γ ;Σ,x:S�t:T
Γ ;Σ�λx.t:S�T �-Intro

Γ ;Σ�s:S Γ ;Σ′�t:S�T
Γ ;Σ,Σ′�t s:T �-Elim

Γ,x:S;Σ�t:T
Γ ;Σ�λx.t:S⇒T ⇒-Intro

Γ ; �s:S Γ ;Σ�t:S⇒T
Γ ;Σ�t s:T ⇒-Elim

Γ ;Σ�s:S ΓΣ�t:T
Γ ;Σ�〈s,t〉:S×T ×-Intro

Γ ;Σ�t:T1×T2
Γ ;Σ�πi(t):Ti ×-Elim

Table 1. Term-formation rules for λL/NL

388 J. Laird

Definition 4. The equational theory of λL/NL, =βηπ is given by the reflexive,
transitive closure of the following rules:

(β) (λx.t) s =βηπ t[s/x]

(η) λx.(t x) =βηπ t, x �∈ FV (t)

(π) πi(〈t1, t2〉) =βηπ ti, i = 1, 2

(πη) 〈π1(t), π2(t)〉 = t

This paper will show that there are no finitary and fully complete models of
λL/NL. Generalizing this result relies on the existence of fully complete transla-
tions into more standard logics.

Definition 5. Let L1,L2 be logics (or typed languages).
A translation φ : L1 −→ L2 is fully complete if for every context Γ and type
A, and for every derivation π in L2 of φ(Γ) � φ(A), there is a derivation λ of
Γ � A in L1 such that φ(λ) = π.

The existence of a fully complete translation φ : L1 → L2 means that a fully
complete model of L2 gives rise to a fully complete model of L1, by taking
[[Γ � λ : A]] = [[φ(Γ) � φ(λ) : φ(A)]].

Proposition 2. If (intuitionistic) affine logic has the finite (denotational) model
property then so does λL/NL.

Proof. There is a fully complete translation from λL/NLinto affine logic. This
is in effect the well-known ‘Girard translation’ [10] from intuitionistic to linear
logic, based on the decomposition of the implication A⇒ B as !A � B. This is
formally proved in [13] to be fully complete. The adaptation to the affine case is
straightforward.

Kopylov’s result [16] (affine logic is decidable) yields the following corollary.

Corollary 2. For every type T there is an effective procedure for deciding
whether some t : T exists.

There are further fully complete translations from affine logic into intuitionistic
logic, and from intuitionistic into classical logic. Hence the failure of the finite
denotational model property to hold for λL/NLimplies that it does not hold for
any of these logics, but as this is in any case a consequence of the failure of the
weaker finite model property, these are left to a future paper.

3 Finitary PCF and Loader’s Theorem

PCF is a simply-typed λ-calculus with constants. Finitary PCF has a single base
type of booleans, with two values, tt and ff , a constant for non-termination Ω.
and a conditional If . . . then . . . else

Finite Models and Full Completeness 389

Definition 6. Finitary PCF-types are given by the grammar:

T ::= bool | T ⇒ T

PCF terms are given over contexts of typed variables by:
M ::= ΩT | tt : bool | ff : bool | x : T
(If M : bool then M : bool else M : bool) : bool
((M : S ⇒ T) M : S) : T | (λ(x : S).M : T) : S ⇒ T
Define the equational theory of finitary PCF as follows:

(λx.M) N =PCF M [N/x]

If tt then M else N =PCF M

If ff then M else N =PCF N

If Ω then M else N =PCF Ω

It is a well-known fact that every closed term of ground type is provably equiv-
alent either to tt,ff or Ω.

Definition 7 (Observational equivalence). Given closed terms M,N : T ,
a compatible program context for M,N is a single-holed context C[·] such that
C[M], C[N] are closed terms of ground type.
Then M �T N (M is observationally equivalent to N) if and only if
for all compatible program contexts C[·], C[M] =PCF C[N].

Theorem 2. [Loader [22]]The relation �T is not decidable at all types.

Finitary models of PCF certainly exist — for instance in the category of ordered
sets and monotone functions. But a finitary and and fully complete model would
allow contextual equivalence to be decided by generating bounded lists of terms
containing representatives from each �-equivalence class.
Definition 8. A listing algorithm for a typed language is an effective procedure
for generating a list of (closed) terms at each type T M1 : T,M2 : T, . . .MnT

: T
such that for all N : T there exists i ≤ n such that Mi � N .

Proposition 3. Given a listing algorithm for PCF, � is decidable.

Proof. M �T N if and only if for every context C[·], λx.C[x]M =PCF λx.C[x]N .
Hence M �T N if and only if for every L : T ⇒ bool, L M =PCF L N .
But if L �T⇒bool L′, then L M =PCF L′ M and L N =PCF L′ N . Hence
if L1, L2, . . . , Ln is a list containing elements from every �T⇒bool equivalence
class, M �T N if and only if Li M =PCF Li N for all N .

Proposition 4. Given a finitary and fully complete model of PCF, there is a
listing algorithm for PCF.

390 J. Laird

Proof. At each type T there is a complete list of elements e1, e2, . . . enT
∈ [[T]]. A

list of termsM1,M2, . . .MnT
: T such that [[Mi]] = ei for all i ≤ nT can be found

because a recursive enumeration of all PCF-terms can be given, and searched for
terms denoting each element (which will exist by full completeness). In any sound
model, if [[M]] = [[N]] then M �T N , so the list of terms M1,M2, . . .MnT

: T
contains elements from each contextual equivalence class.

Corollary 3. There is no finite and fully complete model of finitary PCF.

Unary PCF has a single base type unit containing two constants �,⊥ (termina-
tion and non-termination) and a ‘convergence test’ forM,N : unit, If M then N ,
such that
If � then M =PCF M, If ⊥ then M =PCF ⊥.
Contextual equivalence can be defined as for finitary PCF, but as shown by
Loader [23] and Schmidt-Schauß[27] (independently), it can be characterized
effectively.

4 The Translation

The fully complete translation of PCF into λL/NL is in essence very simple.
It leaves the structure of PCF as a typed, call-by-name λ-calculus unchanged,
translating the function type of PCF directly into the intuitionistic implication
of λL/NL. The problem is to account for the constants of PCF: the type of
booleans containing the values tt and ff and the non-termination constant ΩT ?
The basic idea is to represent truth-values as ‘church booleans’ — left and right
projections from the product ι× ι — in the linear function-space ι× ι � ι.

Definition 9 (�-translation on PCF types).

bool� = ι× ι � ι, (S ⇒ T)� = S� ⇒ T�

Non-termination is represented as the use of an undischarged non-linear assump-
tion (i.e. a free variable) of ‘empty type’ ι.

Definition 10. Let xΩ : ι be a unique λL/NL-variable, and {y�, z�, . . .} a set of
λL/NL-variables distinct from xΩ so that the correspondence with PCF-variables:

y : T −→ y� : T�

is a bijection which extends to PCF contexts.
The �-translation is now defined as a mapping from PCF terms-in-context to
λL/NL-terms-in-context:

Γ � t −→ Γ�, xΩ : ι; �M�

where M� is defined by structural induction as follows:

– (z)� = z�

Finite Models and Full Completeness 391

– (Ω : bool)� = λy : ι× ι.(xΩ : ι)
– (Ω : S ⇒ T)� = λy : S�.(Ω : T)�

– (λz.M)� = λz�.M�

– (M N)� =M� N�

– tt� = λy : ι× ι.π1(y)
– ff� = λy : ι× ι.π2(y)
– (If L then M else N)� = λy : ι× ι.L� 〈M� y,N� y〉
This is a sound definition — the translation of Γ � M is a derivable term-in-
context of λL/NL and it respects the operational rules of PCF.

Proposition 5. The translation is sound with respect to PCF and βηπ-equalit-
ies. i.e. if M,N are PCF terms and M =PCF N , then M� =βηπ N�.

Proof. It is straightforward to show that if M =β N , then M� =β N�. So it
remains to observe that the conversions for the conditional are respected, for
which a representative case is given:
(If tt then M else N)� = λy.(λx.π1(x)) 〈M� y,N� y〉
=β λy.π1(〈M� y,N� y〉) =π λy.M� y =η M�.

The translation of unary PCF is similar: let unit� = ι � ι, and
(�)� = λy.y, (⊥)� = λy.xω, (If M then N)� = λy.M� (N� y).

4.1 Normal Forms for λL/NL

The key to proving fully completeness of the translation is a strong character-
ization of the βηπ-equivalence classes of λL/NL as η-long normal forms. With
the exception of the typing restrictions, this is just the standard notion of η-long
normal form for the simply-typed λ-calculus with pairing. They are defined here
for a restricted set of types, sufficient to include the translations of PCF types.

Definition 11. Define the relevant types by the following grammar:

T ::= ι | ι× ι | T ⇒ (T � ι)

where R⇒ (S � ι) abbreviates R1 ⇒ (R2 ⇒ (. . . (Rn ⇒ (S � ι)) . . .)).

Clearly the relevant types include all translations of PCF-types T�.

Definition 12 (η-long normal forms of λL/NL over relevant types). These
are given as sets N(Γ ;Σ;T) of terms in context Γ ;Σ � t : T .

y : ι ∈ Γ ∪Σ

y ∈ N(Γ ;Σ; ι)

y : ι× ι ∈ Γ ∪Σ

π1(y), π2(y) ∈ N(Γ ;Σ; ι)

ri ∈ N(Γ ; ;Ri)i ≤ n s ∈ N(Γ ;Σ;S) x : R⇒ (S � ι) ∈ Γ

x r1 . . . rn s ∈ N(Γ ;Σ; ι)

392 J. Laird

ri ∈ N(Γ ; ;Ri)i ≤ n s ∈ N(Γ ;Σ;S)
x r1 . . . rn s ∈ N(Γ ;Σ, x : R⇒ (S � ι); ι)

s, t ∈ N(Γ ;Σ; ι)
〈s, t〉 ∈ N(Γ ; ι× ι)

t ∈ N(Γ, x1 : R1, . . . , xn : Rn;Σ, y : S; ι)
λx.λy.t ∈ N(Γ ;Σ;R⇒ (S � ι))

It is necessary to establish that the η-long forms genuinely provide (unique)
representatives of each βηπ equivalence classes.

Lemma 1. Every term consisting of a single variable of relevant type x : T is
βηπ-equivalent to a η-long form x̂ : T .

Proof. Define x̂ by induction on the type T :
If T = ι, then x̂ = x,
If T = ι× ι, then x̂ = 〈π1(x), π2(x)〉,
If T = R⇒ (S � ι), then x̂ = λy.λz.x ŷẑ.

Proposition 6. Let Γ ;Σ � t : T be a term-in-context of λL/NL at a trans-
lated PCF type. Then t is βηπ-equivalent to a unique η-long normal form in
N(Γ ;Σ;T).

Proof. is by establishing the following property of λL/NL terms, defined by in-
duction on type-structure:
A term (with free variables) t : ι is normalizable if it is βηπ equivalent to a
normal form t′.
A term t : ι× ι is normalizable if π1(t) and π2(t) are normalizable.
A term t : S ⇒ T � ι is normalizable if for every sequence of normalizable
terms of appropriate (and simpler) type, s1, . . . , sm:
t s1 . . . sn : ι is βηπ equivalent to a normal form.
Note that if t is normalizable, then t is itself βηπ-equivalent to a normal form,
as t =η λx.t x =βηπ λx.t′, where t′ is a normal form of t x.
Proof that all λL/NL-terms at relevant types are normalizable is by induction
on the number of occurrences of application, pairing, or projection which they
contain.
t is assumed to have the form λz.r, for some (possibly empty) sequence of vari-
ables z1, . . . , zn and term r which is not a λ-abstraction.

– If t contains no instances of application, then r is a variable x, where either
x �∈ {z1, z2, . . . zn} or x = zj for some j ≤ n.
Then in case x �= zj for any j, t s1 . . . sm =β x sn+1 . . . sm. By assumption
s1, . . . sm are βηπ equivalent to normal forms s′1, . . . s

′
m. So t s1 . . . sm is βηπ-

equivalent to the normal form x s′n+1 . . . s
′
m.

In case x = zj for some j ≤ n,
t s1 . . . sm =β sj sn+1 . . . sm, and by assumption of normalizability of sj ,
sj sn+1 . . . sm is βηπ equivalent to a normal form.

Finite Models and Full Completeness 393

– If r = p q then if s1 . . . sm are normalizable terms,
t s1 . . . sm =β ((λz.p) s1 . . . sn)) (λz.q) s1 . . . sn) sn+1 . . . sm
By induction hypothesis, λz.p, λz.q are normalizable, and hence (λz.p) s1 . . .
sn and (λz.q) s1 . . . sn are normalizable.
Hence ((λz.p) s1 . . . sn)) ((λz.q) s1 . . . sn) sn+1 . . . sm is equivalent to a nor-
mal form as required.

– The cases r = πi(p), and r = 〈p, q〉 are similar (and simpler).

4.2 Completeness of the Translation

Proposition 7. The �-translation is fully complete.

Proof. By Proposition 6, it is sufficient to show that for every η-long normal
form t ∈ N(Γ�, xΩ : ι; ;T�) there exists M such that M� =βηπ t.
This is shown by induction on the number of instances of application in t.
If T = bool (the important case), then t = λy : ι× ι.s,
where s ∈ N(Γ�, xΩ : ι; y : ι× ι; ι)

– If s = xΩ , then t = λy.xΩ = Ω�.
– If s = π1(y), or π2(y), then t = λy.π1(y) = tt� or t = λy.π2(y) = ff�.
– If s = z� r1 . . . rn, then z : S� for some PCF-type S = R⇒ bool ∈ Γ ,

r1 ∈ N(Γ�, xΩ ; ;R�
1), . . . , rn−1 ∈ N(Γ�, xΩ ; ;R�

1), and so by hypothesis
there are PCF terms N1, . . . Nn−1 such that N�

i =βηπ ri for i < n.
rn : ι × ι, so by definition of λL/NL normal forms, rn = 〈p1, p2〉 for some
p1, p2 ∈ N(Γ, xΩ ; y : ι× ι; ι).
So λy.p1, λy.p2 ∈ N(Γ�, xΩ ; ; bool�) are η-long normal forms at PCF-
translated types, containing fewer applications than t. Hence by induction
hypothesis there are PCF terms L1, L2 such that L�

i =βηπ λy.pi.
Putting these terms together, there is a PCF term:
M = If z N1 . . . Nn−1 then L1 else L2 such that
M� = λy.z� N�

1 . . . N�
n−1 〈L�

1 y, L�
2 y〉 =βηπ λy.s = t

If T = R ⇒ S, then t = λ(z : R)�.(s : S�), where s ∈ N((Γ, z)�, xΩ ; ;S�).
By hypothesis, there is a PCF term Γ, z : R � N : S such that N� = s, so
(λz.N)� = t as required.

Corollary 4. If there is a fully complete and finitary model of λL/NL, then there
is a fully complete and finitary model of PCF.

Proof. Let [[Γ �M : T]] = [[Γ�, xΩ �M� : T�]]

Theorem 3. There is no finite and fully complete model of λL/NL.

Proof. Suppose a finitary and fully complete model of λL/NLexists. Then by
Proposition 3 and Corollary 4, PCF observational equivalence is decidable. But
this is a contradiction of Loader’s result, Theorem 2.

394 J. Laird

Corollary 5. There are no finitary and fully complete models of affine propo-
sitional logic.

By contrast, effective presentability of the fully abstract model of unary PCF
means that the corresponding fragment of linear logic has a finite model. The key
difference between the translations appears to be the need to use the additive
product to translate finitary PCF, whilst the translation of the unary version
stays within the multiplicative fragment.

5 Finitary Full Completeness and Intuitionistic Logic

It has now been established that a logic exists (affine logic) which possesses the
the standard finite model property, but not the finite model property for fully
complete models. It is a natural question to ask whether there are any natural
and non-trivial examples of non-finitary logics with the latter property.

The purely intuitionistic fragment of λL/NL (with the connectives ⇒,×) is
not finitary — it contains the Church numerals. It has been shown by Loader
[21] that the problem of deciding definability in the standard sets-and-functions
model of the λ-calculus is undecidable, so it is not possible to cut down this
model effectively using a definability predicate as defined in [5].

However, finitary and fully complete models of this fragment do exist. The
natural way to demonstrate this is by exhibiting such a model, and it is the object
of a forthcoming paper is to do so, using the category of sequential algorithms
[8]. However, a simple proof that there are finite and fully complete models
of intuitionistis logic can be given as a corollary of Padovani’s proof that the
‘minimal model’ of the λ-calculus with constants is effectively presentable. (For
simplicity’s sake, only the implicational fragment is considered, but the extension
to products is straightforward.)

Theorem 4 (Padovani [26]). Let Λ(�,⊥) be the simply-typed λ-calculus over
the ground type ι with two ground-type constants, �,⊥ : ι. Then the contextual
equivalence on closed terms s, t of the same type:
s ��,⊥ t iff for all compatible closed closed contexts C[·] : ι, C[s] =β C[t]
is decidable, and the ‘minimal model’ of ��,⊥-classes of terms is effectively
presentable.

The pure calculus has no ground type constants, and so contextual equivalence
is tested at the type ι⇒ (ι⇒ ι).

Definition 13. Contextual equivalence (the maximal non-trivial congruence
containing βη-equality) on the simply-typed λ-calculus is defined as follows, for
terms s, t : T

s � t ⇐⇒ ∀(closed)C[·] : ι⇒ (ι⇒ ι), C[s] =β C[t]

The minimal model of the pure λ-calculus is the model in which [[s]] = [[t]] if and
only if s � t.

Finite Models and Full Completeness 395

Proposition 8. For all pure λ-terms s, t : T (which are also terms of Λ(�,⊥))
s � t ⇐⇒ s ��,⊥ t

Proof. Suppose s �� t, then for some context CT [·] : ι ⇒ ι ⇒ ι, C[s] =β λxy.x
and C[t] = λxy.y, hence C[s] � ⊥ =β � and C[t] � ⊥ = ⊥, so s ���,⊥ t as
required.
Suppose s ���,⊥ t, then for some ground-typed Λ(Ω,�) context CT [·],
C[s] = � and C[t] = ⊥. Let x, y be variables not appearing in C[·], then
λxy.C[s][x/�][y/⊥] =β λxy.x and λxy.C[t][x/�][y/⊥] =β λxy.y and so s �� t as
required.

The equivalence ��,⊥ is extensional (t �S⇒T�,⊥ s if and only if s r �T�,⊥ t r for all
r : S) and hence there are only finitely many ��,⊥-equivalence classes at each
type.

Corollary 6. The minimal model of the pure simply-typed λ-calculus is finitary
— i.e. there are finitely many �-equivalenc classes at each type.
To give a listing algorithm for the pure calculus, it is necessary to be able to
determine which Λ(�,⊥)-terms are equivalent to constant-free terms.
Definition 14. A term t : T of Λ(�,⊥) is total if t[⊥/�] ��,⊥ t[�/⊥] ��,⊥ t.

Say that a type (i.e. proposition) T is provable if there is a closed term t : T of
the pure λ-calculus.

Proposition 9 (Weak Completeness). T is a provable type if and only if
there exists a total Λ(�,⊥) term of type T .

Proof. All pure λ-terms are clearly total, so the implication from right to left is
trivial. For the converse, a trivial induction suffices to show that any type T is
provable if and only if T ⇒ ι is not provable. So suppose for a contradiction that
there exists a total term t : T , where T is not provable, and hence there exists
a pure λ-term s : T ⇒ ι. Then s t : ι is a total term, but (up to β-equality) the
only closed terms of type ι are � and ⊥ which are obviously not total. This is
the required contradiction.

Proposition 10 (Strong completeness). A (closed) term t : T of Λ(Ω) is
total if and only if there exists a pure λ-term s : T such that s ��,⊥ t.

Proof. Suppose t : S ⇒ ι is total. Then by Proposition 9 T is provable; there ex-
ists a pure λ-term r : T . Then there is a pure term s = λx : S.(t[r x/�][r x/⊥]) x
such that s ��,⊥ t. For any Λ(�,⊥) terms p1 : S1, . . . , pn : Sn, suppose w.l.o.g.
r p1 . . . pn =β �. Then s p1 . . . pn =β t[�/⊥] p1 . . . pn =β t p1 . . . pn by definition
of totality, and hence s ��,⊥ t.

Corollary 7. The minimal model of the pure simply-typed λ-calculus is effec-
tively presentable. (And so this is a finitary and fully complete model of intu-
itionistic implicational logic).

396 J. Laird

Proof. By Padovani’s result, there is a listing algorithm for the minimal model
of Λ(�,⊥), and this yields a listing algorithm for the minimal model of the pure
simply-typed λ-calculus since there is an effective procedure for finding the total
terms of Λ(�,⊥) and for finding pure terms which are equivalent to them.
Compare the existence of a listing algorithm for this notion of minimal model
with the undecidability of definability for set-theoretic models of the pure λ-
calculus [21]. A similar contrast to Loader’s result for finitary PCF is provided
by the effectively presentable model of PCF with control operators described
by Cartwright, Curien and Felleisen [9]. In fact, it will now be shown there is a
continuation-passing style translation from such a language (finitary µPCF) into
the non-linear fragment (⇒,×) of λL/NL which is a conservative extension of
the �-translation (on terms). Hence, the effective presentability of the minimal
model can be used to give an alternative proof of effective presentability for the
fully abstract model of finitary µPCF.

The language µPCF [25] is PCF extended with with first class continua-
tions in the form of control operations called naming and µ-abstraction. Finitary
µPCF has base types of booleans bool and the empty type 0. Terms are given in
contexts (sets of typed variables, and names of ground type). (This is equivalent
under call-by-name to adding names at all types [18]). The typing judgements
for PCF are extended with the following rules:

Γ�M :bool:∆
Γ�[α]M :0;∆,α

Γ�M :0;∆,α
Γ�µα.M :bool;∆

The equational theory of µPCF extends the PCF theory:

(µα) µα.[α]M =µPCF M

and if E[·] = [β][·], or E[·] = [β]If [·] then L else N for some L,N ,

(µβ) E[µα.M] =µPCF M [E[·]/α]

where M [E[·]/α] means replace every named subterm [α]N in M with E[N].

Definition 15 (♦ translation). Translation of types:
0♦ = ι, bool♦ = (ι× ι⇒ ι), and (S ⇒ T)♦ = S♦ ⇒ T♦.
The translation of terms is conservative over the �-translation for PCF .
For each name α, assume a distinguished variable xα : ι×ι, and let {α, β, γ, . . .}♦
= {xα : ι× ι, xβ : ι× ι, xγ : ι× ι}.
Γ �M : T ;∆ is translated to Γ♦, xω : ι,∆♦ �M♦ : T♦ as follows:

– Ω♦ = λy.xω, tt♦ = λx.π1(x), ff♦ = λx.π2(x)
– (If M then N1 else N2)♦ = λy.M♦ 〈N♦1 y,N♦2 y〉
– (x)♦ = x♦, (λx.M)♦ = λx♦.M♦, (M N)♦ =M♦ N♦

– ([α]M)♦ = (M♦ xα), (µα.M)♦ = λxα.M
♦.

The proof of the following proposition follows that for Proposition 7, using η-
normal forms.

Finite Models and Full Completeness 397

Proposition 11. The ♦-translation is fully complete.

Corollary 8. The ♦-translation is fully abstract:
i.e. for all µPCF terms M,N : T M �T N if and only if M♦ � N♦.

Proof. Suppose M♦ �� N♦. Then C[M♦] =β λxy.x and C[N♦] = λxy.y for
some context C[·] : ι⇒ ι⇒ ι. Then by full completeness of the translation there
exists a µPCF term L : T ⇒ bool such that L♦ = λy : ι × ι.(C[y] π1(y) xω).
Then (L M)♦ = L♦ M♦ = tt♦ and (L N)♦ = L♦ N♦ = Ω♦ and M �� N as
required.

Corollary 9. The fully abstract model of finitary µPCF is effectively presentable.

5.1 Further Work

Intuitionistic implicational logic has the finite denotational model property,
whilst linear and affine logic do not. The most obvious open question, there-
fore (as for decidability of provability) concerns multiplicative-exponential logic.
A solution to this problem can be expected to be hard — a finite and fully com-
plete model of MELL would allow provability for this fragment to be decided,
which itself is a difficult open problem [19]. Even finding a fully complete and
finitary model of the multiplicative fragment of λL/NL (�,⇒) — or a proof that
no such model exists — is a goal which could provide insight into the decidability
question.

Acknowledgements

The work reported here was undertaken at the LFCS in Edinburgh, with the
support of the UK EPSRC grant “Foundational Structures in Computer Sci-
ence”. I would like to thank Samson Abramsky and Patrick Baillot for useful
discussions.

References

1. S. Abramsky. Axioms for full abstraction and full completeness. In Essays in
Honour of Robin Milner. MIT Press, to appear.

2. S. Abramsky and P.-A. Mellies. Concurrent games and full completeness. In
Proceedings of the 14th annual Symposium on Logic In Computer Science, LICS
’99, 1999.

3. S. Abramsky, R. Jagadeesan. Games and full completeness for multiplicative linear
logic. Journal of Symbolic Logic, 59:543–574, 1994.

4. S. Abramsky, R. Jagadeesan and P. Malacaria. Full abstraction for PCF. Accepted
for publication in Information and Computation, 1996.

5. A. Jung and J. Tiuryn. A new characterization of lambda definability. In Typed
Lambda Calculi and Applications, number 664 in Lecture notes in Computer Sci-
ence. Springer–Verlag, 1993.

398 J. Laird

6. A. Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347,
LFCS, University of Edinburgh, 1996.

7. P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models.
Technical Report 352, Computer laboratory, Cambridge University, 1994.

8. G. Berry and P.-L. Curien. Sequential algorithms on concrete data structures.
Theoretical Computer Science, 20:265–321, 1982.

9. R. Cartwright, P.-L. Curien and M. Felleisen. Fully abstract semantics for observ-
ably sequential languages. Information and Computation, 1994.

10. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50, 1987.
11. J.-Y. Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201–217,

1993.
12. J.-Y. Girard. On denotational completeness. Theoretical Computer Science, 197,

1995.
13. M. Hasegawa. Logical predicates for intuitionistic linear type theories. In Proceed-

ings of TLCA ’99, 1999.
14. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II and III. to

appear, 1995.
15. A. Jung, and A. Stoughton. Studying the fully abstract model of PCF within

its continuous function model. In Proceedings of the International Conference on
Typed Lambda Calculi and Applications, volume 664 of LNCS, 1993.

16. A. Kopylov. Decidability of linear affine logic. In Proceedings of the 10th Annual
IEEE Symposium on Logic in Computer Science, LICS 95. IEEE press, 1995.

17. Y. Lafont. The finite model property for various fragments of linear logic. Journal
of Symbolic logic, 62:1202 — 1208, 1996.

18. J. Laird. A Semantic Analysis of Control. PhD thesis, Department of Computer
Science, University of Edinburgh, 1998.

19. P. Lincoln. Deciding provability of linear logic formulas. Cambridge University
Press, 1995.

20. P. Lincoln, J. Mitchell, A. Scedrov and N. Shankar. Decision problems for propo-
sitional linear logic. Annals of Pure and Applied Logic, 56:239–311, 1992.

21. R. Loader. The undecidability of lambda definability. to appear in the Church
Memorial volume, 1993.

22. R. Loader. Finitary PCF is undecidable. Manuscript, 1997. To appear in Theo-
retical Computer Science.

23. R. Loader. Unary PCF is undecidable. Theoretical Computer Science, 206, 1998.
24. R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer

Science, 4:1–22, 1977.
25. C.-H. L. Ong and C. Stewart. A Curry-Howard foundation for functional com-

putation with control. In Proceedings of ACM SIGPLAN-SIGACT syposium on
Principles of Programming Languages, Paris, January 1997. ACM press, 1997.

26. V. Padovani. Decidability of all minimal models. In M. Coppo and S. Berardi,
editor, Types for proofs and programs, volume 1158 of LNCS. Springer, 1996.

27. M. Schmidt-Schauß. Decidability of behavioural equivalence in unary PCF. The-
oretical Computer Science, 208, 1998.

28. T. Streicher. Denotational completeness revisited. In Proceedings of the Interna-
tional Conference on Categories in Computer Science, CTCS ‘99, Electronic notes
in theoretical computer science. Elsevier, 1999.

On the Complexity of Combinatorial
and Metafinite Generating Functions

of Graph Properties in the
Computational Model of Blum, Shub and Smale

J.A. Makowsky1,2,� and K. Meer3

1 Department of Computer Science
Technion–Israel Institute of Technology

Haifa, Israel
janos@cs.technion.ac.il

2 Department of Mathematics
Swiss Federal Institute of Technology

Zurich, Switzerland

3 Department of Mathematics and Computer Science
Syddansk Universitet, Odense, Denmark

meer@imada.sdu.dk

Abstract. We present a unified framework for the study of the com-
plexity of counting functions and multivariate polynomials such as the
permanent and the hamiltonian in the computational model of Blum,
Shub and Smale. For PIR we introduce complexity classes GenPIR and
CGenPIR. The class GenPIR consists of the generating functions for
graph properties (decidable in polynomial time) first studied in the con-
text of Valiant’s VNP by Bürgisser. CGenPIR is an extension of GenPIR

where the graph properties may be subject to numeric constraints.
We show that GenPIR ⊆ CGenPIR ⊆ EXPTIR and exhibit complete
problems for each of these classes. In particular, for (n × n) matrices
M over IR, ham(M) is complete for GenPIR, but the exact complexity
of per(M) ∈ GenPIR remains open. Complete problems for CGenPIR

are obtained by converting optimization problems which are hard to
approximate, as studied by Zuckerman, into corresponding generating
functions.
Finally, we enlarge once more the class of generating functions by al-
lowing additionally a kind of non-combinatorial counting. This results in
a function class Met-GenPIR for which we also give a complete mem-
ber: evaluating a polynomial in the zeros of another one and summing
up the results. The class Met-GenPIR is also a generalization of �PIR,
introduced by Meer, [Mee97].
Due to lack of space we will prove here only the Met-GenPIR result. In
the full paper also the other theorems will be established rigorously.

� partially supported by by the Fund for Promotion of Research of the Technion–Israeli
Institute of Technology

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 399–410, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

400 J.A. Makowsky and K. Meer

1 Introduction

Valiant, in a fundamental paper [Val79], has shown that the matrix functions
per(M) and ham(M) defined on (n× n) matrices M = (mi,j) over a field IF by

per(M) =
∑
π∈Sn

n∏
i=1

mi,π(i)

and

ham(M) =
∑
π∈Cn

n∏
i=1

mi,π(i)

are typically hard compute. Here Sn (Cn) denotes the set of (cyclical) permu-
tations of {1, ..., n}. To make the difficulty of computation precise, Valiant in-
troduced his (non-uniform) model of computation of straight line programs and
the complexity classes VPIF and VNPIF, cf. [BCS97]. In spite of the beauty of
this approach, there are various drawbacks in this model of computation, which
the Blum, Shub and Smale model (BSS) of computation, cf. [BCSS98], proposes
to overcome. In his paper [Mee97], Meer introduces counting problems over the
reals IR in the BSS model and its associated complexity class �PIR. However,
per(M) ∈ �PIR only for mi,j ∈ {0, 1}. Meer analyses the logical definability of
problems in �PIR and obtains results analogue to those of Saluja, Subrahmanyam
and Thakur [SST95]. The issue of complete problems for �PIR, however, is not
discussed explicitely.

In this paper we work in the BSS-model and its extension to allow struc-
tured inputs as proposed by Grädel and Gurevich [GG98]. We propose a larger
framework of counting functions based on an idea of Bürgisser [Bür99]. With the
complexity class PIR we associate new complexity classes GenPIR, CGenPIR and
MinPIR as classes of generating and maximizing functions of graph properties
verifyable in PIR. Roughly speaking a function f in GenPIR has the following
form: consider a meta-finite structure D; its underlying finite structure should be
〈A,RA〉 with finite universe A = {1, ..., n} and relations RA. Its weight functions
are denoted by W. Now let E be a PIR computable class of meta-finite struc-
tures of signature R,W and additionally U . Here , U denotes relation symbols
on the underlying finite universe. For the class GenPIR we consider membership
of a meta-finite structure A := 〈A,RA, UA,W〉 in E as only depending on the
underlying finite structure 〈A,RA, UA〉. An f ∈ GenPIR now is evaluated on D;
it depends on the RA part of A and on an IR-term t(x̄), which itself depends on
the real number part W of A; f has the form

GenE(〈A,RA〉, t) =
∑

〈A,RA,U〉∈E

∏
x̄∈U

t(x̄)

If the class E may also depend on the W part of A we get CGenPIR.
If instead of the sum of products we consider

MinE(〈A,RA〉, t) = min
〈A,RA,U〉∈E

∑
x̄∈U

t(x̄)

Combinatorial and Metafinite Generating Functions of Graph Properties 401

we have functions in MinPIR and CMinPIR respectively, which cover wide
classes of Linear Programming problems with possible additional (non-linear)
constraints.

To express, say, ham(M) in this form, we take E to consist of structures
〈A,RA, UA, w〉 with 〈A,RA, w〉 graphs with edge weights w(x, y) in IR and UA

ranges over all hamiltonian cycles of the graph and t(x, y) = w(x, y). M is the
weighted adjacency matrix of 〈A,RA〉. If UA ranges over all cycle covers rather
than hamiltonian cycles, we get the permanent. It follows from the definitions
that

GenPIR ⊆ CGenPIR ⊆ EXPTIR

and both per(M) ∈ GenPIR and ham(M) ∈ GenPIR.
A typical example of a function in MinPIR is given by the cost version of the

Traveling Salesmen Problem TSPcost. Given an edge weighted graph, compute
the minimum cost of a hamiltonian tour. Here the cost is given by t(x̄). Clearly
we have

MinPIR ⊆ CMinPIR ⊆ EXPTIR

but the relationship between MinPIR and GenPIR (aa well as CMinPIR and
CGenPIR) remains, for the time being, open.

Now let γ(U) be a polynomial time computable function of the weights of
elements in U . We are thinking here of an additional constraint function. We
modify the permanent and the hamiltonian matrix function similar to [Zuc96].
We restrict the summation to permutations U = π with γ(π) = 0, i.e

perγ(U)=0(M) =
∑

π∈Sn,γ(π)=0

n∏
i=1

mi,π(i)

(and analogously for hamγ(U)=0(M)). Clearly, both perγ(U)=0(M) and
hamγ(U)=0(M) are in CGenPIR. Similarly, we modify TSPcost to obtain

TSPcost(γ(U) = 0): Given an edge weighted graph, compute the minimum cost
of a hamiltonian tour under the additional constraint γ(U) = 0.

We obtain

Theorem 1. perγ(U)=0(M) and hamγ(U)=0(M) are CGenPIR-complete.

and

Theorem 2. TSPcost(γ(U) = 0) is CMinPIR-complete.

We also show

Theorem 3. ham(M) is GenPIR-complete and TSPcost is MinPIR-complete.

However, it remains open whether per(M) is GenPIR-complete.

Contrary to �PIR the class GenPIR captures the permanent computation of
a matrix M with arbitrary entries. However, there is a major other difference

402 J.A. Makowsky and K. Meer

between the two classes which implies that the former is not a subclass of the lat-
ter. In �PIR the counting is done in relation with non-combinatorial features, i.e.
the corresponding functions count satisfying guesses within a NPIR verification
procedure. The latter guesses in general are vectors of reals. This is not possible
within GenPIR. In section 4 we therefore show how to enlarge the definition of
generating functions once more to capture also counting processes as they are
present in �PIR. The class Met-GenPIR is obtained that way; it generalizes both
�PIR and GenPIR.

We consider the feasibility problem Fzero which stands for all real polynomi-
als having a real zero and show

Theorem 4. Let D be a IR-structure with two weight functions t1, t2 represent-
ing two polynomials of degrees 4 and k resp., in the same number of unknowns
(cf. example 1 below).

The function
∑

(D,t1,z)∈Fzero

∑
x∈Ak

t2(x)
∏
a∈x

z(a) is complete in Met-GenPIR

under reductions in PIR (where the condition under the first summation refers
to the real zeros of that polynomial whose coefficients are represented by t1.)

This paper opens an avenue to classify the complexity of combinatorial func-
tions in the BSS-model which are in EXPTIR on the one hand side and a kind
of non-combinatorial generalization on the other. We exemplify our approach
with a wide class of generating functions of graph properties and cost optimiza-
tion problems in Linear Programming. The novelty of our approach consists in
the identification of such functions as complete in their respective setting. The
results are not really surprising, but neither are they obvious.

In this extended abstract we will focus on a rigorous proof for theorem 4
only. The proofs of the other statements are similar in spirit, but of course some
care has to be taken. They will be given in the full version of this paper.

2 Background on IR-Structures

In this subsection we recall the basic notion of an IR-structure. It is a special
case of so called meta-finite structures introduced in [GG98]. IR-structures were
first analyzed in [GM96].

We suppose the reader familiar with the main terminology of logic as well as
with the concepts of vocabulary, first-order formula or sentence, interpretation
and structure (see for example [EF95]).

Let IR∞ denote the set of finite sequences of real numbers, i.e. IR∞ =
⊕
k∈IN

IRk.

Definition 1. Let Ls, Lf be finite vocabularies where Ls may contain relation
and function symbols, and Lf contains function symbols only. A IR-structure of
signature σ = (Ls, Lf) is a pair D = (A,F) consisting of

Combinatorial and Metafinite Generating Functions of Graph Properties 403

(i) a finite structureA of vocabulary Ls, called the skeleton of D, whose universe
A will also be said to be the universe of D, and

(ii) a finite set F of functions X : Ak → IR interpreting the function symbols
in Lf .

Definition 2. Let D be a IR-structure with skeleton A. We denote by |A| and
also by |D| resp. the cardinality of the universe A of A. This number is called the
size of the structure D. A IR-structure D = (A,F) is ranked if there is a unary
function symbol r ∈ Lf whose interpretation ρ in F bijects A with {0, 1, ..., |A|−
1}. The function ρ is called ranking. We will write i < j for i, j ∈ A iff ρ(i) <
ρ(j). A k-ranking on A is a bijection between Ak and {0, 1, ..., |A|k − 1}. It can
easily be defined if a ranking is available. We denote by ρk the interpretation of
the k-ranking induced by ρ.

Throughout this paper we suppose all IR-structures to be ranked. We there-
fore notationally suppress the symbol ≤ in the sets F considered.

Example 1 ([GM96]). Let us see how to describe a real polynomial of degree at
most 4 as a IR-structure.

Consider the signature (∅, {r, c}) where the arities of r and c are 1 and 4
respectively, and require that r is interpreted as a ranking.

Let D = (A,F) be any IR-structure where F consists of interpretations
C : A4 → IR and ρ : A → IR of c and r. Let n = |A| − 1 so that ρ bijects A
with {0, 1, ..., n}. Then D defines a homogeneous polynomial ĝ ∈ IR[X0, ..., Xn]
of degree four, namely

ĝ =
∑

(i,j,k,�)∈A4

C(i, j, k, ()XiXjXkX�.

We obtain an arbitrary, that is, not necessarily homogeneous, polynomial g ∈
IR[X1, ..., Xn] of degree four by setting X0 = 1 in ĝ. We also say that D defines
g. Notice that for every polynomial g of degree four in n variables there is a
IR-structure D of size n + 1 such that D defines g.

Clearly, this example can easily be extended to IR-structures which represent
systems of polynomials. In section 4 we are in particular interested in structures
giving two polynomials in the same number of variables.

3 Generating Functions of Graph Properties

We will shortly define the concenpt of generating functions of graph properties.
Full details can be found in [Bür99].

Consider an edge-weigthed graph G = (V,E, t), that is a graph together
with a weight function t : E → IR. For a subset Ê of E we extend t to be
t(Ê) :=

∏
v∈Ê

t(v).

Generating functions are now defined based on graph properties E .

404 J.A. Makowsky and K. Meer

Definition 3. Given a graph property E the generating function GenE assigns
to every edge-weighted graph G = (V,E, t) the value

GenE(G) :=
∑
Ê⊂E

t(Ê) ,

where the sum is taken over all subsets Ê such that the graph (V, Ê) has property
E .

As already indicated in the introduction this definition can be modified in
(different) straightforward manners such as taking a minimum. We are in partic-
ular interested in looking at G as a metafinite structure (see below) and varying
the way property E is depending on it.

Important examples of generating functions are the ones explained in the
introduction (permanent, hamiltonian etc.)

The theory as well can be extended to R-structures where R is an arbi-
trary ring. In [Mak00] R = IR[X̄] the polynomial ring over IR in the variables
X1, X2, Typical generating functions in this case are Tutte polynomials, Jones
polynomials and Kauffman brackets.

4 Non-combinatorial Counting

In this section we will further generalize the previously defined concepts. So far,
the counting operation related to our generating functions was of combinatorial
kind. More precisely, for a given IR-structure D the summation is taken over all
U such that (D, U) ∈ E . Here U is a relation over the finite universe A of D.
Thus, only finitely many valid assignments for U exist. For each of them a real
number term then is evaluated.

In [Mee97] a real counting class �PIR is defined. It is given as all functions f
such that the values f(x) correspond to the number of accepting guesses for a
NPIR machine M with input x ∈ IR∞.

Definition 4. The class �PIR is given by all functions f : IR∞ → {0, 1}∞ ∪
{∞} such that there exists a BSS-machine M working in polynomial time and
a polynomial q satisfying

f(y) = |{z ∈ IRq(size(y))|M(y, z) is an accepting computation}| .
The major difference between functions in �PIR and the generating functions

defined above is the dependence of the former on real number guesses. From the
point of view of the BSS model this difference is due to the fact that the decision
problem: “ is there a U such that (D, U) ∈ E?” belongs to the class DNPIR.
This class is a subclass of NPIR and denotes those problems in NPIR where the
verification procedure makes use of digital guesses (i.e. zeros and ones) only. The
general power of NPIR allows to guess arbitrary reals. Problems in DNPIR can be
decided by simple enumeration of the finitely many valid guesses. Therefore, any

Combinatorial and Metafinite Generating Functions of Graph Properties 405

member of GenPIR or CGenPIR can be computed in EXPTIR. For functions in
�PIR the latter result is more complicated and related to quantifyer elimination.
However, these functions only compute natural numbers. We will now extend
generating functions once again. The class of functions obtained will capture
both CGenPIR and �PIR. To clarify the ideas let us start with the following
example.

Example 2. i) Consider again the permanent function of a (n×n) matrix M . Its
evaluation can also be described in the following manner. Let p be a polynomial
in n unknowns such that p(x1, ..., xn) = 0 if and only if (x1, ..., xn) gives a
permutation π of {1, ..., n} (i.e. xi ∈ {1, ..., n} and xi �= xj for i �= j).

Then per(M) =
∑

x,p(x)=0
M(x). Here, M(x) is a polynomial giving for a per-

mutation π the value
n∏
i=1

mi,π(i). It can easily be defined as Lagrange polynomial.

Computation of the permanent thus can be seen as evaluating a polynomial at
all the zeros of another one and summing up the results.

ii) Let f : IRn → IR be a polynomial bounded from below which should
be minimized. Under the assumption that the usual first-order conditions of
optimization theory are applicable one can look for the values of f at its critical
points, i.e. on the zeros of its derivative p := Df. The problem gets the form of
building the minimum of a polynomial on the zeros of another one. It can be
generalized straightforwardly to constraint optimization problems.

The major difference between items i) and ii) above is that the zeros of p in
the first part always consist of (small) integer components. In the second case
the zeros may consist of real components, which even might not be computable.
Moreover, the evaluation process in ii) has a much more general flavour and
captures also the functions in �PIR.

Note that evaluating polynomials on the zeros of other polynomials is also
crucial in many quantifyer elimination procedures, where in particular the signs
one polynomial takes in the zeros of another are of importance, see [R92],[CR88].

We define the class Met-GenPIR along the lines of the second example. Some
care has to be taken. Consider a IR-structure D consisting of two weight functions
t1, t2 together with a property E ∈ NPIR. We want to build sums of the form∑
(D,U,z)∈E

T where U denotes a relation of fixed arity over the finite universe A

of D and z represents a function from A to IR (for simplicity assume z to be
unary). Here, E depends on one of D’s weight functions, whereas T depends on
the other (in a way which has to be precised).

Since E ∈ PIR and z can be represented by a vector of |A| many reals the
decision problem: “ is there a tuple (U, z) such that (D, U, z) ∈ E” is in NPIR.
Moreover, there might be infinitely many valid assignments for (U, z) (i.e. for the
z part). So the above summation can turn into an infinite series. In general, ques-
tions of convergence of such series are not decidable in the BSS model. Similarly,
a function like min

(D,z)∈E
T (D, z) is not correctly defined if the minimum doesn’t ex-

406 J.A. Makowsky and K. Meer

ist. The question whether there are only finitely many satisfying assignments for
z is decidable in the BSS framework; it corresponds to the question whether for
a function f ∈ �PIR a value f(x) is finite (and therefore exponentially bounded
in the size of x, see [Mee97]).

We will define our generalized generating functions only for such IR-structures
D for which �{(U, z)|(D, U, z) ∈ E} is finite. Then sums as well as minimas are
well defined. Examples which can be covered in this framework include polyno-
mial optimization with finitely many Karush-Kuhn-Tucker points.

Another problem might be the lacking computability of all the valid guesses.
Here, we want to restrict ourselves to such structures where computability is
possible. The completeness result below holds true in general, but it can be
restricted to those structures as well. If the assumption about computability is
missing the evaluation problem gets a completely different touch, see the remarks
at the end of this section.

Let E be a property in PIR. We consider IR-structures D having two weight
functions t1 and t2 from D’s finite universe to the reals. We assume the property
E to depend on t1 and the underlying finite structure of D only, i.e. (D, U, z) ∈
E ⇔ (D∗, U, z) ∈ E where D∗ denotes the IR-structure obtained from D by
removing the second weight function t2.

As explained above we will only consider such structures D for which there
are only finitely many valid guesses (U, z) such that (D, U, z) ∈ E . These guesses
moreover are assumed to be computable.

Definition 5. a) The class Met-GenPIR is the set of all functions
∑

(D,U,z)∈E

∑
x̄∈U

t2(x̄)
∏
a∈x̄

z(a)

where D and E are as assumed above. The condition “a ∈ x̄” asks a to be a
component of x̄.

b) The class MinMet-GenPIR is obtained by taking

min
(D,U,z)∈E

∑
x̄∈U

t2(x̄)
∏
a∈x̄

z(a) .

Lemma 1. a) CGenPIR ⊆ Met-GenPIR
b) Any function in �PIR which only takes finite values belongs to Met-GenPIR.

Both results are to be understood with respect to slight modifications of the
inputted structures in such a way that they fit into the framework of input struc-
tures for functions in Met-GenPIR.

Combinatorial and Metafinite Generating Functions of Graph Properties 407

Proof.

ad a) Consider a function

CGenE(〈A,RA〉, t1) =
∑

〈A,RA,U〉∈E

∑
x̄∈U

t1(x̄)

with E ∈ PIR.
We can artificially enlarge the property E by an additional component z for
the guess in such a way that only the assignment 1 for all components of
z will result in a valid guess (if the U -component is correct). The property
thus obtained remains in PIR. Next, we enlarge a given IR-structure D by one
further weight term t2 which is equal to t1. The corresponding evaluation on
the enlarged structure gives the same value as the evaluation of CGenE on
D.

ad b) Suppose E ∈ PIR and f ∈ �PIR such that f(D) = #{z|(D, z) ∈ E} < ∞.
Without loss of generality we can suppose f to count satisfying guesses z of
the form z : A→ IR only, i.e. the finite relation U is captured as part of the
real vector to be guessed (see [Mee97]).
We enlarge D’s universe A := {1, ..., n} to Â := A ∪ {n + 1}. To D there
corresponds the new structure D̂; it has universe Â and the interpretations
of the function and relation symbols correspond to those given by D on
arguments from Ak and are zero (resp. not in the relation) if a component
n + 1 is present. A new weight term t2 : Â→ IR is defined by t2(i) = ∀1 ≤
i ≤ n and t2(n + 1) = 1.

The property E is modified to Ê by defining (D̂, Û , ẑ) ∈ Ê iff Û = {n+1}, ẑ =
(z, 1) and (D, z) ∈ E . We thus obtain

∑
(D̂,Û ,ẑ)∈Ê

∑
x∈Û

t2(x)
∏
a∈x

ẑ(a) =
∑

(D,z)∈E
t2(n+1)·ẑ(n+1) =

∑
(D,z)∈E

1 = f(D) .

��

In [Mee97] it is shown that every function in �PIR is computable in simply ex-
ponential time in the BSS model. The proof can be applied to show the existence
of complete members in Met-GenPIR.

Consider a family of IR-structures D representing two multivariate polyno-
mials t1 and t2, the first of which is of degree at most 4 and the second of
degree k, k ∈ IN, see example 1. Both polynomials depend on the same number
of variables.

Theorem 4. Let E := Fzero be the set of structures representing a polynomial
having a real zero.

The (non-combinatorial) generating function

NGenE(D, t1, t2) =
∑

(D,z)∈Fzero

∑
x̄∈Ak

t2(x̄)
∏
a∈x̄

z(a)

408 J.A. Makowsky and K. Meer

is complete in Met-GenPIR w.r.t. reductions in PIR. The condition (D, z) ∈
Fzero is to be understood w.r.t. the weight function t1 of D.

That is, evaluating a polynomial on the zeros of another one and summing
up the results is a complete function in Met-GenPIR (under the assumptions
made in relation with the definition of Met-GenPIR).

Proof. Consider a property Ẽ ∈ PIR together with an input structure (D̃, t̃1, t̃2)
for the function generated by Ẽ . The finite universe of D̃ is Ã := {1, ..., n}.

The function value on the input D̃ is

∑
(D̃,Ũ ,z̃)∈Ẽ

∑
x̄∈Ũ

t2(x̄)
∏
a∈x̄

z̃(a) .

The problem: “ is there a (Ũ , z̃) such that (D̃, Ũ , z̃) ∈ Ẽ ” belongs to NPIR
and thus can be reduced in polynomial time to the problem of deciding whether
a polynomial T1 of degree at most 4 has a real zero (for notational simplicity we
denote the polynomial given via its coefficient function t1 by T1). This reduction
is not parsimonious; nevertheless, the following holds true according to [Mee97]:
for every valid assignment (Ũ , z̃) such that (D̃, Ũ , z̃) ∈ Ẽ we can compute a
polynomial T1 in variables y := (u1, ..., unk , z, w1, ..., wl, v1, ..., vm) such that for
the choice (u1, ..., unk) := Ũ and z := z̃ there are exactly 2m many zeros of T1.
More precisely:

– the components w̃1, ..., w̃l are uniquely determined by (Ũ , z̃) whereas for
every component vi there are exactly two possible choices such that any of
them results in a zero of T1 (if we fix (Ũ , z̃, w̃) as first components).

– the identification of a relation Ũ with the nk variables u1, ..., unk is via the
natural order of Ã according to the natural ranking on {1, ..., n}; i.e. ui = 1
iff the i-th element of Ãk is in Ũ , and ui = 0 otherwise.

We are going to define a IR-structure D representing two polynomials. The
first of these polynomials will be T1 as described above. Thus, the universe A of
D is taken to be the disjoint union of the sets A1 := {1, ..., nk} (for the variables
ui), A2 := {1, ..., n}, A3 := {1, ..., (}, and A4 := {1, ...,m} (for the components
of the variables z, w, and v respectively).

Next, the second polynomial T2 included into D (given by its coefficient
function t2) has to be defined. If Ũ is a relation of arity k on Ã we define T2 to
be a polynomial of degree k + 1 on |A| many real variables.

Even though formally T2 depends on all variables u, z, w, v only particular
monomials will have non-vanishing coefficients.

More precisely, a coefficient t2(x0, x1, ..., xk) might be �= 0 only if x0 ∈ A1
and (x1, ..., xk) ∈ Ak

2 .
In that case we define

t2(x0, ..., xk) :=
1
2m
· t̃2(x1, ..., xk) .

Combinatorial and Metafinite Generating Functions of Graph Properties 409

We claim that evaluating T2 on the zeros of T1 gives∑
(D̃,Ũ ,z̃)∈Ẽ

∑
x̄∈Ũ

t̃2(x̄)
∏
a∈x̃

z(a) .

Calculation shows∑
(D,y)∈F 4

∑
x̄∈Ak+1

t2(x̄)
∏
a∈x̄

y(a) =
∑

y,T1(y)=0

∑
x̄∈Ak+1

t2(x̄)
∏
a∈x̄

y(a)

=
∑

(u,z,w,v),

T1(u,z,w,v)=0

∑
(a0,x̄)∈A1×Ak

2

t2(a0, x̄)
∏
a∈x̄

u(a0) · z(a)

=
∑

(u,z),(u,z) first
components of zero of T1

2m · ∑
x̄∈Ũ

1
2m · t̃2(x̄)

∏
a∈x̄

z(a)

(here Ũ denotes the relation defined by those ui which are 1)

=
∑

(D̃,Ũ ,z)∈Ẽ

∑
x̄∈Ũ

t̃2(x̄)
∏
a∈x̄

z(a) = NGenẼ(D̃) .

��
Remark 1. We could also allow counting according to functions z : At → IR for
some arbitrary arity t ≥ 1.

Similarly, in the above complete problem we could reduce the degree of T2
to be at most 4 as well by applying the same reduction idea used for T1. We
omitted this in order not to get lost in details.

Complete problems for MinMet-GenPIR are obtained in the same way. As
already mentioned, this class of functions includes the minimization of poly-
nomial functions according to side constraints which are expressed via E . For
example, non-convex quadratic optimization problems with linear constraints
can be described this way (cf. [Mee94]).

A completely new issue appears if we do not suppose the valid guesses of
a NPIR-property to be computable for the given input (as is the case in many
situations)!

Then, even if we assume the number of valid guesses to be finite the compu-
tation of the corresponding generating function cannot be done exactly. In that
situation, we are led to approximating these guesses and then performing the
subsequent evaluation also approximately. This is a completely different program
than what we have done here; of course, the underlying questions of approxi-
mative computations are of high relevance. For results in relation with the BSS
model confer [BCSS98].

In case we also want to get wid of the assumptions concerning the finiteness
of the number of valid guesses one can think about a variation of the BSS model
where also the evaluation of infinte series is possible. Steps into this direction
can be found in [HSV97].

410 J.A. Makowsky and K. Meer

References

BCS97. P. Bürgisser, M. Clausen, and M.A. Shokrollahi. Algebraic Complexity The-
ory, volume 315 of Grundlehren. Springer Verlag, 1997.

BCSS98. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Compu-
tation. Springer Verlag, 1998.

Bür99. P. Bürgisser. Completeness and reduction in algebraic complexity theory,
volume 7 of Algorithms and Computation in Mathematics, Springer Verlag,
in press.

CR88. M. Coste and M.F. Roy, Thom’s Lemma, the Coding of Real Algebraic
Numbers and the Computation of the Topology of Semi-algebraic Sets. J.
Symbolic Computation, 5, 121–129, 1988.

EF95. H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.
GG98. E. Grädel and Y. Gurevich. Metafinite model theory. Information and Com-

putation, 140:26–81, 1998.
GM96. E. Grädel and K. Meer. Descriptive complexity theory over the real numbers.

In: J. Renegar, M. Shub, and S. Smale (eds.): The Mathematics of Numerical
Analysis. Lectures in Applied Mathematics 32, AMS, 381–404, 1996.

HSV97. G. Hotz, B. Schieffer and G. Vierke Analytic machines Technical Report
TR95-025, ECCC, 1995.

Mak00. J.A. Makowsky. Colored Tutte Polynomials and Kauffman Brackets for
Graphs of Bounded Tree Width. Extended Abstract , submitted MFCS’00;
revised further, March 31, 2000, submitted to Combinatorics, Probability
and Computation

Mee94. K. Meer. On the complexity of quadratic programming in real number models
of computation. Theoretical Computer Science, 133:85–94, 1994.

Mee97. K. Meer. Counting problems over the Reals. To appear in Theoretical Com-
puter Science. Extended abstract in: Proc. of the 22nd international sympo-
sium on Mathematical Foundations of Computer Science MFCS, LNCS 1295,
Springer, 398–407, 1997.

R92. J. Renegar. On the computational Complexity and Geometry of the first-
order Theory of the Reals , I - III. Journal of Symbolic Computation, vol.
13, 255–352, 1992.

SST95. S. Saluja, K. Subrahmanyam, and M. Thakur. Descriptive complexity of �p
functions. Journal of Computer and System Sciences, 50:493–505, 1995.

Val79. L.G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189–201, 1979.

Zuc96. D. Zuckerman. On unapproximable versions of NP-complete problems. SIAM
Journal on Computing, 25(6):1305–1317, 1996.

Elimination of Negation in a Logical Framework

Alberto Momigliano

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
mobile@cs.cmu.edu

Abstract. Logical frameworks with a logic programming interpretation such
as hereditary Harrop formulae (HHF) [12] cannot express directly negative
information, although negation is a useful specification tool. Since negation-
as-failure does not fit well in a logical framework, especially one endowed with
hypothetical and parametric judgments, we adapt the idea of elimination of
negation introduced in [17] for Horn logic to a fragment of higher-order HHF.
This entails finding a middle ground between the Closed World Assumption
usually associated with negation and the Open World Assumption typical of
logical frameworks; the main technical idea is to isolate a set of programs
where static and dynamic clauses do not overlap.

1 Introduction

Deductive systems consist of axioms and rules defining derivable judgments; they
can be used to specify logics and aspects of programming languages such as oper-
ational semantics or type systems. A logical framework is a meta-language for the
specification, implementation and verification of deductive systems and possibly their
meta-theory. A logical framework must provide tools which make encodings as sim-
ple and direct as possible. One well known example is higher-order abstract syntax,
which moves renaming and substitution principles to the meta-language. Logical
frameworks should be by design as weak as possible to simplify proofs of adequacy
of encodings, effective checking of the validity of derivations and proof-search as well
as unification. Many logical framework have been proposed in the literature (see [16]
for an overview) and many extensions are also under consideration. However, we
must carefully balance the benefits that any proposed extension can bring against
the complications its meta-theory would incur.

This paper discusses the introduction of a logically justified notion of negation in
logical frameworks with a logic programming interpretation such as hereditary Harrop
formulae (HHF) [12] and its implementation in λProlog [15]. We intend this to form
the basis for type-theoretic frameworks such as LF [9] and its implementation Twelf
[19]. Those systems do not provide a primitive negation operator. Indeed, construc-
tive logics usually implement negative information as ¬A ≡ A→⊥, where ⊥ denotes
absurdity and the Duns Scoto Law is the elimination rule. Thus negative predicates
have no special status; that would correspond to explicitly code negative informa-
tion in a program, which is entirely consistent with the procedural interpretation
of hypothetical judgments available in logical frameworks with a logic programming
interpretation. However, this would not only significantly complicate goal-oriented

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 411–426, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

412 A. Momigliano

proof search, but providing negative definitions seems to be particularly error-prone,
repetitive and not particularly interesting; more importantly, in a logical framework
we have also to fulfill the proof obligation that the proposed negative definition does
behave as the complement (of its positive counterpart). Automating the synthesis
of negative information has not only an immediate practical relevance in the logic
programming sense, but it may also have a rather dramatic effect on the possibility
of implementing deductive systems that would prove to be too unwieldy to deal with
otherwise. The synthesis of the negation of predicates such as typable, well-formed,
canonical form, subsort, value etc.–as well as Prolog-like predicates such as equality,
set membership and the like–will increase the amount of meta-theory that can be
formalized.

Traditionally, negation-as-failure (NF) [5] has been the overwhelmingly used ap-
proach in logic programming (see [2] for a recent survey): that is, infer ¬A if every
proof of A fails finitely. The operational nature of this rule motivates the lack of
a unique semantics and some of its related troublesome features: possible unsound-
ness, incompleteness and floundering. Furthermore, even if we manage to isolate a
well-behaved logical fragment, such as acyclic normal programs, allowing NF in a
logical framework would make adequacy theorems more difficult to prove, as both
provability and unprovability must now be considered. The situation is even further
complicated when we step to frameworks with hypothetical judgments; as recognized
first by Gabbay [6], the unrestricted combination of NF and embedded implication
is particularly problematic, since it leads to the failure of basic logic principles such
as cut-elimination.

The approach to negation that we adopt is transformational, also known as inten-
sional negation, initiated in [17] and developed in Pisa [3] for Horn logic with negation.
Roughly, given a clause with occurrences of negated predicates, say Q← G,¬P,G′,
where P is an already defined atom, the aim is to derive a positive predicate,
say non P which implements the complement of P , preserving operational equiv-
alence; then, it is merely a question of replacement, yielding the negation-less clause
Q← G,non P,G′. This has the neat effect that negation and its problems are elimi-
nated, i.e. we avoid any extension to the (meta) language. Technically, we can achieve
this by transforming a Horn program into negation normal form and then by negat-
ing atoms via complementing terms, a problem first addressed in [10] for first-order
terms. A final issue, which we do not tackle here, is dealing with local variables,
which, during the transformation, become (extensionally) universally quantified [1].

Unfortunately, this approach does not scale immediately to logical frameworks
such as HHF, for three main reasons:

1. The simply-typed λ-calculus is not closed under term complement.
2. Negation normal forms are incompatible with the operational semantics required

by HHF.
3. There is an intrinsic tension between the Closed World Assumption (CWA),

which is associated with negation, and the Open World Assumption (OWA) typ-
ical of languages with embedded implication.

The first problem has been solved in [14], by introducing a strict λ-calculus where
term complement in the simply typed λ-calculus can be embedded and performed.

Elimination of Negation in a Logical Framework 413

The second issue is orthogonal and requires an operational notion of normal form. The
third one is rooted in the fundamental difference between Horn and HHF formulae:
as well known, a Horn predicate definition can be seen as an inductive definition
of the same predicate. The minimality condition of inductive definitions excludes
anything else which is not allowed by the base and step case(s). This corresponds in
Horn logic to the existence of the least model and to the consistency of the CWA and
its finitary approximation, the completion of a program [5]: every atom which is not
provable from a program is assumed to be false. Languages which provide embedded
implication and universal quantification are instead open-ended and thus require the
OWA; in fact, dynamic assumptions may, at run-time, extend the current signature
and program in a totally unpredictable way. This makes it in general impossible
to talk about the closure of such a program. In the literature the issue has been
addressed in essentially three ways:

1. By enforcing a strict distinction between CWA and OWA predicates and applying
NF only to the former [8], where the latter would require minimal negation.

2. By switching to a modal logic, which is able to take into account arbitrary ex-
tensions of the program as possible worlds (see the completion construction in
[7] for N-Prolog and [4] for Hypothetical Datalog).

3. By embracing the idea of partiality in inductive definitions and using the rule of
definitional reflection to incorporate a proof-theoretical notion of closure analo-
gous to the completion [11].

None of those approaches are satisfactory for our purposes: most of the predicates
we want to negate are open-ended; similarly, definitional reflection is not well-behaved
(for example cut is not eliminable) for that very class of programs we are interested
in. Moreover, we need to express the negation of a predicate in the same language
where the predicate is formulated. Our solution is to restrict the set of programs we
deem deniable in a novel way, so as to enforce a Regular Word Assumption (RWA): we
define a class of programs whose dynamic assumptions extend the current database
in a specific regular way. This constitutes a reasonable middle ground between the
CWA which allows no dynamic assumption but is amenable to negation and the
OWA, where assumptions are totally unpredictable. The RWA is also a promising
tool in the study of the meta-logical frameworks [18]. Technically, this regularity
under dynamic extension is calibrated so as to ensure that static and dynamic clauses
never overlap. This property extends to the negative program; in a sense, we maintain
a distinction between static and dynamic information, but at a much finer level,
i.e. inside the definition of a predicate. The resulting fragment is very rich, as it
captures the essence of the usage of hypothetical and parametric judgments in a
logical framework; namely, that they are intrinsically combined to represent scoping
constructs in the object language. This is why we contend that this class of programs
is adequate for the practice of logical frameworks.

It is clear that elimination of negation makes sense only when negation is strat-
ified, i.e. the negative predicates ultimately refers (in the call graph) to a positive
one. While there may be a place in logic programming for non-stratified negation,
this does not seem to be the case for a logical framework. Another difference from
traditional logic programming is that negation applies only to terminating programs;

414 A. Momigliano

thus it refers not to finite failure but to unprovability tout court, as we refrain from
negating programs whose negation is not recursively axiomatizable. We will thus
identify negation with a complement operation.

The rest of the paper is organized as follow: in Sect. 2 we give an informal view
of the complement algorithm by means of examples, while Sect. 3 introduces the
language. Section 4 describe term and clause complementation. We conclude in Sect. 5
with some remarks on future work. We refer to [13] for more details and proofs
omitted here for reasons of space.

2 A Motivating Example

Consider the expressions of the untyped λ-calculus:

e ::= x | Λx . e | e1 e2
We encode these expressions as terms in (labeled) HHF via the usual techniques of
higher-order abstract syntax as canonical forms over the following signature:

Σ = exp : type, lam : (exp→ exp)→ exp, app : exp→ (exp→ exp)

The representation function is given by:

�x� = x �Λx . e� = lam (λx :exp. �e�) �e1 e2� = app �e1� �e2�

A term is linear if every functional subterm uses each argument exactly once: in
particular, we check for linearity of a function making sure that the latter is linear
in its first argument and then recurring on the rest of the expression.

linapp : linear(app E1 E2)← linear(E1) ∧ linear(E2).
linlam : linear(lam(λx .E x))

← linx(λx .E x) ∧ (∀y :exp. linear(y)→ linear(E y)).

linxx : linx(λx . x).
linxap1 : linx(λx . app (E1 x) E2)← linx(λx .E1 x).
linxap2 : linx(λx . app E1 (E2 x))← linx(λx .E2 x).
linxlm : linx(λx . lam(λy .E x y))← (∀y :exp. linx(λx .E x y)).

This is clearly a decision procedure, which can be complemented; an expression is
not linear if there is some function which either does not use its argument or uses it
more than once. First, the complement of linapp does not pose any problem, as it
is a Horn clause: an application is not linear if either the first element or the second
is not linear. Next, a lambda expression is not linear in two cases: one, if it is not
linear in its first argument:

¬linlam1 : ¬linear(lam λx .E x)← ¬linx(λx .E x).

Elimination of Negation in a Logical Framework 415

Secondly, if its body is not linear. Now, this poses a new problem, as we have to
negate a hypothetical and parametric goal. Let us reason by example and suppose
we are given, in the empty context, a goal linear(lam(λx . lam(λy . x))), which is
unprovable, since the second lambda term is not linear in y; the proof tree yields
the failure leaf linx(λx . z), for a new parameter z, in the context z:exp; linear(z).
Our guiding intuition is that we want to mimic a failure derivation so as to provide
a successful derivation from the negative definition, i.e. a proof of ¬linx(λx . z) from
z:exp; linear(z); this shows one prominent feature of complementation of an HHF
formula: negation ‘skips’ over ∀ and→, since it needs to mirror failure from assump-
tions. Now, let us examine clause linxlm and reconsider the above failure leaf; in a
first attempt, according to the idea above, the complement would be:

?¬ linxlm : ¬linx(λx . lam(λy .E x y))← (∀y :exp.¬linx(λx .E x y)).

However, there is no way to obtain a proof of ¬linx(λx . z) from the current context.
Indeed, the linxlm clause does not carry enough information so that its complement
can mimic the failure proof. In a sense, the clause is not assumption-complete: once
it has introduced a new parameter, the clause only specifies how to use it in a posi-
tive context. It is up to us to synthesize its dynamic negative definition, in this case
simply ∀y :exp.¬linx(λx . y). More in general, it is a characteristic of HHF that the
negation of a clause is not strong enough to determine the behavior of a program
under complementation. We will have to insert (via a source-to-source transforma-
tion) additional structure in a predicate definition, in order to completely determine
the provability or failure of goals which mention parameters. By observing the struc-
ture of all possible assumption that a predicate definition can make, we will augment
those assumptions with their negative definition. In particular, we first augment the
clause linxlm:

augD(linxlm) : linx(λx . lam(λy .E x y))
← (∀y :exp.¬linx(λx . y)→ linx(λx .E x y)).

so that, by complementation, we obtain:

¬augD(linxlm) : ¬linx(λx . lam(λy .E x y))
← (∀y :exp.¬linx(λx . y)→ ¬linx(λx .E x y)).

Unfortunately, the procedure we have outlined is not possible in general. Consider
a clause encoding the introduction rule for implication in natural deduction, which
can be used to check whether an implicational formula trivially holds:

Σ = form : type, imp : form→ (form→ form), a : form, b : form, c : form
impi : nd(A imp B)← (nd(A)→ nd(B)).

Following our earlier remark its complement would be:

¬impi1 : ¬nd(a).
¬impi2 : ¬nd(b).
¬impi3 : ¬nd(c).
?¬ impi : ¬nd(A imp B)← (nd(A)→ ¬nd(B)).

416 A. Momigliano

This specification is clearly incorrect since both nd(a imp a) and ¬nd(a imp a) are
derivable from the empty context. We can isolate one major problem: in clause impi
the assumption nd(A) which is dynamically added to the (static) definition of the
nd predicate overlaps with the head of the clause. A symmetrical problem can occur
when dynamic and static clause do differ but their complements do not. We have
thus isolated two main issues:

1. Exhaustivity: we need to enrich clauses so that every (ground) goal or its negation
is provable.

2. Exclusivity: we need to isolate a significant fragment where it is not the case that
both a goal and its negation are provable.

We will achieve exhaustivity (Theorem 2) by augmenting the program with the com-
plement of assumptions; moreover, we will achieve exclusivity (Theorem 1) with the
restriction to complementable programs. To anticipate the idea, a clause is comple-
mentable if every assumption contains some eigenvariable at execution time.

3 Provability and Unprovability

We will use the following somewhat unusual language:

Simple Types A ::= a | A1 → A2
Terms M ::= c | x | λx:A. M |M1 M2

Atoms Q ::= q Mn | ¬q Mn

Clauses D ::= 	 |⊥| Q← G | D1 ∧D2 | D1 ∨D2 | ∀x :A.D

Goals G ::= Q | 	 |⊥|Mn
·= Nn |Mn � ·= Nn |

G1 ∧G2 | G1 ∨G2 | D → G | ∀x :A.G
Signatures Σ ::= · | Σ, a:type | Σ, c:A

Parameter Contexts Γ ::= · | Γ, x:A
Assumptions D ::= 	 | D ∧D

There is a distinguished type o for propositions which can occur only as the target of
some A. We remark that ‘¬’ is not a connective, but a name constructor for atomic
formulae; ‘facts’ are represented, for convenience, byQ← 	, although in examples we
will omit to mention 	. We assume that existential variables occur only once in the
head of program clauses (i.e. clauses are left-linear); this can always be achieved by
introducing disequations in the body. In this paper we restrict ourselves to programs
such that all assumptions are Horn and which can be proven to be terminating
under some well-founded ordering. We introduce the uniform proofs system [12] for
(immediate) provability and denial in Fig. 1. For terminating programs, we can prove
that the failure to achieve a proof of G translates into (a derivation of) the denial of
G. Note also that due to the presence of disjunction as a clause constructor, uniform
proofs are not complete for our language. We will remedy this situation in Sect. 4.

Γ ;D �P G Program P and assumption D uniformly entail G.
Γ ;D ��P G Program P and assumption D uniformly deny G.
Γ ;D �P D>>Q Clause D from P and D immediately entails atom Q.
Γ ;D ��P D>>Q Clause D from P and D immediately denies atom Q.

Elimination of Negation in a Logical Framework 417

� �
Γ ;D �P �

��⊥
Γ ;D ��P⊥

Mn = Nn

� ·=
Γ ;D �P Mn

·= Nn

Mn �= Nn

�� ·=
Γ ;D ��P Mn

·= Nn

Mn �= Nn

�� ·=
Γ ;D �P Mn � ·= Nn

Mn = Nn ��� ·=
Γ ;D ��P Mn � ·= Nn

Γ ;D �P G1 Γ ;D �P G2
�∧

Γ ;D �P G1 ∧G2

Γ ;D ��P G1 Γ ;D ��P G2 ��∨
Γ ;D ��P G1 ∨G2

Γ ;D �P Gi � ∨i

Γ ;D �P G1 ∨G2

Γ ;D ��P Gi �� ∧i

Γ ;D ��P G1 ∧G2

Γ � t : A Γ ;D �P [t/x]G
� ∃

Γ ;D �P ∃x :A.G

for all n Γ � n : A Γ ;D ��P [n/x]G
�� ∃

Γ ;D ��P ∃x :A.G

Γ ; (D ∧D) �P G
� →

Γ ;D �P D → G

Γ ; (D ∧D) ��P G
�� →

Γ ;D ��P D → G

(Γ, y:A);D �P [y/x]G
�∀y

Γ ;D �P ∀x :A.G

(Γ, y:A);D ��P [y/x]G
��∀y

Γ ;D ��P ∀x :A.G

Γ ;D �P (P ∧ D)>>Q
� At

Γ ;D �P Q

Γ ;D ��P (P ∧ D)>>Q
�� At

Γ ;D ��P Q

>> ⊥
Γ ;D �P⊥ >>Q

�>>�
Γ ;D ��P �>>Q

Γ � t : A Γ ;D �P [t/x]D>>Q
>>∀

Γ ;D �P ∀x :A.D>>Q

for all n Γ � n : A Γ ;D ��P [n/x]D>>Q
�>>∀

Γ ;D ��P ∀x :A.D>>Q

Γ ;D �P Di>>Q
>>∧i

Γ ;D �P D1 ∧D2>>Q

Γ ;D ��P Di>>Q
�>>∨i

Γ ;D ��P D1 ∨D2>>Q

Γ ;D �P D1>>Q Γ ;D �P D2>>Q
>>∨

Γ ;D �P D1 ∨D2>>Q

Γ ;D ��P D1>>Q Γ ;D ��P D2>>Q
�>>∧

Γ ;D ��P D1 ∧D2>>Q

Nn = Mn Γ ;D �P G
>>→

Γ ;D �P (q Nn ← G)>>q Mn

Nn �= Mn � >>→1

Γ ;D ��P (q Nn ← G)>>q Mn

Nn = Mn Γ ;D ��P G
� >>→2

Γ ;D ��P (q Nn ← G)>>q Mn

Fig. 1. (Immediate) Provability and Denial

418 A. Momigliano

Some brief comments are in order: the (in)equalities rules simply mirror the object
logic symbols ·=, � ·= as meta-level (in)equalities. �>>∀ and �� ∃ are infinitary rules, given
the meta-linguistic extensional universal quantification on all terms. Rules � ∀, �� ∀
are instead parametric in y, where the ()y superscript reminds us of the eigenvariable
condition. The denial rules for implication and universal quantification reflect the
operational semantics of unprovability that we have discussed earlier.

We start by putting every program in a normalized format w.r.t. assumptions,
so that every goal in the scope of an universal quantifier is guaranteed to depend on
some assumption, possibly the trivial clause 	. This has also the effect of ‘localizing’
the trivial assumption to its atom, a property will be central while complementing
assumptions; for example we re-write linxlm as follows:

linxlm : linx (λx . lam(λy .E x y))
← (∀x :exp.	linx → linx (λx .E x z)).

For the sake of this paper, we also need to modify the source program so that every
term in a clause head is fully applied, i.e. it is a lambda term where every variable
mentioned in the binder occurs in the matrix; this makes term complementation
(Sect. 4) much simpler. For example clause linxap1 is rewritten as:

linxap1 : linx(λx . app (E1 x) (E2 x))← linx(λx .E1 x) ∧ vac(λx .E2 x).

where vac(λx .E2 x) enforces that x does not occur in E2 x. Its definition is type-
directed, but we have shown in [14] how to internalize these occurrence constraints
in a strict type theory, so that this further transformation is not needed.

We now discuss context schemata. As we have argued in Sect. 2, we cannot obtain
closure under clause complementation for the full logic of HHF, but we have to restrict
ourselves to a smaller (but significant) fragment. This in turn entails that we have
to make sure that during execution, whenever an assumption is made, it remains in
the fragment we have isolated. Technically, we proceed as follows:

– We extract from the static definition of a predicate the general ‘template’ of a
legal assumption.

– We require dynamic assumptions to conform to this template.

We thus introduce the notion of schema satisfaction, which uses the following data
structure: a context schema abstracts over all possible instantiations of a context
during execution. To account for that, we introduce a quantifier-like operator, say
SOME Φ .D, which takes a clause and existentially bounds its free variables, if any,
i.e. Φ = FV (D). The double bar ‘‖’, not to be confused with the BNF ‘|’ that we
informally use in the meta-language, denotes schema alternatives, while ‘◦’ stands
for the empty context schema.

Contexts Schemata S ::= ◦ | S‖(Γ ; SOME Φ .D)
The linear predicate yields this (degenerate) example of context schema:

Slinear = ◦ | Slinear‖x:exp; linear(x) | Slinear‖x:exp;	linx

Elimination of Negation in a Logical Framework 419

We extract a context schema by collecting all negative occurrences in a goal; this
is achieved by simulating execution until an atomic goal is reached and the current
list of parameters and assumptions is returned, with their correct existential binding.
Different clauses may contribute different schema alternatives for a given predicate
definition. A run-time context consists of a set of blocks, each of which is an instance
of the context schema, for example:

y1:exp, y2:exp, x1:exp;	linx ∧ 	linx ∧ linear(x1)

We will need to disambiguate blocks in run-time contexts; overlapping may indeed
happen when the alternatives in a context schema are not disjoint. Intuitively, a
block is complete when an atomic conclusion is reached during the deduction. Any
bracketing convention will do:

�y1:exp�, �y2:exp�, �x1:exp�; �	linx� ∧ �	linx� ∧ �linear(x1)�

We then define when a formula satisfies a schema. We start by saying that a com-
pleted block belongs to a schema when the block is an alphabetic variant of some
instantiation of one of the alternatives of the schema. Then, the empty run-time
context is an instance of every schema. Secondly, if Γ ′ and D′ are completed blocks
which belong to S, and Γ ;D in an instance of S, then (Γ, �Γ ′�); (D ∧ �D′�) is an
instance of S, provided that D′ is a valid clause. The latter holds when each of its
subgoals satisfies the schema. This is achieved by mimicking the construction on the
run-time schema until in the base case we check whether the resulting context is an
instance of the given schema.

We can prove that if a context schema is extracted from a program, then any
instance of the latter satisfies the former. Moreover, execution preserves contexts,
i.e. every subgoal which arises in any given successful or failed (immediate and non-
immediate) sub-derivation satisfies the context schema. See [13] for the formal devel-
opment.

4 Clause Complementation

We restrict ourselves to programs with:

– Goals where every assumption is parametric, i.e. it is in the scope of a positive
occurrence of a universal quantifier and the corresponding parameter occurs in
head position in the assumption.

– Clauses Q← G such that the head of every term in Q is rigid.

Note that the rigidity restriction applies only to non-Horn predicate definitions and
can be significantly relaxed; see [13] for a detailed account.

The first ingredient is higher-order pattern complement, Not(M), investigated
in the general case in [14]; we give here the rules for complementing fully applied
patterns:

420 A. Momigliano

Not Flx
Γ � Not(E xn)⇒ ∅

Γ, x:A � Not(M)⇒ N : B
Not Lam

Γ � Not(λx :A.M)⇒ λx :A.N : A→ B

g ∈ Σ ∪ Γ, g : A1 → . . .→ Am → a,m ≥ 0, h �≡ g
Not App1

Γ � Not(h Mn)⇒ g (Z1Γ) . . . (ZmΓ) : a

∃i : 1 ≤ i ≤ n Γ � Not(Mi)⇒ N :
Not App2

Γ � Not(h Mn)⇒ h (Z1Γ) . . . (Zi−1Γ) N (Zi+1Γ) . . . (ZnΓ) : a

where the Z’s are fresh variables which may depend on the domain of Γ , h ∈ Σ ∪Γ ,
and Γ � h : A1 → . . .→ An → a. Γ � Not(M) = N : A iff N = {N | Γ � Not(M)⇒
N : A}. For example:

· � Not(λx . x) = {λx . lam(λy .E x y), λx . app (E1 x) (E2 x)}
If we write Γ � M ∈ ‖N‖ : A when M is a ground instance of a pattern N at type
A, we can show that Not behaves as the complement on sets of ground terms, i.e.

1. (Exclusivity) Not (Γ �M ∈ ‖N‖ : A and Γ �M ∈ ‖Not(N)‖ : A).
2. (Exhaustivity) Either Γ �M ∈ ‖N‖ : A or Γ �M ∈ ‖Not(N)‖ : A.

Complementing goals is immediate: we just put the latter in negation normal
form, respecting the operational semantics of failure.

NotG�
NotG(�) =⊥

NotG ⊥
NotG(⊥) = �

NotGAt
NotG(Q) = ¬Q

Not ·=
NotG(Mn

·= Nn) = (Mn � ·= Nn)
Not � ·=

NotG(Mn � ·= Nn) = (Mn
·= Nn)

NotG(G) = G′

NotG∀
NotG(∀x :A.G) = ∀x :A.G′

NotG(G) = G′

NotG →
NotG(D → G) = D → G′

NotG(G1) = G′
1 NotG(G2) = G′

2
Not∧

NotG(G1 ∧G2) = G′
1 ∨G′

2

NotG(G1) = G′
1 NotG(G2) = G′

2
Not∨

NotG(G1 ∨G2) = G′
1 ∧G′

2

Clause complementation is instead more delicate: given a rule q Mn ← G, its
complement must contain a ‘factual’ part motivating failure due to clash with the
head; the remainder NotG(G) expresses failure in the body, if any. Clause comple-
mentation must discriminate whether (the head of) a rule belongs to the static or
dynamic definition of a predicate. In the first case all the relevant information is
already present in the head of the clause and we can use the term complementation
algorithm. This is accomplished by the rule NotD →, where a set of negative facts
is built via term complementation Not(Mn), namely

∧
Nn∈Not(Mn) ∀(¬q Nn ←),

Elimination of Negation in a Logical Framework 421

whose fresh free variables are universally closed; moreover the negative counterpart
of the source clause is obtained via complementation of the body. The original quan-
tification is retained thanks to rule NotD∀.

NotD�
NotD(�) =⊥

NotD ⊥
NotD(⊥) = �

NotG(G) = G′

NotD ←
NotD(q Mn ← G) = (

∧
Nn∈Not(Mn)

∀(¬(q Nn)← �)) ∧ (¬q Mn ← G′)

NotD(D) = D′

NotD∀
NotD(∀x :A.D) = ∀x :A.D′

NotD(D1) = D′
1 NotD(D2) = D′

2
Not∧

NotD(D1 ∧D2) = D′
1 ∨D′

2

NotD(D1) = D′
1 NotD(D2) = D′

2
Not∨

NotD(D1 ∨D2) = D′
1 ∧D′

2

Otherwise, we can think of the complement of an atomic assumption
(q M1 . . . x . . .Mn), which is by definition parametric in some x, as static clause
complementation w.r.t. x, i.e. NotD(qx M1 . . .Mi−1 Mi+1 . . .Mn). However, most of
those Mi, which at compile-time are variables, will be instantiated at run-time: there-
fore it would be incorrect to compute their complement as empty. Since we cannot
foresee this instantiation, we achieve clause complementation via the introduction of
disequations. This is realized by the judgment Γ � Notα(D). We need the follow-
ing notion: a parameter x:a is relevant to a predicate symbol q (denoted xRiq) if
Σ(q) = A1 → · · · → An → o and for some 1 ≤ i ≤ n the target type of Ai is a.

Notα�
Γ � Notα(�q) =

∧
x∈dom(Γ)

(
∧

xRiq

Notix(�q))

NotG(G) = G′

Notα ←
Γ � Notα(Q← G) = (

∧
x∈dom(Γ)

(
∧

xRiq

Notix(Q))) ∧ (¬Q← G′)

Both rules refer to an auxiliary judgment Notix(D):

Σ(q) = A1 → · · · → An → o · � sh(x,Ai) = ex

Notix�
Notix(�q) = ∀Z1 :A1. . . . ∀Zn :An.¬(q Zi

ex
)← �

Σ(q) = A1 → · · · → An → o · � sh(x,Ai) = ex

NotixAt
Notix(q Mn) =

∧
1≤j≤n,j �=i

(∀Z1 :A1. . . . ∀Zn :An.¬(q Zi
ex
)←Mj � ·= Zj)

The idea is to:

422 A. Momigliano

– Pivot on x:a ∈ Γ .
– Locate a type Ai such that x:a is relevant to q at i.
– Complement D w.r.t. x and i.
– Repeat for every Ai and for every x.

The rest of the rules for Γ � Notα(D) are completely analogous to the ones for
NotD(D) and are omitted. Both simply recur on the program respecting the duality
of conjunction and disjunction w.r.t. negation. Notice the different treatment of the
trivial clause 	 by rules NotD	 and Notα	: if no parameter has been assumed, then
	 truly stands for the empty predicate definition and its complement is the universal
definition ⊥. If, on the other hand Γ is not empty, it means that 	q has been intro-
duced during the 	-normalization preprocessing phase and has been localized to the
predicate q. The rule Notix	 allows to build a new negative assumption w.r.t. q, x, i
in case 	q is the only dynamic definition of q. As 	q carries no information at all con-
cerning q, the most general negative assumption is added; the notation Ziex

abridges
Z1 . . . Zi−1 ex Zi+1 . . . Zn, where the Z’s are fresh logic variables and ex is a term
built prefixing a parameter x by an appropriate number of lambda’s, according to
the type of its position; this is specified by the Γ � sh(x,A) judgment, omitted here
(but see it in action in Example 1).

Now that we have discussed how to perform clause, assumption and goal com-
plementation, we synchronize them together in a phase we call augmentation, which
simply inserts the correct assumption complementation into a goal and in turn into
a clause. This is achieved by a judgment Γ ;D �Φ augD(D), again omitted here for
reasons of space.

Example 1. Consider the copy clause on λ-terms:

cplam : copy (lam E) (lam F)
← (∀x :exp. copy x x→ copy (E x) (F x)).

The augmentation procedure collects x:exp; copy x x and calls x:exp � Notα(copy x x).
First Notx1(copy x x) = (∀E′ :exp.¬copy E′ x← x � ·= E′), secondly Notx2(copy x x) =
(∀F ′ :exp.¬copy x F ′ ← x � ·= F ′), yielding:

augD(cplam) : copy (lam E) (lam F)
← (∀x :exp.

(∀E′ :exp.¬copy E′ x← x � ·= E′) ∧
(∀F ′ :exp.¬copy x F ′ ← x � ·= F ′)→

(copy x x→ copy (E x) (F x))).

Let us see how rule Notix	 enters the picture; recall the normalized linxlm clause.
From · � sh(y, exp→ exp) = λx . y we have Noty1(linx) = ¬linx (λx . y):

augD(linxlam) : linx (λx . lam(λy .E x y))
← (∀y :exp.¬linx (λx . y)→ linx (λx .E x y)).

Elimination of Negation in a Logical Framework 423

Let us apply the complement algorithm to the linx predicate definition:

NotD(def(linx)) =

NotD(linxx) ∨NotD(linxap1) ∨NotD(linxap2) ∨NotD(linxlm) =
(¬linx(λx . app (E1 x) (E2 x)) ∧ ¬linx(λx . lam(λy . (E x y)))) ∨
(¬linx(λx . x) ∧ ¬linx(λx . lam(λy . (E x y)))

∧ ¬linx(λx . app (E1 x) (E2 x))← strict(λx .E2 x)

∧ ¬linx(λx . app (E1 x) (E2 x))← ¬linx(λx .E1 x)) ∨
(¬linx(λx . x) ∧ ¬linx(λx . lam(λy . (E x y)))

∧ ¬linx(λx . app (E1 x) (E2 x))← strict(λx .E1 x)

∧ ¬linx(λx . app (E1 x) (E2 x))← ¬linx(λx .E2 x)) ∨
(¬linx(λx . x) ∧ ¬linx(λx . app (E1 x) (E2 x))

∧ ¬linx(λx . lam(λy . (E x y)))← (∀y :exp.¬linx(λx . y)→ ¬linx(λx .E x y))).

The strict predicate is simply the complement of the vac predicate previously
introduced. Again, these annotations can be internalized in the strict type theory
described in [14].

We can now establish exclusivity and exhaustivity of clause complementation. Let
NotD(P) = P−:
Theorem 1 (Exclusivity). For every run-time context Γ ;D instance of a schema
S extracted from an augmented program P:

1. It is not the case that Γ ;D �P G and Γ ;D �P− NotG(G).
2. It is not the case that Γ ;D �P (P ∧ D)>>Q and Γ ;D �P− (P− ∧ D)>>¬Q.

Proof. (Sketch) By mutual induction on the structure of the derivation of Γ ;D �P G
and Γ ;D �P (P ∧ D)>>Q. The proof goes through as there is no ‘bad’ interaction
between the static and dynamic definition of a predicate; namely there is no overlap
between a clause from P and from D since in every atomic assumption there must be
an occurrence of an eigenvariable and every corresponding term in a program clause
head must start with a constructor. If both clauses are dynamic, it holds because
an appropriate disequation is present; this approximates what happens in the static
case, which is based on term exclusivity.

The denial system comes in handy in the following proof.

Theorem 2 (Exhaustivity). For every substitution θ, σ and run-time context
Γ ; [θ]D instance of a schema S extracted from an augmented program P:

1. If for all θ Γ ; [θ]D ��P [θ]G, then there is a σ such that Γ ; [σ]D �P− [σ]NotG(G).
2.1 If, for all θ Γ ; [θ]D ��P [θ]P>>[θ]Q, then here is a σ such that Γ ; [σ]D �P−

[σ]NotD(D)>>[σ]¬Q.
2.2 If, for all θ Γ ; [θ]D ��P [θ]D>>[θ]Q, then here is a σ such that Γ ; [σ]D �P−

[σ]Notα(D)>>[σ]¬Q.

424 A. Momigliano

The proof is by mutual induction on the structure of the given derivations. As a
corollary, we are guaranteed that clause complementation satisfies the boolean rules
of negation.

Finally, we show how to eliminate from clauses the ‘∨’ operator stemming from
the complementation of conjunctions, while preserving provability; this will recover
uniformity in proof-search.

The key observation is that in this context ‘∨’ can be restricted to a program
constructor inside a predicate definition; therefore it can be eliminated by simulating
unification in the definition, that is (Q1 ← G1) ∨ (Q2 ← G2) ≡ θ(Q1 ← G1 ∧ G2),
where θ = mgu(Q1, Q2).

However, the (strict) higher-order unification problem is quite complex, even more
so due to the mixed quantifier structure of HHF; since we have already parameter
(dis)equations introduced by the augmentation procedure, as well as variable-variable
(dis)equations stemming from left-linearization, we first compile clauses in an inter-
mediate language which keeps the unification problems explicit and then we perform
constraint simplification as in Twelf. Continuing with our example and simplifying
the constraints:

NotD(linxx) ∨NotD(linxap1) =
¬linx(λx . app (E1 x) (E2 x))← strict(λx .E2 x) ∧
¬linx(λx . app (E1 x) (E2 x))← ¬linx(λx .E1 x) ∧
¬linx(λx . lam(λy .E x y)).

The final definition of ¬linear and in turn ¬linx is:

¬linapp : ¬linear(app E1 E2)
← ¬linear(E1) ∨ ¬linear(E2).

¬linlam1 : ¬linear(lam(λx .E x))
← ¬linx(λx .E x)
∨ (∀y :exp. (¬linx(λx . y) ∧ linear(y))→ ¬linear(E y)).

¬linxap0 : ¬linx(λx . app (E1 x) (E2 x))← strict(λx .E1 x) ∧ strict(λx .E2 x).
¬linxap1 : ¬linx(λx . app (E1 x) (E2 x))← ¬linx(λx .E1 x) ∧ strict(λx .E2 x).
¬linxap2 : ¬linx(λx . app (E1 x) (E2 x))← ¬linx(λx .E2 x) ∧ strict(λx .E1 x).
¬linxap3 : ¬linx(λx . app (E1 x) (E2 x))← ¬linx(λx .E1 x) ∧ ¬linx(λx .E2 x).
¬linxlm : ¬linx(λx . lam(λy .E x y))

← (∀y :exp.¬linx(λx . y)→ ¬linx(λx .E x y)).

5 Conclusions and Future Work

We have presented elimination of negation in a fragment of higher-order HHF; our
next task is to overcome some of the current restrictions, to begin with the extension
to any order, which requires a more refined notion of context. The issue of local
variables is instead more challenging. The proposal in [1] is not satisfactory and robust

Elimination of Negation in a Logical Framework 425

enough to carry over to logical frameworks with intensional universal quantification.
Our approach will be again to synthesize a HHF definition for the clauses with local
variables which during the transformations has became extensionally quantified. Our
final goal is to achieve negation elimination in LF.

Acknowledgments

I would like to thank Frank Pfenning for his continuous help and guidance. The notion
of context schema is inspired by Schürmann’s treatment of analogous material in [18].

References

[1] D. P. A. Brogi, P. Mancarella and F. Turini. Universal quantification by case analysis.
In Proc. ECAI-90, pages 111–116, 1990.

[2] K. Apt and R. Bol. Logic programming and negation. Journal of Logic Programming,
19/20:9–72, May/July 1994.

[3] R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. A transformational approach
to negation in logic programming. Journal of Logic Programming, 8:201–228, 1990.

[4] A. Bonner. Hypothetical reasoning with intuitionistic logic. In R. Demolombe and
T. Imielinski, editors, Non-Standard Queries and Answers, volume 306 of Studies in
Logic and Computation, pages 187–219. Oxford University Press, 1994.

[5] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293–322. Plenum Press, New York, 1978.

[6] D. M. Gabbay. N-Prolog: An extension of Prolog with hypothetical implications II.
Logical foundations and negation as failure. Journal of Logic Programming, 2(4):251–
283, Dec. 1985.

[7] L. Giordano and N. Olivetti. Negation as failure and embedded implication. Journal
of Logic Programming, 36(2):91–147, August 1998.

[8] J. Harland. On Hereditary Harrop Formulae as a Basis for Logic Programming. PhD
thesis, Edinburgh, Jan. 1991.

[9] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the
Association for Computing Machinery, 40(1):143–184, Jan. 1993.

[10] J.-L. Lassez and K. Marriot. Explicit representation of terms defined by counter ex-
amples. Journal of Automated Reasoning, 3(3):301–318, Sept. 1987.

[11] R. McDowell and D. Miller. A logic for reasoning with higher-order abstract syntax: An
extended abstract. In G. Winskel, editor, Proceedings of the Twelfth Annual Symposium
on Logic in Computer Science, pages 434–445, Warsaw, Poland, June 1997.

[12] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation
for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

[13] A. Momigliano. Elimination of Negation in a Logical Framework. PhD thesis, Carnegie
Mellon University, 2000. Forthcoming.

[14] A. Momigliano and F. Pfenning. The relative complement problem for higher-order
patterns. In D. D. Schreye, editor, Proceedings of the 1999 International Conference
on Logic Programming (ICLP’99), pages 389–395, La Cruces, New Mexico, 1999. MIT
Press.

[15] G. Nadathur and D. Miller. An overview of λProlog. In K. A. Bowen and R. A.
Kowalski, editors, Fifth International Logic Programming Conference, pages 810–827,
Seattle, Washington, Aug. 1988. MIT Press.

426 A. Momigliano

[16] F. Pfenning. Logical frameworks. In A. Robinson and A. Voronkov, editors, Handbook
of Automated Reasoning. Elsevier Science Publishers, 2000. In preparation.

[17] T. Sato and H. Tamaki. Transformational logic program synthesis. In International
Conference on Fifth Generation Computer Systems, 1984.

[18] C. Schürmann. Automating the Meta-Theory of Deductive Systems. PhD thesis,
Carnegie-Mellon University, 2000. forthcoming.

[19] C. Schürmann and F. Pfenning. Automated theorem proving in a simple meta-logic
for LF. In C. Kirchner and H. Kirchner, editors, Proceedings of the 15th International
Conference on Automated Deduction (CADE-15), pages 286–300, Lindau, Germany,
July 1998. Springer-Verlag LNCS 1421.

Discreet Games, Light Affine Logic
and PTIME Computation

A.S. Murawski� and C.-H.L. Ong��

Oxford University Computing Laboratory
Wolfson Building, Parks Rd, Oxford OX1 3QD, UK

{andrzej,Luke.Ong}@comlab.ox.ac.uk

Abstract. This paper introduces a model of IMLAL, the intuitionistic
multiplicative (⊗� § !)-fragment of Light Affine Logic, based on games
and discreet strategies. We define a generalized notion of threads, so that
a play of a game (of depth k) may be regarded as a number of interwoven
threads (of depths ranging from 1 to k). To constrain the way threads
communicate with each other, we organize them into networks at each
depth (up to k), in accord with a protocol:
• A network comprises an O-thread (which can only be created by O)

and finitely many P-threads (which can only be created by P).
• A network whose O-thread arises from a ! -game can have at most

one P-thread which must also arise from a ! -game.
• No thread can belong to more than one network.
• Only O can switch between networks, and only P can switch between

threads within the same network.
Strategies that comply with the protocol are called discreet, and they give
rise to a fully complete model of IMLAL. Since IMLAL has a polytime
cut-elimination procedure, the model gives a basis for a denotational-
semantic characterization of PTIME.

Keywords: Game Semantics, Linear Logic, Complexity, PTIME.

1 Introduction

Light Linear Logic (LLL) [4] has a polytime cut-elimination procedure and can
encode all polytime numeric functions. In Girard’s words, it is an “intrinsically
polytime system” whose proofs may be regarded as (representations of) poly-
time algorithms. An intuitionistic affine variant of the Logic has recently been
introduced by Asperti [3]. The system, called IMLAL2 (Second-order Intuition-
istic Multiplicative Light Affine Logic), is arguably simpler than LLL, and yet
gives the same characterization of PTIME.

Our goal is to give a denotational characterization of PTIME by constructing
a good game model of proofs (not just provability) of such light logics as LLL
or IMLAL. This seems a non-trivial task: the only model of a light logic known
� On leave from Nicholas Copernicus University, Toruń, Poland.

�� Webpage: http://www.comlab.ox.ac.uk/oucl/work/luke.ong.html

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 427–441, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

428 A.S. Murawski and C.-H.L. Ong

to us is one of provability, and is based on a fibred system of phase spaces [7].
The main result therein is a strong completeness theorem1: if a formula is valid
(i.e. every valuation in any fibred phase space validates it) then it is provable.
For modelling proofs, an appropriate criterion to aim for is full completeness [1],
which is best formulated in terms of a categorical model of the logic, in which
formulas are denoted by objects and proofs by maps. We say that the model C

is fully complete just in case the unique functor from the relevant free category
(typically the classifying category of the logic or type theory) to C is full. In this
paper, we take the first step towards a denotational-semantic characterization
of PTIME by presenting a fully complete model for the quantifier-free IMLAL.

One way to approach our model is to start from the AJM games in [2],
and consider total, history-free strategies that are ≈-reflexive (≈ is a partial
equivalence relation that relates strategies which have “equivalent responses at
equivalent positions”). Thus a play of a shriek game !A may be viewed as a
number of interwoven threads of A. The whisper game §A of light logic is a
degenerate form of !A; a play of §A consists of only one thread of A. We
introduce a generalized notion of threads at each depth i, called i-threads. To
constrain the way threads communicate with each other, we organize threads
into networks at each depth, in accord with a protocol. P-strategies that comply
with the protocol are called discreet (to underline the property that P only
“communicates” within a network). We can show from first principles that such
strategies compose, and they give rise to a fully complete model of IMLAL. We
refer the reader to the protocol (as presented in the framed box) in Section 4,
and illustrate it with an example.

Example 1. Consider the two-player game of a valid sequent in Figure 1 and the
twelve-move play which switches between the subgames as indicated therein (we
use P and O to indicate which player has made the move). The play has two
networks. Threads of the first network are contained in dashed shapes in Figure 1;
they are the O-thread2 m1m12, and two P-threads, namely, m2m3m6m11 and
m4m5. Threads of the second network are contained in dotted shapes in the
Figure; they are the O-thread m7m10 and the P-thread m8m9. Protocol (p2)
says that whenever O starts a new (O-)thread (e.g. with m7 but not m3), a
new network is created. Protocol (p5) requires that only O may switch from one
network to another existing network (e.g. from m10 to m11), but only P may
switch from one thread to another existing thread within the same network (e.g.
from m5 to m6).

Now by replacing the formula on the right of the turnstile by § (B � A),
we get an invalid sequent. Consider the play that moves between the subgames,
following exactly the same pattern of the preceding play. Note that the corre-
sponding m8 violates protocol (p5) as it is a case of P attempting to switch back
to the first network.

1 The result is for a slight variant of LLL that has a § -operator which is not self-dual.
2 For the purpose here, an O-thread is just a thread beginning with an O-move.

Discreet Games, Light Affine Logic and PTIME Computation 429

!C, §B � ! (C � A) � §B � §A

m2
m3
m4
m5
m6
m7
m8
m9
m10

m12

m11

P

O

P

O

P

P
O

P

O

O

P

m1

O

Fig. 1. Networks of (threads of) a play

To the best of our knowledge, the construction presented here is the first
model of a system of light logic proofs. Our main contribution is a semantic
analysis of the two crucial connectives ! and § . We could have worked on a
model for LLL instead but decided on the intuitionistic affine system because it
is a simpler (but perfectly adequate) setting to explain our ideas. We believe we
can extend discreet games to model multiplicative LLL without difficulty: games
for the classical system (i.e. extended by involutive negation) can be obtained
by admitting positions that begin with P-moves; weakening can be invalidated
by either introducing fairness [5] at the level of positions or exhaustion [8] at
the level of strategies.

2 IMLAL

Intuitionistic Multiplicative Light Affine Logic (IMLAL) formulas are generated
from atoms a, b, c, · · · by the connectives ⊗, �, § (read “whisper”) and ! (read
“shriek”). Affine here means that the weakening rule is valid. We let Γ,∆ range
over finite sequences of IMLAL formulas. The valid IMLAL sequents are defined
by the rules in Figure 2. The two main results are:

Theorem 1 (Girard, Asperti).

1. Cut elimination in a proof p of Γ � A can be done in time proportional to
|p|2d

where d is the depth of
⊗

Γ � A and |p| is the size of p.
2. All PTIME numeric functions can be encoded in IMLAL2, the second-order
extension of IMLAL. ��
Unfortunately we do not have the space to say anything more about the

Theorem other than to direct the reader to the main references [4,3,9] for proofs
and examples. The following properties of the modalities ! and § , which are the
essence of light logics, are worth emphasizing:

430 A.S. Murawski and C.-H.L. Ong

(var) a � a (exch)
Γ,A,B,∆ � C

Γ,B,A,∆ � C

(wk)
Γ � B

Γ,A � B
(contr)

!A, !A,Γ � C

!A,Γ � C

(⊗-l) A,B, Γ � C

A⊗B,Γ � C
(⊗-r) Γ � A ∆ � B

Γ,∆ � A⊗B

(�-l)
Γ � A B,∆ � C

A � B,Γ,∆ � C
(�-r)

Γ,A � B

Γ � A � B

(! 0)
� A

� !A
(!)

A � B

!A � !B

(§ 0)
� A

� §A
(cut)

Γ � A ∆,A � B

Γ,∆ � B

(§) A1, · · · , Ak, B1, · · · , Bl � C k + l > 0
!A1, · · · , !Ak, §B1, · · · , §Bl � §C

Fig. 2. The rules defining valid IMLAL sequents

1. ! is not a comonad: !A � A and !A � ! !A, but we have duplication
!A � !A⊗ !A

2. § is a degenerate or neutral form of ! i.e. we have !A � §A
3. §A⊗ §B � § (A⊗B) but !A⊗ !B � ! (A⊗B).

3 Games and Strategies

We consider two-player games between P (Proponent) and O (Opponent). Every
play is started by O (this paper is concerned only with the intuitionistic frag-
ment), and thereafter it alternates between P and O. Formally a game G is a
three-tuple 〈MG, λG, PG 〉 where
– MG is a set of moves
– λG : MG −→ {O,P } partitions moves into those that O can make or O-
moves, and those that P can make or P-moves (we will write MO

G , M
P
G for

the set of O-moves and P-moves of G respectively)
– PG is a prefix-closed set of finite alternating sequences of moves from MG,

each beginning with an O-move; we call elements of PG positions or plays.

For example 〈∅,∅, { ε } 〉 (where ε is the empty sequence) is a game, which we
call the empty game. We interpret atomic formulas a as single-move games Ga,
which we also call atomic, defined as Ga = 〈 { a }, { (a,O) }, { ε, a } 〉. In a game
context, a is called a token. In the following we shall abuse notation and often
write Ga simply as a when it is clear from the context what we mean (e.g. we
abbreviate Ga � Ga to a � a).

Discreet Games, Light Affine Logic and PTIME Computation 431

We construct new games from old using standard game constructions. We
write s � A to mean the subsequence of s consisting only of moves from A, and
define P = O and O = P . For a game G, we write M�

G to mean the set of finite
alternating sequences of moves from MG. The first two, tensor games A ⊗ B
and linear function space games A � B, are standard. For � = ⊗ and �,
we have

MA�B = MA +MB

PA�B = { s ∈M�
A�B | s � A ∈ PA, s � B ∈ PB }

where λA⊗B is defined to be the canonical map [λA, λB] : MA+MB −→ {P,O },
and λA�B = [λA, λB]. Note that it is a consequence of the definition that every
s ∈ PA⊗B satisfies the O-Switching Condition: for each pair of consecutive moves
mm′ in s, if m and m′ are from different components (i.e. one is from A the other
from B), then m′ is an O-move. Similarly it follows that every s ∈ PA�B satisfies
the P-Switching Condition i.e. only P can switch component.

The next two constructions, which we call box constructions, are related.
The idea is that a play of a shriek game !A consists of a number of interwoven
“threads”3 (or plays) of A, each is tagged explicitly by a number. The whisper
game §A is a degenerate form of !A in the sense that a play consists of just one
thread, which is tagged by �.

Shriek games !A
M!A = MA × IN
λ!A(m, i) = λA(m)
P!A = {s ∈M�

!A | ∀i ∈ IN.s � i ∈ PA}

Whisper games §A
M§A = MA × {�}
λ§A(m, �) = λA(m)
P§A = {s ∈M�

§A | π∗1(s) ∈ PA}

where s � i is the sequence of A-moves obtained first by projecting s onto the
subsequence consisting of pairs whose second component is i, and then by taking
the respective first projection of each pair; and where π∗1(s) is the sequence of
A-moves obtained from s by taking the respective first projection of each pair.

A deterministic P-strategy, or simply strategy, for a game G is a non-empty,
prefix-closed subset σ of PG satisfying: (i) for any even-length s, if s ∈ σ and
sm ∈ PG then sm ∈ σ, and (ii) (determinacy) if even-length sm and sm′ are
both in σ, then m = m′. We say that σ is history-free if there is a partial function
f : MO

G ⇀ MP
G such that for any odd-length sm ∈ σ, we have smm′ ∈ σ if and

only if f(m) is defined and equal to m′; we write σ = σf just in case f is the least
such function. Further it is said to be injective history-free if the least such f
is injective. If for every odd-length s ∈ σ, there is some m such that sm ∈ σ, we
say that σ is total. For any games A1, A2 and A3 we define L(A1, A2, A3) to be
the set of finite sequences s of moves from MA1 +MA2 +MA3 such that for any
pair of consecutive moves mm′ in s, if m ∈MAi and m′ ∈MAj then |i− j| � 1.
(We call L(A1, A2, A3) the set of interaction sequences over (A1, A2, A3).)
Take strategies σ and τ for games A � B and B � C respectively. We define

3 In Section 4 we give a formal definition of a generalized notion of threads.

432 A.S. Murawski and C.-H.L. Ong

the composite σ ; τ of σ and τ as:

σ ; τ = { s � (A,C) : s ∈ L(A,B,C) ∧ s � (A,B) ∈ σ ∧ s � (B,C) ∈ τ }.
This is the standard notion of composition of strategies. Games and strategies
(maps from A to B are strategies of A � B) form a symmetric monoidal closed
category; the category whose maps are injective history-free strategies forms a
subcategory. All this is standard (see e.g. [1,8]).

Important Notation. The moves of a tensor game are just the disjoint union
of the moves of the respective component games, similarly for function space
games. For technical convenience, we fix representations of moves specific to the
two constructions

MA⊗B = MA × { l } ∪ MB × { r }
MA�B = MA × {L } ∪ MB × {R }

We call free games those that are constructed from atomic games. We empha-
size that from now on, by games we shall mean free games. A move of a free
game has the form

m = ((· · · ((a, in), in−1) · · ·), i1)
where a is a token and each ij ranges over IN ∪ { �, l, r, L,R }. For convenience,
we shall write the move as a pair (a, in · · · i1), and call the second component
its occurrence. Let ird

· · · ir1 be the subsequence of in · · · i1 consisting only of
numbers and �. We define the depth of the move m to be d, the index at depth
j, or j-index, to be the sequence irj

irj−1 · · · i3i2i1, and the token to be a. For
example, the 1-index, 2-index and 3-index of the move (a, 2r�Ll33R) are 3R, 33R
and �Ll33R respectively. We say that a subgame A of a game G occurs at depth
i if A is in the scope of i box constructors. A game is said to have depth k just in
case k is the maximum depth of all its subgames. (It is straightforward to show
that k is equal to the maximum depth of its moves.) We say that a strategy σ
for a free game is token-reflecting if for any even-length smm′ ∈ σ, m and m′

have the same token.

Example 2. Consider the game ! (! a⊗ ! b) � ! § a (which, qua formula, is prov-
able); (a, �3R)(a, 2l5L) and (a, �3R)(b, 1r4L) are positions of the game. Observe
that the occurrence of a move may be read as a path by which its token can be
reached from outside-in.

It is straightforward to show that IMLAL proofs are denoted by token-
reflecting, injective history-free, total strategies. Indeed these properties are
enough to characterize denotations of proofs of the (⊗,�)-fragment of Intu-
itionistic Multiplicative Affine Logic, which we abbreviate to IMAL. (Valid IMAL
sequents are those defined by the first eight rules in Figure 2.)

Theorem 2 (Full Completeness). For any free game given by an IMAL-
sequent Γ � A, and for any IMAL-winning (i.e. token-reflecting, injective
history-free, total) strategy σ for the game, there is a derivation of Γ � A
whose denotation is σ. ��

Discreet Games, Light Affine Logic and PTIME Computation 433

(A proof of the Theorem can be extracted from [8].)
However, to characterize IMLAL proofs, among other conditions, we require

strategies to act uniformly on threads, as the next example illustrates.

Example 3. Consider the game ! a⊗ ! a � ! a; the strategy defined by the func-
tion f : for n ∈ IN

f :
{

(a, (2n)R) �→ (a, nlL)
(a, (2n+ 1)R) �→ (a, nrL)

is not the denotation of any proof of the corresponding sequent (there are in fact
only two proofs).

Thread uniformity and ≈-reflexivity. In order to cut the strategies down
to size, we use a partial equivalence relation ≈ over strategies introduced in
[2]. First we define a ≈-game G to be a four-tuple 〈MG, λG, PG,≈G 〉 where
〈MG, λG, PG 〉 is a game, and ≈G is an equivalence relation on PG satisfying:

– sa ≈G tb ⇒ s ≈G t
– s ≈G t ⇒ λ∗G(s) = λ∗G(t)
– s ≈G t ∧ sa ∈ PG ⇒ ∃b ∈MG.tb ∈ PG ∧ sa ≈G tb.

We extend the four game constructions introduced earlier to their respective ≈-
game constructions. For � = ⊗ or �, we have s ≈A�B t just in case s � A ≈A
t � A, s � B ≈B t � B and π2(si) = π2(ti), for each i, where si denotes the i-th
move of s. For whisper games §A, we have s ≈§A t if π∗1(s) ≈A π∗1(t). For shriek
games !A, we have s ≈!A t if

∃α ∈ S(IN).∀i ∈ IN.s � i ≈A t � α(i) ∧ α∗(π∗2(s)) = π∗2(t)

where S(IN) is the collection of permutations of IN. The equivalence relation ≈G
extends to a partial equivalence relation over strategies of G: σ ≈G τ holds just
in case for all s ∈ σ, t ∈ τ , sa ∈ PG, tc ∈ PG, if sa ≈G tc then the following
bisimulation-style properties hold:

– sab ∈ σ ⇒ ∃d ∈MG.tcd ∈ τ ∧ sab ≈G tcd
– tcd ∈ τ ⇒ ∃b ∈MG.sab ∈ σ ∧ sab ≈G tcd.

The strategies that we are interested in are those σ that are ≈-reflexive
i.e. σ ≈ σ; we write the partial equivalence class of σ as [σ]. The intuition is
that such strategies “behave equivalently at equivalent positions”. For instance
two threads of a shriek game !A that have equivalent underlying A-positions,
but tagged by different numbers, are equivalent. Thus we reject the strategy σf
in Example 3: its response at even-numbered threads is different from that at
equivalent but odd-numbered threads); see Example 6 for another illustration of
the effect of ≈.

It turns out that ≈ is preserved by composition, so that games, with maps
from A to B given by ≈A�B partial equivalence classes of injective history-free
strategies of A � B, form a symmetric monoidal closed category (see [2]). From
now on, by games we shall mean ≈-reflexive free games.

434 A.S. Murawski and C.-H.L. Ong

4 Network Protocol and Discreet Strategies

In this section we introduce the network protocol and consider the strategies
that comply with it. First we need to formalize a generalized notion of threads
of a game. Fix a free game G of depth k. By an i-index of G, we mean the i-index
of some move of G (so i � k). Threads of depth i, or simply i-threads, of G are
named by i-indices of G. A thread named by θ is the set of moves of G whose
i-index is θ. (We start counting from outside-in, so that the outermost thread
is at depth 1.) An i-thread named by θ is said to be a P-thread if there are an
odd number of occurrences of L in θ, otherwise it is said to be an O-thread; if
the leftmost symbol of the index θ is a number we say the i-thread is of ! -type,
otherwise the thread is of § -type.
Remark 1. (i) For any game G, we write TPG,i (respectively TOG,i) for the set of
P-threads (respectively O-threads) of G at depth i. We shall omit the subscript
i whenever we can get away with it. For any A and B it is easy to see that

TOA�B
∼= TPA + TOB TOA⊗B ∼= TOA + TOB T!A

∼= TA × IN
TPA�B

∼= TOA + TPB TPA⊗B ∼= TPA + TPB T§A ∼= TA

(ii) We shall often analyse a play s by considering its subsequence consisting
of moves belonging to a given i-thread. We call that subsequence the i-thread
of the play s. (Thus i-thread of a game is a set, and i-thread of a play is a
sequence, of moves.)

(iii) It is straightforward to prove, by induction on the structure of the game,
that any O-thread (respectively P-thread) of a play must begin with an O-move
(respectively P-move).

Example 4. Consider the game ! ! (a � a) � ! ! (a � a) and the play

(a,R41R) (a,R32L) (a, L32L) (a,R92L) (a, L92L) (a, L41R)

which we refer to as m1 · · ·m6 in the picture (where only the respective numeric
subsequences of the six occurrences are shown)

! ! (a � a) � ! ! (a � a)
m1 41
m2 32
m3 32
m4 92
m5 92
m6 41

The two 1-threads of the play arem1m6 (named by 1R) andm2m3m4m5 (named
by 2L); and the three 2-threads are m1m6 (named by 41R), m2m3 (named by
32L) and m4m5 (named by 92L).

Discreet Games, Light Affine Logic and PTIME Computation 435

A network protocol. To model IMLAL, we need to constrain the way threads
interact or communicate with each other. A key innovation of this paper is to
organize threads into networks in accord with a protocol. We are interested in
plays that obey the following network protocol at every depth (up to the depth
of G):

(p1) A network (at depth d) comprises an O-thread and finitely
many P-threads (all at depth d).

(p2) Network and Thread Creation: Only O can open a new
network, and he does so whenever he starts a new O-thread;
whenever P opens a new thread in response to an O-move from
a network, a new P-thread is added to that network.

(p3) ! -Network: A network whose O-thread is of ! -type (call the
network a ! -network) has at most one P-thread which must
also be of ! -type.

(p4) No thread can belong to more than one network.

(p5) Switching Condition: Only O can switch network i.e. revisit
one opened earlier or enter the threadless universea. Only P
can switch from one thread to another existing thread within
the same network.

a At depth d, the threadless universe of G consists of moves of depth < d.

In the following we motivate and illustrate the protocol rules by considering
the game denotations of several simple IMLAL sequents.

Example 5. (i) Take the game a � ! a. Any opening move starts an O-thread
and hence a network. The only P-move of the game is from the threadless uni-
verse, and P responding with that would violate protocol (p5). There is no total
strategy for the game ! ! a � ! a because (p2) would be violated at depth 2;
similarly for ! a � a and ! a � ! ! a. The preceding analysis applies in each case
where ! is replaced by § . Thus neither of the box constructors is a comonad.

(ii) Consider the token-reflecting strategies for the respective games denoting
the sequents:

� § a⊗ § b � § (a⊗ b)
� § (a⊗ b) � § a⊗ § b

For the first game, it is an easy exercise to check that the positions of the token-
reflecting strategy obey the protocol. For the second, there are two O-threads
(named respectively by �lR and �rR) and the one P-thread belongs to both the
respective networks specified by the O-threads, thus violating (p4).

(iii) Consider the respective game denotations of the sequents:

� ! a⊗ ! b � ! (a⊗ b)
� ! (a⊗ b) � ! a⊗ ! b

436 A.S. Murawski and C.-H.L. Ong

The positions (a, l1R) (a, 1lL) and (b, r1R) (b, 1rL) belong to the token-reflecting
total strategy for the first game. The respective first moves (a, l1R) and (b, r1R)
belong to the same O-thread of the game, and hence, the same network, but the
respective second moves (a, 1lL) and (b, 1rL) belong to different P-threads, thus
violating (p3). The second sequent is provable in IMLAL but not in LLL.

(iv) Consider the game ! ! (a � a) � ! ! (a � a) of Example 4. The play therein
violates (p3): the ! -network at depth 2 has two P-threads. However it is easy to
see that the formula is provable. Indeed the game has a position that complies
with the protocol, for instance

(a,R53R) (a,R97L) (a, L97L) (a, L53R).

For a related example, take the game ! ! (a � a) � ! § (a � a) (whose corre-
sponding formula is provable). The play

(a,R�1R) (a,R32L) (a, L32L) (a,R92L) (a, L92L) (a, L�1R)

corresponds to the play in Example 4 but it complies with the protocol.

(v) Consider the respective token-reflecting strategies for the games denoting
the following sequents:

(1) � (! a � ! b) � ! (a � b) (3) � (§ a � § b) � § (a � b)
(2) � ! (a � b) � (! a � ! b) (4) � § (a � b) � (§ a � § b)

In the first and the third games, the fourth move violates protocol (p5) as it is a
case of P attempting to switch back to the original network. In the second game,
protocol (p3) is violated by the fourth move as P tries to open a second ! -thread
of a ! -network. The strategy for the fourth game complies with the protocol.

Here are some useful consequences of the network protocol.

Lemma 1. 1. Each P-move has the same depth as the preceding O-move.
2. Each network at depth d+ 1 is embedded into a single network at d.
3. P’s switching condition is a consequence of O’s. ��
We leave the largely straightforward proofs as an exercise.

Networked positions and discreet strategies. We are now in a position
to give a formal definition of strategies that comply with the network protocol.
We denote the set of threads of a game G by TG, which partitions into TOG (the
set of O-threads) and TPG (the set of P-threads), and we write TG,i for the set
of i-threads. We formalize the network protocol with the help of two (kinds of)
functions.

A thread function (at depth i) is a partial function tG,i : MG ⇀ TG,i that maps
a move to the i-thread in which it occurs. Whenever the game G and depth i
are clear from the context, we will abbreviate tG,i(m) to tm.

Discreet Games, Light Affine Logic and PTIME Computation 437

Network function (at depth i) ηG,i. We say that a partial function

ηG,i : TPG,i ⇀ TOG,i

networks a position s ∈ PG of even length at depth i (with respect to tG,i) just
in case for each odd j, tG,i(sj) is defined if and only if tG,i(sj+1) is, and if both
are defined, one of the following holds (we drop the subscripts from ηG,i and tG,i
whenever we safely can):

(i) η(t(sj)) = t(sj+1) (ii) t(sj) = η(t(sj+1))
(iii) η(t(sj)) = η(t(sj+1)) (iv) t(sj) = t(sj+1)

(This is just to say that at depth i the P-move sj+1 is in the same network as
the O-move sj : there are four cases depending on whether sj and sj+1 are in a
P-thread or an O-thread.) In addition, for any O-thread tO, if tO is of ! -type
then the inverse image of tO, written η−1(tO), contains at most one thread which
must also be of ! -type. ��

The astute reader will notice that we have not yet captured all the protocol
rules. What is missing is a compactness condition which is part of (p1):
η−1(tO) is finite for every O-thread tO.

Example 6. To see why the compactness condition is desirable, consider the
(first-order) Church numerals game (see [4,3] for further details)

! (a � a) � § (a � a).

Let ηn be the (least) function that networks any fixed n-th Church numeral
strategy (any two such n-th Church numeral strategies are ≈-equivalent); and let
tO be the unique O-thread of the game. It is easy to see that η−1n (tO) has exactly
n P-threads. The “infinity numeral” strategy is ruled out by the compactness
condition.

We say that a strategy σ on G is networked at depth i if there exists a function
ηG,i that networks every s ∈ σ at depth i. Further we say that it is compactly
networked at depth i if the compactness condition is satisfied. A strategy σ is
said to be discreet if it is compactly networked at every depth up to the depth
of G.

5 A Model of IMLAL

We are interested in token-reflecting, injective history-free, ≈-reflexive, total
discreet strategies. To save writing, we call such strategies winning. Let G be
the category whose objects are free games, and whose maps A −→ B are ≈A�B

partial equivalence classes of winning strategies of A � B. Our first task is
to check that G, as specified by the above data, is a well-defined category –
the main technical problem is to prove that total discreet strategies compose.
Secondly we show that G is a model of IMLAL.

438 A.S. Murawski and C.-H.L. Ong

Total discreet strategies compose. Consider the games A, B and C and
suppose u is an interaction sequence of two positions p1 ∈ PA�B and p2 ∈ PB�C

which are networked by ηA�B,i and ηB�C,i respectively at a given depth i. First
we would like to show that u � (A,C) can be networked, and that all positions
of the composite strategy are networked by the same network function ηA�C,i.

Notation. Fix a network function ηG. We shall write t′ ≺G t to mean ηG(t) = t′,
so for each P-thread t there can be at most one O-thread t′ such that t and t′ are
in the same network. Our argument in the following is with respect to a fixed
depth i. For ease of writing, we shall drop all references to the depth and omit
the subscript i from ηA�C,i, tA�C,i etc.

First we define the network function ηA�C : for any tO ∈ TOA�C and tP ∈
TPA�C , we decree that ηA�C(tP) = tO (i.e. tO ≺A�C tP) just in case there exist
b1, · · · , bk ∈ TB such that

tO ≺1 b1 ≺2 b2 ≺3 · · · ≺k−1 bk−1 ≺k bk ≺k+1 tP (1)

where each ≺i ∈ {≺A�B ,≺B�C}, and for each i ∈ {1, · · · , k}, ≺i �= ≺i+1.
(Each bi in (1) above is actually the embedding image of the B-thread in TA�B

or TB�C as appropriate – see Remark 1, but we stick to bi by abuse of notation.)
Note that if tO and tP are both A-threads (respectively C-threads) and tO ≺A�B

tP (respectively tO ≺B�C tP), then tO ≺A�C tP which is the case of k = 0.
Because ηA�B and ηB�C are partial functions, we first observe that ηA�C

is a partial function from TPA�C to TOA�C .

Proposition 1. Take any contiguous segment mOm1 · · ·mkmP of u such that
mO ∈ MO

A�C , mP ∈ MP
A�C , and for i = 1, · · · , k, mi ∈ MB. If mO is part

of a thread then mO and mP are in the same network with respect to ηA�C

i.e. writing tO as the O-thread of mO’s network, we have either tO = tmP
or

tO ≺A�C tmP
. ��

Note that ηA�C has been defined only in terms of ηA�B and ηB�C . More-
over, if σ and τ satisfy (p3), so does σ ; τ , because if

tO ≺1 b1 ≺2 b2 ≺3 · · · ≺k−1 bk−1 ≺k bk ≺k+1 tP

and tP is a ! -thread, then by (p3) applied alternately to σ and τ , we deduce
that b1, · · · , bk and tO are unique and are all ! -threads. Thus if strategies σ and
τ are networked at depth i by ηA�B and ηB�C respectively, σ ; τ is networked
by ηA�C at depth i. Since the preceding argument is independent of i, we can
conclude:

Theorem 3. Strategies that are networked at all depths compose. ��
By first proving the following

Proposition 2. Suppose σ : A � B and τ : B � C are networked strategies.
There exists no interaction sequence u over (A,B,C) such that for some d � 1:

Discreet Games, Light Affine Logic and PTIME Computation 439

1. the number of (distinct) d-indices of threads occurring in u � B is infinite
2. the number of d-indices of O-threads occurring in u � A and u � C is finite
3. u � (A,B) ∈ σ and u � (B,C) ∈ τ . ��
we can deduce that total compactly networked strategies compose. To summa-
rize, we have

Theorem 4 (Compositionality). Discrete strategies compose. ��

G is a model of IMLAL. For any winning strategy of A � B defined by the
function f , and for any IN-involution α (i.e. α is an idempotent bijection from IN
to IN) we define a strategy of !A � !B given by the function ! (f, α). Suppose
f(m, δ) = (m′, δ′) where δ, δ′ ∈ {L,R }, we define

! (f, α) : ((m, i), δ) �→
{
((m′, i), δ′) if δ = δ′

((m′, α(i)), δ′) otherwise

It is straightforward to show that ! (f, α) defines a winning strategy, and that
σ! (f,α) ≈ σ! (f,β) for any IN-involution β. Indeed ! extends to a functor G −→ G.
We leave the definition of the functor § : G −→ G as an easy exercise.

Proposition 3. 1. § , ! : G −→ G are functorial.
2. There are canonical G-maps, natural in A and B as follows:

µA,B : §A⊗ §B −→ § (A⊗B)
νA : !A −→ §A
∆A : !A −→ !A⊗ !A

By now the reader should have no difficulty in constructing the canonical maps.
By abuse of notation, we use µ also for the canonical map

µ : §A1 ⊗ · · · ⊗ §An −→ § (A1 ⊗ · · · ⊗An).

As G is symmetric monoidal closed, and in view of the Proposition, we can say
that G is a model of IMLAL.

6 Full Completeness

The section concerns a full completeness result:

Theorem 5 (Full Completeness). For any winning strategy σ for the free
game G given by an IMLAL sequent Γ � C, there is a derivation Ξ of the
sequent such that σ is the denotation of Ξ. ��
In the following we sketch a proof of the Theorem. First we give two useful
lemmas.

Lemma 2 (Deboxing). In the category G:

440 A.S. Murawski and C.-H.L. Ong

1. For any map F : !A −→ !B there is a unique map f : A −→ B such that
F = ! f .

2. If the map F : !A1 ⊗ · · · ⊗ !Am ⊗ §B1 ⊗ · · · ⊗ §Bn −→ §C uses each
!Ai once (in the sense that the depth-1 network of any winning strategy that
represents F comprises one 1-thread of !Ai), then there is a unique map

f : A1 ⊗ · · · ⊗Am ⊗B1 ⊗ · · · ⊗Bn −→ C

such that F = (ν ⊗ · · · ⊗ ν︸ ︷︷ ︸
m

⊗ id⊗ · · · ⊗ id︸ ︷︷ ︸
n

) ; µ ; § f , where µ and ν are the

canonical maps defined in Proposition 3. ��
Let σ be a IMAL-winning strategy for a free game given by an IMAL-sequent

∆ � P ⊗Q where ∆ = D1, · · · , Dn.We say that σ is splitting just in case there
is a partition of ∆ into (∆1, ∆2) and IMAL-winning strategies σ1 and σ2 for
∆1 � P and ∆2 � Q respectively such that σ = σ1 ⊗ σ2.

Lemma 3 (Pivot). If σ is not splitting, then there is some Di = A � B in ∆
(which we shall call a pivot) and IMAL-winning strategies τ and υ for Θ � A
and B,Ξ � P ⊗Q respectively, where (Θ,Ξ) is a partition of ∆ \ {Di }, such
that σ can be defined in terms of τ and υ. ��

We prove the Theorem by induction on the size of the sequent Γ � C that
defines the free game G. W.l.o.g. we assume that no formula in Γ = C1, · · · , Cn
is a tensor, and every Ci is σ-reachable in the sense that there is a position in σ
that contains some Ci-move.

Step 1. Decontract at depth 1, if necessary, to get a corresponding winning
strategy σ1 for Γ1 � C so that every formula in Γ1 is used once by σ1.

Step 2. It suffices to consider the following cases of C:

I. C = P ⊗Q
II. C = �P , a box formula i.e. � = ! or §
III. C = a, an atom.

For Case I, if P⊗Q is splitting, then split it to get two smaller instances (of a
winning strategy for a free game). Otherwise, we transform the sequent by adding
a fresh atom as “x � −” inside each box-formula from Γ1 and adding a copy
of “x � −” of negative polarity inside the O-box of the corresponding network.
E.g. the sequent § c, ! (c � d), § (d � e), § e � ! a⊗ ! b, ! c � § (c⊗ a)⊗ § b is
transformed to

§ (x � c), ! (y � (c � d)), § (z � (d � e)),
§ (x � (y � (z � e))) � ! a⊗ ! b, ! (v � c) � § (v � c⊗ a)⊗ § b

Call the new sequent Γ ′ � C ′ and the corresponding strategy σ′. Note (i) σ′

is a winning strategy; (ii) the new �-formulas added cannot be pivots as they
communicate with the O-threads of their respective networks. Now consider a

Discreet Games, Light Affine Logic and PTIME Computation 441

second transformation to (say) Γ ′′ � C ′′ which is defined by “forgetting all
the boxes” and turning it into a free IMAL-game, and call the corresponding
strategy σ′′. Observe that if σ′′ is splitting in IMAL then σ′ is also splitting
in IMLAL, because all formulas in Γ ′′ are �-formulas or atoms. Suppose σ′′

is not splitting in IMAL. Then by Lemma 3 there must be a pivot in Γ ′′. By
construction of Γ ′, that pivotal �-formula cannot occur inside a box in Γ1, so
the pivot is also a pivot for Γ1 � P ⊗Q. With the pivot, we obtain two smaller
instances, to which we can apply the induction hypothesis.

For Case II, if Γ1 does not contain a �-formula, then every formula in it
must be a box-formula; we use Lemma 2 to strip off the outermost boxes, and so
obtain a smaller instance, and then apply the induction hypothesis. Otherwise,
�P is part of some network �G1, · · · ,�Gl. For each G = P,G1, · · ·Gl, we replace
�G by �G⊗�G. E.g. the sequent c, c � ! b, § (b � a) � § a is transformed to

c, c � (! b⊗ ! b), § (b � a)⊗ § (b � a) � § a⊗ § a

Let σ′ be the corresponding strategy for the transformed game Γ ′ � �P ⊗�P ;
σ′ is not splitting (because the �-formula in Γ ′ is reachable from both �P
on the right). This is an instance of the preceding case. Finally a similar (but
simpler) transformation can be applied to reduce Case III to Case I.

Further work. An obvious direction is to extend the construction to IMLAL2,
the second-order system. Another is to check that the model is not just fully but
also faithfully complete. We expect to prove this with respect to an appropriate
notion of equality between IMLAL proof nets. Also worth developing is a con-
venient syntax for IMLAL2 as a PTIME intermediate (or meta-) programming
language.

Acknowledgments. We are grateful to Hanno Nickau for discussions on LLL.

References

1. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative linear
logic. Journal of Symbolic Logic 59 (1994) 543–574

2. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF (extended
abstract). In Proc. TACS’94. LNCS 789 (1994) 1–15

3. Asperti, A.: Light affine logic. In Proc. LICS’98. IEEE Computer Society (1998)
4. Girard, J.-Y.: Light linear logic. Information & Computation 143 (1998) 175–204
5. Hyland, J. M. E., Ong, C.-H. L.: Fair games and full completeness for Multiplicative

Linear Logic without the MIX-rule. Preprint (1993)
6. Hyland, J. M. E., Ong, C.-H. L.: On Full Abstraction for PCF: I, II & III. To

appear in Information & Computation (2000) 130 pp
7. Kanovich, M. I., Okada, M., Scedrov, A.: Phase semantics for light linear logic. In

Proc. 13th Conf. MFPS’97. ENTCS 6 (1997)
8. Murawski, A. S., Ong, C.-H. L.: Exhausting Strategies, Joker Games and Full

Completeness for IMLL with Unit. In Proc. 8th Conf. CTCS’99. ENTCS 29 (1999)
9. Roversi, L.: A PTIME Completeness Proof for Light Logics. In Proc. 13th

Conf. CSL’99. LNCS 1683 (1999)

Completeness of Higher-Order
Duration Calculus �

Zhan Naijun

Lab. of Computer Science and Techonology, Institute of Software,
the Chinese Academy of Sciences, Beijing, 100080, P.R. China

ttznj@ox.ios.ac.cn

Abstract. In order to describe the real-time behaviour of programs in
terms of Duration Calculus (DC), proposed by Zhou Chaochen, C.A.R.
Hoare and A.P. Ravn in [3], which can specify real-time requirements of
computing systems, quantifications over program variables are inevitable,
e.g. to describe local variable declaration, to declare internal channel and
so on. So a higher-order duration calculus (HDC) is established in [2].
This paper proves completeness of HDC on abstract domains by encod-
ing HDC into a complete first-order two-sorted interval temporal logic
(IL2). This idea is hinted by [9]. All results shown in this paper are done
under the assumption that all program variables have finite variability.

Keywords: duration calculus higher-order logic interval temporal
logic completeness

1 Introduction

In order to describe the real-time behaviour of programs in terms of DC, quan-
tifications over program variables are inevitable, e.g. to describe local variable
declaration and so on. So a higher-order duration calculus is established in [2].
In [2], a real-time semantics of local variables has been demonstrated, and some
real-time properties of programs have been derived using HDC.

In order to specify the behaviour of real-time programs, program variables
Vi, i ≥ 0 are introduced into HDC. Predicates of program variables, constants,
and global variables, such as (V < 3) and (V = x), are taken as states. To
axiomatise the finite variability of program variables, the infinite rule (ω-rule)
proposed in [8] is necessary, since [5] has shown that the finite variability cannot
be axiomatised by finite rules on abstract domains.

In programming languages, value passing involves past and future time, to
receive an initial value from the previous statement and to pass final value to the
next statement. The chop modality “;” is a contracting one, and cannot express
state properties outside the current interval. Therefore, two special functions
� The work is partially supported by UNU/IIST, and done during the author stayed
at UNU/IIST as a follow (July 1998 to August 1999). The work is also partially
supported by the National Natural Science Foundation of China under grant No.
69873003.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 442–456, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Completeness of Higher-Order Duration Calculus 443

“←” and “→”, firstly proposed in [4], are introduced into HDC. The functions
“←” and “→” have a domain of state terms and a co-domain of functions from
the intervals to duration domain. E.g.

←
V = 4 means that in a left neighbourhood

of the current interval the value of V is 4. Symmetrically,
→
V = 4 means that in

a right neighbourhood of the current interval the value of V is 4. In order to
axiomatise them, the neighbourhood rule is introduced in [4].

In both interval temporal logic [5] and duration calculi [3,4], symbols are
divided into flexible and rigid symbols (adopting the terminology of [1,7]). Rigid
symbols are intended to represent fixed, global entities. Their interpretation will
be the same in all the intervals. Conversely, entities which may vary in different
intervals are represented by flexible symbols. Such a distinction between two
classes of symbols is common in the context of first order temporal logics [1,7].

Completeness of interval temporal logics and duration calculi not only de-
pends on the choice of time domain, but also relies on which kind of variables
are quantified. In practice, we need to choose the reals as time domain. If so, we
cannot get completeness of these systems, for if they were, they would be ade-
quate for arithmetic, which is impossible by Gödel’s Theorem. Therefore, if we
want to choose the reals as time domain, we can only get relative completeness
of these systems. E.g. relative completeness of DC has been proved in [10]. If
we only quantify over global variables, duration calculi are complete on abstract
domains shown in [8]. But if we introduce quantifications over program variables
into DC, since we interpret program variables as functions from time domain to
duration domain, no (consistent) system is complete for this semantics because
whenever we interpret the domain of quantifiers as the set of all functions from
time domain to duration domain, the language will have the expressive power of
second-order arithmetic. So some restrictions on program variables are needed
in order to work out a complete proof system, that is, that all program variables
vary finitely is assumed. If so, we can reduce HDC to IL2 . We will illustrate it
as follows:

A naive way to reduce the second order logic to the first order one is to
introduce for the class of n-ary predicates, Hn(x1, ..., xn), a new (n + 1)-ary
predicate, En+1(z, x1, ..., xn), which has an additional argument z, and enumer-
ates all Hn(x1, ..., xn). Thus,

∃Hn.φ

could be reduced to

∃z.φ[En+1(z, x1, ..., xn)/Hn(x1, ..., xn)]

Therefore the second order logic could be reduced to a first order one. Detail
discussion about this encoding can be seen in [6]. However, in order to define
the (n + 1)-ary predicate En+1, we must have the following postulates, where
we assume (n = 1) and drop the indices of n and (n + 1) for simplicity. Firstly,

∃z.E(z, x1) and ∃z.¬E(z, x1)

postulate that, for a singleton domain, E enumerates all H. Furthermore, to-
gether with the above two formulae, the formula

∃z. (x1 �= x2) ⇒ (E(z, x1) ⇔ E(z1, x1) ∧ E(z, x2) ⇔ E(z2, x2))

444 Z. Naijun

postulates that E enumerates all H over any finite domain. Unfortunately, with
this approach, we can never define E to enumerate all H over an infinite domain.
Hence second order predicate calculus cannot be reduced to first order one in
this way in general.

However, by the finite variability of program variables, given an interval,
any program variables V can be generated by finite combination of subintervals
of the given one, over each of which V is constantly. Hence, it is possible to
construct a 1-ary flexible function, g(y), to enumerate all program variables by
the postulates including

�� 		 ∨ ∃y.��g(y) = c		 for any constant c, and
�� 		 ∨ ∃y. ��g(y) ⇔ g(y1)		; ��g(y) ⇔ g(y2)		

In this way, ∃V.φ can be reduced to ∃yV .dc2il(φ) where dc2il is a translating
function from HDC to IL2 defined later. A complete proof system for HDC can
be established based on the completeness result of IL2 . This idea is hinted by
[9].

In order to prove completeness of HDC, we will establish IL2 , a first-order
two-sorted interval temporal logic firstly, in which global variables and functions
are divided into two sorts. The rôle of the global variables and rigid functions of
the first sort is as usual. The global variables and functions of the second sort
and flexible functions of the first sort are used to enumerate program variables
and the durations of state expressions in HDC respectively so that we can encode
HDC into IL2 by dc2il. Of course, it is not substantial to divide global variables
and functions into two sorts, because we can encode many-sorted logic into
one-sorted logic by introducing some specific predicates into one-sorted logic
to distinguish different objects in the same universe (See [6]). Completeness of
IL2 can be proved with the method used in [5,8]. Because we can show that the
consistency of a set of formulae Γ in HDC w.r.t. the proof system of HDC implies
the consistency of dc2il(Γ)∪dc2il(Axiomhdc) w.r.t. IL2 , where Axiomhdc stands
for the set of all axiom instances for HDC, we can get a model < F ,J > which
satisfies dc2il(Γ) ∪ dc2il(Axiomhdc) by completeness of IL2 . According to the
model < F ,J >, we can construct a model < F ′, I > for HDC which satisfies
Γ . Thus, completeness of HDC can be proved.

We will omit the proofs for some lemmas and theorems later in order to save
space, but their proofs can be found in [12].

2 Two-Sorted Interval Temporal Logic

In order to prove completeness of HDC on abstract domains, we shall establish
IL2 and then prove its completeness on abstract domains using the method
provided in [5,8] in this section.

2.1 Syntax of IL2

The alphabet of IL2 includes:

Completeness of Higher-Order Duration Calculus 445

– An infinite set of temporal variables TV ar = {vi | i ≥ 0}.
– An infinite set of first sort global variables V ar1 = {xi | i ≥ 0}.
– An infinite set of second sort global variables V ar2 = {yi | i ≥ 0}.
– A special symbol �, which stands for the length of an interval.
– An infinite set of propositional letters PLetter = {Xi | i ≥ 0}.
– An infinite set of first sort function symbols FSymb1 = {fni , hni | i, n ≥ 0}.

The distinction between fni and hmj is that the former is rigid but the latter
is flexible.

– A set of second sort flexible function symbols FSymb2 = {gni | i, n,≥ 0}.
– An infinite set of predicate symbols RSymb = {Rn

i | i, n ≥ 0}.
– The connectives ∨ and ¬.
– The quantifier ∃ and the modality ;.

The terms of the first sort in IL2 are defined by the following abstract syntax:

θ ::= x | � | v | fni (θ1, . . . , θn) | hni (θ1, . . . , θn) | gni (ϑ1, . . . , ϑn)

where ϑi is a term of the second sort defined as follows:

ϑ ::= d | y

The formulae of IL2 are defined inductively as follows:

φ ::= X | R(θ1, . . . , θn) | ¬φ | φ ∨ ψ | (φ; ψ) | ∃z.φ
where z stands for any global variable from V ar1 ∪ V ar2.

A term (formula) is called rigid if neither temporal variable, nor �, nor flex-
ible function symbol occurs in it; otherwise called flexible. A formula is called
chop free, if no “;” occurs in it.

2.2 Semantics of IL2 on Abstract Domains

In this section, we give the meaning of the terms and formulae of IL2 on abstract
domains.

Definition 1. A time domain is a linearly ordered set < T,≤>.

Definition 2. Given a time domain < T,≤>, we can define a set of intervals
Intv(T) = {[t1, t2] | t1, t2 ∈ T and t1 ≤ t2}, where [t1, t2] = {t | t ∈
T and t1 ≤ t ≤ t2}.

Definition 3. A duration domain is a system of the type < D, +, 0 >, which
satisfies the following axioms:

(D1) a + (b + c) = (a + b) + c
(D2) a + 0 = a = 0 + a
(D3) a + b = a + c⇒ b = c, a + c = b + c⇒ a = b
(D4) a + b = 0 ⇒ a = 0 = b
(D5) ∃c.a + c = b ∨ b + c = a,∃c.c + a = b ∨ c + b = a

That is, < D, +, 0 > is a totally ordered commutative group.

446 Z. Naijun

Definition 4. Given a time domain <T,≤> and a duration domain <D, +, 0>,
a measure m is a function from T to D which satisfies the following conditions:

(M1) m([t1, t2]) = m([t1, t′2]) ⇒ t2 = t′2
(M2) m([t1, t]) + m([t, t2]) = m([t1, t2])
(M3) m([t1, t2]) = a + b⇒ ∃t.m([t1, t]) = a ∧ (t1 ≤ t ≤ t2)

Definition 5. A frame of IL2 is a quadruple of << T,≤>,< D, +, 0 >,
D1,m >, where < T,≤> is a time domain, < D, +, 0 > is a duration domain,
D1 is called inhabited domain, m is a measure.

Definition 6. A model of IL2 is a quintuple with type << T,≤>,< D, +, 0 >
,D1,m,J >, where << T,≤>,< D, +, 0 >,D1,m > is a frame, and J is an
interpretation of the symbols in IL2 which satisfies the following conditions:
J (X) ∈ Intv(T) → {0, 1} for every X ∈ PLetter; J (v) ∈ Intv(T) → D for
every v ∈ TV ar; J (Rn

i) ∈ Dn → {0, 1} for every Rn
i ∈ RSymb; J (fni) ∈

Dn → D for every fni ∈ FSymb1; J (hni) ∈ Dn × Intv(T) → D for every
hni ∈ FSymb1; J (gni) ∈ Dn

1 × Intv(T) → D for every gni ∈ FSymb2; and
J (0) = 0,J (+) = +,J (=) is =, and J (�) = m.

Definition 7. Let J and J ′ be two interpretations defined as the above. J is
z-equivalent to J ′ if J and J ′ have same values to all symbols, but possibly z.

Given a model of IL2 , << T,≤>,< D, +, 0 >,D1,m,J >, and an interval
[t1, t2] ∈ Intv(T), the value of a term ϑ or θ can be defined as follows:

J t2
t1 (y) = J (y) for y ∈ V ar2

J t2
t1 (x) = J (x) for x ∈ V ar1

J t2
t1 (v) = J (v)([t1, t2]) for v ∈ TV ar
J t2
t1 (fni (θ1, . . . , θn) = J (fni)(J t2

t1 (θ) . . .J t2
t1 (θn)) for fni ∈ FSymb1

J t2
t1 (hni (θ1, . . . , θn) = J (hni)([t1, t2],J t2

t1 (θ) . . .J t2
t1 (θn)) for hni ∈ FSymb1

J t2
t1 (gni (ϑ1, . . . , ϑn) = J (gni)([t1, t2],J t2

t1 (ϑ) . . .J t2
t1 (ϑn)) for gni ∈ FSymb2

Given a model M =< F ,J > where F =<< T,≤>,< D, +, 0 >,D1,m >,
and an interval [t1, t2], the meaning of a formula φ is explained by the following
rules:

1. < F ,J >, [t1, t2] |=il2 X iff J (X)([t1, t2]) = tt
2. < F ,J >, [t1, t2] |=il2 Rn(θ1, . . . , θn) iff J (Rn)(J t2

t1 (θ1), . . . ,J t2
t1 (θn)) = tt

3. < F ,J >, [t1, t2] |=il2 ¬φ iff < F ,J >, [t1, t2] �|=il2 φ
4. < F ,J >, [t1, t2] |=il2 φ ∨ ψ

iff < F ,J >, [t1, t2] |=il2 φ or < F ,J >, [t1, t2] |=il2 ψ
5. < F ,J >, [t1, t2] |=il2 φ; ψ

iff < F ,J >, [t1, t] |=il2 φ and < F ,J >, [t, t2] |=il2 ψ for some t ∈ [t1, t2]
6. < F ,J >, [t1, t2] |=il2 ∃z.φ iff < F ,J ′ >, [t1, t2] |=il2 φ for some interpreta-

tion J ′ which is z-equivalent to J

Completeness of Higher-Order Duration Calculus 447

Satisfaction and validity can be defined in the usual way, see [12].
The following abbreviations will be used:

✸φ =̂ true; (φ; true) reads: “for some sub-interval: φ”
✷φ =̂ ¬✸(¬φ) reads: “for all sub-intervals: φ”

Furthermore, the standard abbreviations from predicate logic will be used. When
¬,∃z,✷, and ✸ occur in formulae they have higher precedence than the binary
connectives and the modality ;. The modality ; has higher precedence than the
binary connectives.

Definition 8. Let Φ be an IL2 formula, and let M =< F ,J > be a model of
IL2 , where F =<< T,≤>,< D, +, 0 >,D1,m > is the corresponding frame.
Φ is said to have the finite variability on M if for every [t1, t2] ∈ Intv(T),
M, [t1, t2] |=il2 Φ ⇒ ✷Φ and there exist t′1, . . . , t′n, such that t1 = t′1 ≤ . . . ≤
t′n = t2 and for all i = 1, . . . , n− 1 M, [t′i, t

′
i+1 |=il2 ✷Φ. Φ is said to have finite

variability on a class of models K if it has the property on every member of K.

Definition 9. Let Φ be an IL2 formula. We define the sequence of formulae
{Φk}k<ω as follows:

Φ0 =̂ � = 0, Φk+1 =̂ (Φk;✷Φ)

For the rest of this section we will fix a set of IL2 formulae Ω and consider
only IL2 models on which Φ has finite variability for every Φ ∈ Ω. We will
use KΩ to denote the class of models that satisfy the above property later. So
the following proof system takes Ω as a parameter. Of course, all discussions
below can be applied to an arbitrary set of IL2 formulae Ω. If Ω = ∅, then the
case is same as in [5]. The finite variability of Φ means that for any interval one
can partition the interval into finitely many subintervals such that ✷Φ holds for
each of the subintervals. The axiom ITLΩ and rule IRΦ given below are used to
axiomatise the finite variability of all Φ ∈ Ω.

2.3 Proof System of IL2 with Ω

In this section, we give a sound and complete proof system of IL2 with Ω w.r.t.
KΩ . The notation �il2Ω φ means that φ is provable, i.e. that φ is a theorem of
IL2 with Ω.

Definition 10. A term θ is called free for x in φ if x does not occur freely in
φ within a scope of ∃x′ or ∀x′ where x′ is any variable occurring in θ.

The axioms of IL2 are:

ITL1: � ≥ 0

ITL2: ((φ; ψ) ∧ ¬(φ; ϕ)) ⇒ (φ; (ψ ∧ ¬ϕ))
((φ; ψ) ∧ ¬(ϕ; ψ)) ⇒ ((φ ∧ ¬ϕ); ψ)

ITL3: ((φ; ψ); ϕ) ⇔ (φ; (ψ; ϕ))

ITL4: (φ; ψ) ⇒ φ if φ is a rigid formula
(φ; ψ) ⇒ ψ if ψ is a rigid formula

448 Z. Naijun

ITL5: (∃z.φ; ψ) ⇒ ∃z.(φ; ψ) if z is not free in ψ
(φ;∃z.ψ) ⇒ ∃z.(φ; ψ) if z is not free in φ

ITL6: ((� = a); φ) ⇒ ¬((� = a);¬φ)
(φ; (� = a)) ⇒ ¬(¬φ; (� = a)

ITL7: (a ≥ 0 ∧ b ≥ 0) ⇒ ((� = a + b) ⇔ ((� = a); (� = b)))

ITL8: φ⇒ (φ; (� = 0))
φ⇒ ((� = 0); φ)

ITLΩ : Φ⇒ ✷Φ for all Φ ∈ Ω

The inference rules of IL2 are:

N: if φ then ¬(¬φ; ψ)
if ψ then ¬(ψ;¬φ) M: if φ⇒ ψ then (φ; ϕ) ⇒ (ψ; ϕ)

if φ⇒ ψ then (ϕ; φ) ⇒ (ϕ; ψ)

IRΦ H(Φ0/X) ∀k<ω.H(Φk/X) ⇒ H(Φk+1/X)
H(true/X)

for Φ ∈ Ω

The proof system of IL2 with Ω also contains all axioms and rules for
propositional logic, predicate logic, and real arithmetic, such as

(G) : if φ then ∀z.φ
However, for the following axiom, side condition is necessary.

(Q) : ∀x.φ(x) ⇒ φ(θ)
{

if either θ is free for x in φ(x) and θ is rigid
or θ is free for x in φ(x) and φ(x) is chop free.

An explanation of the necessity of the side condition is given in [11]. The axioms
and rules for equality, addition, etc. in real arithmetic will not be listed here,
but can be found in [11].

Theorem 1 (Soundness). The proof system is sound, i.e. �il2Ω φ implies
|=il2Ω φ, where |=il2Ω φ means φ is valid on every model M∈ KΩ.

Definition 11. Given a set of IL2 formulae Γ , if Γ ��il2Ω false, then Γ is called
consistent w.r.t. the proof system of IL2 with Ω, otherwise called inconsistent.

Theorem 2 (Completeness). Given a set of IL2 formulae Γ . if Γ is consis-
tent w.r.t. the proof system of IL2 with Ω, then there exists a model M =<<
T,≤>,< D, +, 0 >,D1,m,J > on which Φ has finite variability for every Φ ∈ Ω,
and an interval [t1, t2] ∈ Intv(T) such that M, [t1, t2] |=il2Ω Γ .

Proof. Using the method provided in [5,8], it can be proved. See [12]. ��

3 Higher-Order Duration Calculus

In this section, we establish a higher-order duration calculus, which is an ex-
tension of the original duration calculus, by introducing program variables and
quantifications over them.

Completeness of Higher-Order Duration Calculus 449

3.1 Syntax of HDC

The alphabet of HDC contains all symbols of IL2 except for the symbols of the
second sort and the flexible function symbols of the first sort. Besides, it also
includes an infinite set of program variables PV ar = {Vi | i ≥ 0}. In HDC,
all temporal variables have a special structure

∫
S where S is a state expression

defined as follows:

S ::= 0 | 1 | S1 ∨ S2 | ¬S | R(ϑ1, . . . , ϑn)

where R is the characteristic function of predicate R, and ϑ1, . . . , ϑn are called
state terms defined as:

ϑ ::= x | V | f(ϑ1, . . . , ϑn)

The terms of HDC are constructed as follows:

θ ::= x | � | ←ϑ | →ϑ | v | f(θ1, . . . , θn)

where v has the form
∫
S where S is a state expression defined above, and “←”

and “→” are two special functions with a domain of state terms and a codomain
of functions from the intervals to duration domain.

The formulae of HDC are defined inductively as follows:

φ ::= X | R(θ1, . . . , θn) | ¬φ | φ ∨ ψ | (φ; ψ) | ∃x.φ | ∃V.φ

A state term (term or formula) is called rigid if neither program variable nor
� occurs in it; otherwise called flexible.

Remark 1. We can show that a rigid state expression is also a rigid formula by
the above definitions if we do not distinguish predicate and its characteristic
function. For example, (x + 3 > 1) can be taken as a state as well as a formula
according to the syntactic definitions above. In order to avoid confusion, when
S is rigid, we will use φS to stand for the rigid formula corresponding to S.

3.2 Semantics of HDC

In this subsection, we give the meaning of terms and formulae in HDC on abstract
domains. HDC frames are essentially IL2 frames too, but a slight difference is
that there is no inhabited domain in HDC frames.

Definition 12. A model of HDC is a quadruple with type <<T,≤>,<D, +, 0>
, m, I >, where << T,≤>,< D, +, 0 >,m > is a frame, and I is an interpre-
tation of the symbols in HDC which satisfies the following condition:

For every V ∈ PV ar, and every [t1, t2] ∈ Intv(T) there exists t′1, . . . , t′n such
that t1 = t′1 ≤ . . . ≤ t′n = t2, and for any t, t′ ∈ [t′i, t

′
i+1) implies I(V)(t) =

I(V)(t′).

This property is known as the finite variability of program variables.

450 Z. Naijun

Given a model of HDC M =<< T,≤>,< D, +, 0 >,m, I >, the meaning
of program variables and propositional letters is given as: I(V)T → D and
I(X) ∈ Intv(T) → {tt, ff} respectively.

The semantics of a state term ϑ, given a model M =< F , I >, is a function
with type T → D defined inductively on its structure as follows:

I(x)(t) = I(x)
I(V)(t) = I(V)(t)
I(fn(ϑ1, . . . , ϑn))(t) = I(fn)(I(ϑn)(t), . . . , I(ϑn)(t))

The semantics of a state expression S, given a model M =< F , I > , is a
function with type T → {0, 1} defined inductively on its structure as follows:

I(0)(t) = 0
I(1)(t) = 1
I(Rn(ϑ1, . . . , ϑn))(t) = I(Rn)(I(ϑ1)(t), . . . , I(ϑn)(t))
I(¬S)(t) = 1− I(S)(t)

I(S1 ∨ S2)(t) =
{

0 if I(S1)(t) = 0 and I(S2)(t) = 0
1 otherwise

Lemma 1. Let S be a state expression and I be an interpretation of the symbols
in HDC on a frame F =<< T,≤>,< D, +, 0 >,m >. Then for every [t1, t2] ∈
Intv(T) there exist t′1, . . . , t′n such that t1 = t′1 ≤ . . . ≤ t′n = t2, and for any
t, t′ ∈ [t′i, t

′
i+1) implies I(S)(t) = I(S)(t′) for all i = 1, . . . , n− 1.

Proof. Induction on the construction of S. ��
Using Lemma 1, we can give the interpretation of

∫
S under an HDC model

M =< F , I >. Let [t1, t2] ∈ Intv(T) and t′1, . . . , t′n be a partition of [t1, t2]
which have the property stated in Lemma 1. We define p • c for p ∈ {0, 1} and
c ∈ D as follows:

p • c =
{

0 if p = 0
c if p = 1

Then I(
∫
S)([t1, t2]) =

∑n−1
i=1 I(S)(t′i) •m([t′i, t

′
i+1]). It is easy to show that this

definition does not depend on the particular choice t′1, . . . , t′n.
Given a model M =< F , I >, and an interval [t1, t2] ∈ Intv(T), the meaning

of initial and final values of state terms
←
ϑ,
→
ϑ,
←
ϑ1,

→
ϑ1, . . . , are functions with type

Intv(T) → D defined as follows:

I(
←
ϑ, [t1, t2]) = d, iff < F , I >, [t1 − δ, t1] �hdc ��ϑ = d		, for some δ > 0.

I(
→
ϑ, [t1, t2]) = d, iff < F , I >, [t2, t2 + δ] �hdc ��ϑ = d		, for some δ > 0.

where ��S		 =̂
∫
S = �∧ � > 0. It means that S takes value 1 almost everywhere

in a non-point interval. We will use ��		 to stand for � = 0.
The meaning of other syntactic entities in HDC can be given similarly to the

ones in IL2 , and other notions for HDC also can be defined similarly.

Completeness of Higher-Order Duration Calculus 451

3.3 Proof System of HDC

In this section, we give a proof system of HDC. The notation �hdc φ means that
φ is provable.

The proof system of HDC includes all axioms and inference rules in IL2 but
the axiom ITLΩ . Besides, it also includes the following three groups of axioms
and rules.

The first group is used to specify how to calculate and reason about state
durations. They are:

(DC1)
∫
0 = 0 (DC4)

∫
S1 +

∫
S2 =

∫
(S1 ∨ S2) +

∫
(S1 ∧ S2)

(DC2)
∫
1 = � (DC5) ((

∫
S = x1)�(

∫
S = x2)) ⇒ (

∫
S = x1 + x2)

(DC3)
∫
S ≥ 0 (DC6)

∫
S1 =

∫
S2, if S1 ⇔ S2

(DC7) ��S		 ⇔ (φS ∧ � > 0), if S is rigid

The rôle of the second group is to calculate the initial and final values of ϑ,
←
ϑ

and
→
ϑ . They are:

(PV1) (� > 0); ((
←
ϑ= x1) ∧ (� = x2)) ⇔ true; ��ϑ = x1		; (� = x2)

(PV2) ((
→
ϑ= x1) ∧ (� = x2)); (� > 0) ⇔ (� = x2); ��ϑ = x1		; true

PV1 and PV2 formulate the meaning of the initial value and final value of a
state term which are inherited from the previous statement, and passed to the
next one. Because the function ← (→) involves the value of a state term at left
neighbourhood (right neighbourhood), the neighbourhood rule is necessary in
order to axiomatise them.

NR If (� = a); Ψ ; (� = b) ⇒ (� = a); Υ ; (� = b), then Ψ ⇒ Υ. (a, b ≥ 0)

Remark 2. This rule can be looked as a rule of IL2 . Although the rule will de-
stroy the deduction theorem of IL2 , IL2 will keep completeness after introducing
it.

The last group is used to specify the semantics of V ,
←
V and

→
V in the context

of quantifications.
The axiom and rule below are standard as in predicate logic.

GV : if φ then ∀V.φ
QV : ∀V.φ(V) ⇒ φ(ϑ)

If
←
V (

→
V) does not occur in formula φ, then it can take any value, since the

value of
←
V (

→
V) is defined by value of V outside the reference interval w.r.t. φ.

Hence,

(HDC1) ∃V.φ ⇒ ∃V. φ ∧ (
←
V = x) if

←
V �∈ φ

(HDC2) ∃V.φ ⇒ ∃V. φ ∧ (
→
V = x) if

→
V �∈ φ

452 Z. Naijun

The distributivity of ∃V over the chop operator is the most essential property
of V as a function over time. ∃V can distribute over the chop, if and only if the
value of

→
V in the left operand of the chop can match the value of V in the right

operand, and symmetrically for the value of
←
V in the right operand. That is,

(HDC3)

(
(∃V. φ ∧ (true; ��V = x1		 ∨ ��) ∧ (

→
V = x2))

; (∃V. ψ ∧ (��V = x2		; true ∨ ��) ∧ (
←
V = x1))

)
⇒ ∃V. φ; ψ

When
→
V �∈ φ or

←
V �∈ ψ, it can be derived from the above axioms that

(∃V.φ);∃V.ψ ⇒ ∃V. φ; ψ
In order to define program variables as finitely varied functions, in the proof

system, we let Ω = Ωhdc where Ωhdc =̂ {∃x(��V = x		 ∨ ��) | V ∈ PV ar}.

Theorem 3 (Soundness). The proof system of HDC is sound, i.e. �hdc φ
implies |=hdc φ

4 Completeness of HDC on Abstract Domains

In this section, we will apply completeness of IL2 with Ω to show HDC is
complete on abstract domains. To this end, let us choose a language LIL2 for IL2
with four special flexible function symbols ⊕, !, hr and hl, in which there is only
one unary function symbol g of the second sort, and a language Lhdc for HDC. ⊕
and ! have type ((Intv(T) → D) × (Intv(T) → D)) → (Intv(T) → D), and hl
and hr have type (Intv(T) → D) → (Intv(T) → D). In LIL2 , the definition of
terms will be extended by allowing that duration terms and neighbourhood terms
are also terms, where duration terms are defined as: h(θ1, . . . , θn) is duration
term; If t1 and t2 are duration terms then t1 ⊕ t2 and t1 ! t2 are both duration
terms too, neighbourhood terms are defined as: If nt is of the forms x or g(y) or
f(nt1, . . . , ntn) then hr(nt) and hl(nt) are both neighbourhood terms. It is easy
to define the meaning of the above extensions using the usual way. Obviously,
IL2 with Ω is still complete after extending. We will use duration terms to
correspond the terms of state durations, neighbourhood terms to correspond the
left and right values of state terms in the below translation dc2il from Lhdc to
LIL2 .

Let us fix two bijections: V → yV , and R → hR between Lhdc and LIL2 . We
will establish a bijection between Lhdc and a subset of LIL2 by function dc2il
from Lhdc to a subset of LIL2 and its inverse il2dc.

We can prove that if a set of formulae Γ in Lhdc is consistent w.r.t. the proof
system of HDC then dc2il(Γ) plus dc2il(Axiomhdc) where Axiomhdc contains
all axiom instances of HDC is consistent w.r.t. the proof system of IL2 with
dc2il(Ωhdc). From now on, let Ω = dc2il(Ωhdc). By Theorem 2, we can get
a model < F ,J > and an interval [t1, t2] such that < F ,J >, [t1, t2] |=il2Ω
dc2il(Γ)∪dc2il(Axiomhdc). Finally, according to the model and interval, we can
construct a model < F ′, I > for HDC such that < F , I >, [t1, t2] |=hdc Γ .

Completeness of Higher-Order Duration Calculus 453

We define the translating function dc2il from Lhdc to LIL2 as follows:

dc2il(ϑ) =̂

x if ϑ = x
g(yV) if ϑ = V
f(dc2il(ϑ1), . . . , dc2il(ϑn)) if ϑ = f(ϑ1, . . . , ϑn)

dc2il(θ) =̂

x if θ = x

hl(dc2il(ϑ)) if θ =
←
ϑ

hr(dc2il(ϑ)) if θ =
→
ϑ

f(dc2il(θ1), . . . , dc2il(θn)) if θ = f(θ1, . . . , θn)

dc2il(
∫
S) =̂

h0 if S = 0
h1 if S = 1
hR(dc2il(ϑ1), . . . , dc2il(ϑn)) if S = R(ϑ1, . . . , ϑn)
�− dc2il(

∫
S1) if S = ¬S1

dc2il(
∫
S1)! dc2il(

∫
S2) if S = S1 ∧ S2

dc2il(
∫
S1)⊕ dc2il(

∫
S2) if S = S1 ∨ S2

dc2il(φ) =̂

X if φ = X
R(dc2il(θ1), . . . , dc2il(θn)) if φ = R(θ1, . . . , θn)
¬dc2il(ψ) if φ = ¬ψ
dc2il(φ1) ∨ dc2il(φ2) if φ = φ1 ∨ φ2
dc2il(φ1) ∧ dc2il(φ2) if φ = φ1 ∧ φ2
∃x.dc2il(ψ) if φ = ∃x.ψ
∃yV .dc2il(ψ) if φ = ∃V.ψ

where h0 = 0 and h1 = �.
Symmetrically, we define its inverse il2dc as follows:

il2dc(θ) =̂

x if θ = x
V if θ = g(yV)
←−

il2dc(θ) if θ = hl(θ)
−→

il2dc(θ) if θ = hr(θ)
f(il2dc(θ1), . . . , il2dc(θn)) if θ = f(θ1, . . . , θn)∫
0 if θ = h0∫
1 if θ = h1∫
R(il2dc(θ1), . . . , il2dc(θn)) if θ = hR(θ1, . . . , θn)

il2dc(hR1(θ11, . . . , θ1n1) ∗ . . . ∗ hRm
(θm1, . . . , θmnm

)) =̂
∫
(R1(il2dc(θ11), . . . ,

il2dc(θ1n1))& . . . &Rm(il2dc(θm1), . . . , il2dc(θmnm))) where ∗ ∈ {⊕,!} and & ∈
{∨,∧}. If ∗ = ⊕ then the corresponding & = ∨, otherwise the corresponding
& = ∧.

il2dc(φ) =̂

X if φ = X
R(il2dc(θ1), . . . , il2dc(θn)) if φ = R(θ1, . . . , θn)
¬il2dc(ψ) if φ = ¬ψ
il2dc(φ1) ∨ il2dc(φ2) if φ = φ1 ∨ φ2
il2dc(φ1) ∧ il2dc(φ2) if φ = φ1 ∧ φ2
∃x.il2dc(ψ) if φ = ∃x.ψ
∃V.il2dc(ψ) if φ = ∃yV .ψ

454 Z. Naijun

From the definitions of dc2il and il2dc above, we have the following result.

Theorem 4. For any set of formulae Γ ⊂ Lhdc, Γ is consistent w.r.t. the proof
system of HDC iff dc2il(Γ)∪dc2il(Axiomhdc) is consistent w.r.t. the proof system
of IL2 with dc2il(Ωhdc).

Proof. By the above definitions of dc2il and il2dc, it is trivial. ��

Theorem 5. If Γ is consistent w.r.t. the proof system of HDC, then Γ is sat-
isfiable.

Proof. The consistency of Γ w.r.t. HDC implies the consistency of Γ0 = {� =
a}; Γ ; {� = b} w.r.t. HDC where a, b > 0 by the neighbourhood rule. The consis-
tency of Γ0 w.r.t. HDC implies the consistency of dc2il(Γ0) ∪ dc2il(Axiomhdc)
w.r.t. IL2 with Ω by Theorem 4. Hence, by Theorem 2, there exists an IL2
model M =< F ,J > on which Φ has the finite variability property for every
Φ ∈ Ω, where F =<< T,≤>,< D, +, 0 >,D1,m > is its frame, and an interval
[t1, t2] ∈ Intv(T) such that < F ,J >, [t1, t2] |=il2Ω dc2il(Γ0)∪dc2il(Axiomhdc).
Hence, there exists a proper sub-interval [t′1, t

′
2] such that t1 < t′1 ≤ t′2 < t2,

t′1 = t1 + a, t′2 = t2− b, and < F ,J >, [t′1, t
′
2] |=il2Ω dc2il(Γ)∪ dc2il(Axiomhdc).

From now on, we prove that there exists a model < F ′, I > of HDC such
that < F ′, I >, [t′1, t

′
2] |=hdcΓ .

Let $ be a class of interpretations of IL2 such that for every element J ′ ∈ $,
< F ,J ′ > is a model of IL2 , and J ′|[g]| = J |[g]|

For every J ′ ∈ $ we construct an interpretation I ′ of Lhdc as follows:
For every V ∈ PV ar, the formula Φ = dc2il(∃x.��V = x		∨��) ∈ dc2il(Ωhdc).

By Theorem 2, there exists a partition t1 = t′′1 ≤ t′′2 ≤ . . . ≤ t′′n = t2 of [t1, t2]
such that < F ,J ′ >, [t′′i , t

′′
i+1] |=il2Ω dc2il(∃x.��V = x		 ∨ ��), i.e. < F ,J ′ >

, [t′′i , t
′′
i+1] |=il2Ω ∃x.��hid(g(yV), x)		 ∨ �� 		 , for i = 1, . . . , n − 1. Thus I ′ can be

defined as follows:

(••)

I ′|[V]|(t) =̂

J ′′(x)

if t′′i ≤ t < t′′i+1, and
< F ,J ′′ >, [t′′i , t

′′
i+1] |=il2Ω ��hid(g(yV), x)		 ∨ �� 		

where J ′′ is x-equivalent to J ′
0 otherwise

I ′(x) =̂ J ′(x)
I ′(fni) =̂ J ′(fni)
I ′(X) =̂ J ′(X)
I ′(Rn

i) =̂ J ′(Rn
i)

In order to prove the theorem, we need the following two lemmas.

Lemma 2. Let J ′ ∈ $, and J ′ and I ′ have the relation (••). Then for any
term θ in Lhdc and any interval [c, d] ⊆ [t′1, t

′
2], we have:

I ′|[θ]|[c, d] = J ′|[dc2il(θ)]|[c, d].

Proof of the lemma: See [12]. ��
Now, we can give a correspondence between I ′ and J ′ which have the relation

(••) on formulae by the following lemma.

Completeness of Higher-Order Duration Calculus 455

Lemma 3. Let J ′ ∈ $, and J ′ and I ′ have the relation (••). Then for any
formula φ in Lhdc, and any subinterval [c, d] ⊂ [t′1, t

′
2], < F , I ′ >, [c, d] |=hdc φ

iff < F ,J ′ >, [c, d] |=il2Ω dc2il(φ).

Proof of the lemma: We give its proof by induction on the construction of
φ. We only prove the case φ = ∃V.ψ, the other cases can be proved easily by
Lemma 2 and the definition of dc2il.

“⇐” It is easy to show.
“⇒” Let < F , I ′ >, [c, d] |=hdc φ. Then there exists an interpretation

I ′′ for HDC which is V -equivalent to I ′, and < F , I ′′ >, [c, d] |=hdc ψ. Let
t′′0 , t

′′
1 , . . . , t′′n, t

′′
n+1 ∈ T such that t1 ≤ t′′0 < c = t′′1 ≤ . . . ≤ t′′n = d < t′′n+1 ≤ t2

and I ′′(V) is constant on [t′i, t
′
i+1) for i = 0, . . . , n, and assume these n + 1

constants are c0, . . . , cn. The above assumption is reasonable because < F , I ′′ >
is a model of HDC. Since M =< F ,J > is a model of IL2 , by the axiom QV
we have that for all i = 0, . . . , n, there exists some di ∈ D1 such that

(∗) J |[g]|(di, [b, e]) = ci if I ′′|[V]| = ci

for any sub-interval [b, e] ⊆ [t′′i , t
′′
i+1].

Applying the axioms HDC1-HDC3 n times implies that there exists a d ∈ D1
such that for all i = 0, . . . , n + 1 and t ∈ [t′′i , t

′′
i+1)

I ′′(V)(t) = ci iff < F ,J ′′ >, [t′′i , t
′′
i+1 |=il2Ω ��hid(g(d), ci)		

Let J ′′(z) = J ′(z) for all symbols in IL2 but yV , and J ′′(yV) = d defined by
the above. Hence J ′′ is yV -equivalent to J ′, and J ′′ and I ′′ have the definition
relation given in (••). By the induction hypothesis, J ′′, [c, d] |=il2Ω dc2il(ψ),
whence J ′, [c, d] |=il2Ω dc2il(φ) by the definition of dc2il. ��

Now, let F ′ =<< T,≤>,< D, +, 0 >,m >. It is easy to show that < F ′, I >
, [t′1, t

′
2] |=hdc Γ since the interpretations of HDC are independent of D1. ��

Theorem 6 (Completeness). The proof system of HDC is complete, i.e. |=hdc

φ implies �hdc φ.

Proof. Suppose |=hdc φ but ��hdc φ. So {¬φ} is consistent with respect to the
proof system of HDC. By Theorem 5, there exists a model < F , I > and an
interval [t1, t2] such that < F , I >, [t1, t2] |=hdc ¬φ. This contradicts |=hdc φ.
Hence, �hdc φ. ��

5 Discussion

In order to develop a DC-based programming theory, a higher-order duration
calculus has been established in [2]. In this paper, we investigate the logic prop-
erties of HDC. Especially, we proved that HDC is complete on abstract domains
by reducing HDC to a complete first-order two-sorted interval temporal logic.

In the literature of DC, there are two completeness results. One is on ab-
stract domains (see [8]). Unfortunately it requires ω-rule. The other is on real

456 Z. Naijun

domain (see [10]), but it is a relative completeness, i.e. it is assumed that all
valid formulae of real arithmetic and interval temporal logic are provable in DC.
Up to now, no one find a relation between these two completeness results.

If we give another relative completeness of HDC, i.e. if |=hdc φ, then ΓR �hdc
φ, where ΓR stands for all valid real formulae, then we can show that if interval
temporal logic is complete on real domain w.r.t. the assumption that all valid
real formulae are provable, then completeness of HDC on real domain under
the same assumption can be proved with the technique developed in this paper.
This conclusion can be applied to other variants of DC too. But how to prove the
relative completeness of temporal logic on real domain is still an open problem.

Acknowledgements

The author sincerely give his thanks to his supervisor, Prof. Zhou Chaochen for
his instructions and guidance, many inspiring discussions and many suggestions
which improved the presentation of this paper. The author is indebted to Dr.
Dimitar P. Guelev for his idea to reduce higher-order logic to first-order one.

References

1. M Abadi. The power of temporal proofs. Theoretical Computer Science, 1989,
65: 35-83, Corrigendum in TCS 70 (1990), page 275

2. Zhou Chaochen, Dimitar P. Guelev and Zhan Naijun. A higher-order duration
calculus. UNU/IIST Report No. 167, UNU/IIST, P.O. Box 3058, Macau, July,
1999.

3. Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Informa-
tion Processing Letters, 1991,40(5):269–276.

4. Zhou Chaochen and Li Xiaoshan. A mean value calculus of durations. In A
Classical Mind: Essays in Honour of C.A.R. Hoare, Prentice Hall, 1994, 431–451.

5. B. Dutertre. On first order interval temporal logic. Report no. CSD-TR-94-3,
Department of Computer Science, Royal Holloway, University of London, Eghan,
Surrey TW20 0EX, England, 1995.

6. R.L. Epstein. The Semantic Foundations of Logic: Predicate Logic, Oxford Uni-
versity Press, Oxford, UK, 1994.

7. J.W. Garson. Quantification in modal logic. In Handbook of Philosophical Logic,
D. Gabbay and F. Guenther (Eds), Reidel, 1984, (II):249-307.

8. Dimitar P. Guelev. A calculus of durations on abstract domains: completeness and
extensions. UNU/IIST Report No. 139, UNU/IIST, P.O. Box 3058, Macau, May,
1998.

9. Dimitar P. Guelev. Quantification over States in Duration Calculus. August, 1998.
10. M.R. Hansen and Zhou Chaochen. Semantics and completeness of duration

calculus. In Real-Time: Theory in Practice, Springer-Verlag, 1992,LNCS 600, 209–
225.

11. M.R. Hansen and Zhou Chaochen. Duration calculus: logical foundations. Formal
Aspects of Computing,1997, 9:283-330.

12. Zhan Naijun. Completeness of higher-order duration calculus. UNU/IIST Report
No.175, UNU/IIST, P.O. Box 3058, Macau, August, 1999.

Equational Termination by Semantic Labelling

Hitoshi Ohsaki1, Aart Middeldorp2, and Jürgen Giesl3

1 Computer Science Division, Electrotechnical Laboratory
Tsukuba 305-8568, Japan

ohsaki@etl.go.jp
2 Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305-8573, Japan

ami@is.tsukuba.ac.jp
3 Computer Science Department

University of New Mexico, Albuquerque, NM 87131, USA
giesl@cs.unm.edu

Abstract. Semantic labelling is a powerful tool for proving termination
of term rewrite systems. The usefulness of the extension to equational
term rewriting described in Zantema [24] is however rather limited. In
this paper we introduce a stronger version of equational semantical la-
belling, parameterized by three choices: (1) the order on the underlying
algebra (partial order vs. quasi-order), (2) the relation between the al-
gebra and the rewrite system (model vs. quasi-model), and (3) the la-
belling of the function symbols appearing in the equations (forbidden vs.
allowed). We present soundness and completeness results for the various
instantiations and analyze the relationships between them. Applications
of our equational semantic labelling technique include a short proof of the
main result of Ferreira et al. [7]—the correctness of a version of dummy
elimination for AC-rewriting which completely removes the AC-axioms—
and an extension of Zantema’s distribution elimination technique [23] to
the equational setting.

1 Introduction

This paper is concerned with termination of equational term rewrite systems.
Termination of ordinary term rewrite systems has been extensively studied and
several powerful methods for establishing termination are available (e.g. [1,4,21]).
For equational term rewriting much less is known, although in recent years sig-
nificant progress has been made with respect to AC-termination, i.e., termina-
tion of equational rewrite systems where the set of equations consists of the
associativity and commutativity axioms AC(f) = {f(f(x, y), z) ≈ f(x, f(y, z)),
f(x, y) ≈ f(y, x)} for (some of) the binary function symbols occurring in the
rewrite rules. An early paper on termination of equational rewriting is Jouan-
naud and Muñoz [11]. In that paper sufficient conditions are given for reducing
termination of an equational term rewrite system to termination of its underly-
ing term rewrite system. In another early paper (Ben Cherifa and Lescanne [2])
a characterization of the polynomials is given that can be used in a polynomial

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 457–471, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

458 H. Ohsaki, A. Middeldorp, and J. Giesl

interpretation proof of AC-termination. In more recent papers [12,19,20,21] syn-
tactic methods like the well-known recursive path order for proving termination
of rewriting are extended to AC-rewriting. Marché and Urbain [14] extended
the powerful dependency pair technique of Arts and Giesl [1] to AC-rewriting.
In [6,7] two extensions of dummy elimination ([8]) to equational rewriting are
presented. In [15] the type introduction technique of Zantema [23] is extended
to equational term rewriting.

In this paper we extend another technique of Zantema to equational term
rewriting. By labelling function symbols according to the semantics of the rewrite
system, semantic labelling ([24]) transforms a rewrite system into another rewrite
system with the same termination behaviour. The aim is to obtain a transformed
rewrite system where termination is easier to establish. The strength of semantic
labelling is amply illustrated in [16,24]. Here we present powerful extensions
of semantic labelling to equational rewriting and analyze their soundness and
completeness. Our equational semantic labelling yields a short correctness proof
of a version of dummy elimination for AC-rewriting. This result of Ferreira et
al. was obtained in [7] by considerably more complicated arguments. Another
application of our technique is the extension of some of the results of Zantema [23]
concerning distribution elimination to the AC case.

2 Preliminaries

Familiarity with the basics of term rewriting ([3]) is assumed. An equational
system (ES for short) consists of a signature F and a set E of equations between
terms in T (F ,V). We write s →E t if there exist an equation l ≈ r in E ,
a substitution σ, and a context C such that s = C[lσ] and t = C[rσ]. The
symmetric closure of →E is denoted by 	
E and the transitive reflexive closure
of 	
E by ∼E . A rewrite rule is an equation l ≈ r such that l is not a variable
and variables which occur in r also occur in l. Rewrite rules l ≈ r are written as
l → r. A term rewrite system (TRS for short) is an ES with the property that
all its equations are rewrite rules. An equational term rewrite system (ETRS for
short) R/E consists of a TRS R and an ES E over the same signature. We write
s→R/E t if there exist terms s′ and t′ such that s ∼E s′ →R t′ ∼E t. Similar to
ordinary term rewrite systems, an ETRS is called terminating if there does not
exist an infinite →R/E reduction.

Let F be a signature and A = (A, {fA}f∈F) an F-algebra equipped with a
quasi-order (i.e., a reflexive and transitive relation) � on its (non-empty) car-
rier A. For any variable assignment α : V → A we define the term evaluation
[α]A : T (F ,V) → A inductively by [α]A(x) = α(x) and [α]A(f(t1, . . . , tn)) =
fA([α]A(t1), . . . , [α]A(tn)) for x ∈ V, f ∈ F , and t1, . . . , tn ∈ T (F ,V). If A is
clear from the context, then we often write [α] instead of [α]A. We say that
A is monotone if the algebra operations of A are monotone with respect to �
in all coordinates, i.e., if f ∈ F has arity n � 1 then fA(a1, . . . , ai, . . . , an) �
fA(a1, . . . , b, . . . , an) for all a1, . . . , an, b ∈ A and i ∈ {1, . . . , n} with ai � b.
An ETRS R/E over a signature F is compatible with a monotone F-algebra

Equational Termination by Semantic Labelling 459

(A,�) if l �A r for every rewrite rule l → r ∈ R and l ∼A r for every equation
l ≈ r ∈ E . Here the relation �A is defined by s �A t if [α]A(s) � [α]A(t) for
every assignment α and ∼A is the equivalence relation induced by �A. If R/E
and (A,�) are compatible, we also say that (A,�) is a quasi-model of R/E . We
call (A,�) a model of R/E if l ∼A r for all l→ r ∈ R and l ≈ r ∈ E .

A TRS R is precedence terminating if there exists a well-founded order ❂ on
its signature F such that root(l) ❂ f for every rule l→ r ∈ R and every function
symbol f occurring in r. Precedence terminating TRSs are terminating ([16]).
The next lemma states that this remains true in the presence of AC-axioms.
Lemma 1. Let R/E be an ETRS over a signature F such that E = ⋃f∈G AC(f)
for some subset G of F . If R is precedence terminating then R/E is terminating.
Proof. By definition there is a well-founded order ❂ on F such that root(l) ❂ f
for every rule l → r ∈ R and every function symbol f occurring in r. Any
AC-compatible recursive path order induced by ❂ that is defined on terms with
variables (e.g. [13,19]) orients the rules of R from left to right. (The complicated
case in which two terms with equal root symbols in G have to be compared never
arises due to the assumption on ❂.) We conclude that R/E is terminating. ��

3 Semantic Labelling for Equational Rewriting

In this section we present our equational semantic labelling framework by appro-
priately extending the definitions of Zantema [24] for ordinary semantic labelling.
Definition 1. Let F be a signature and A an F-algebra. A labelling L for F
consists of sets of labels Lf ⊆ A for every f ∈ F . The labelled signature Flab
consists of n-ary function symbols fa for every n-ary function symbol f ∈ F
and label a ∈ Lf together with all function symbols f ∈ F such that Lf = ∅.
A labelling � for A consists of a labelling L for the signature F together with
mappings �f : An → Lf for every n-ary function symbol f ∈ F with Lf �= ∅. If
A is equipped with a quasi-order � then the labelling is said to be monotone if
its labelling functions �f are monotone (with respect to �) in all arguments.
Definition 2. Let R/E be an ETRS over a signature F , (A,�) an F-algebra,
and � a labelling for A. For every assignment α we inductively define a labelling
function labα from T (F ,V) to T (Flab,V): labα(t) = t if t ∈ V and labα(t) =
f�f ([α](t1),...,[α](tn))(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn). We define TRSs
Rlab, Dec(F ,�) and ESs Elab, Eq(F ,∼) over the signature Flab as follows:

Rlab = { labα(l)→ labα(r) | l→ r ∈ R and α : V → A},
Elab = { labα(l) ≈ labα(r) | l ≈ r ∈ E and α : V → A},

Dec(F ,�) = {fa(x1, . . . , xn)→ fb(x1, . . . , xn) | f ∈ F , a, b ∈ Lf , a � b},
Eq(F ,∼) = {fa(x1, . . . , xn) ≈ fb(x1, . . . , xn) | f ∈ F , a, b ∈ Lf , a ∼ b, a �= b}.
The purpose of the condition a �= b in the definition of Eq(F ,∼) is to exclude
trivial equations. When the signature F and the quasi-order � can be inferred
from the context we just write Dec and Eq. We write R for the union of Rlab
and Dec and E for the union of Elab and Eq.

460 H. Ohsaki, A. Middeldorp, and J. Giesl

The next theorem states our first equational semantic labelling result.

Theorem 1. Let R/E be an ETRS over a signature F , (A,�) a monotone F-
algebra, and � a monotone labelling for A. If A is a quasi-model of R/E and
R/E is terminating then R/E is terminating.
Proof. We show that for all terms s, t ∈ T (F ,V) and assignments α we have

1. if s→R t then labα(s) ∼E ·
+−→R labα(t),

2. if s 	
E t then labα(s) ∼E labα(t).
Suppose s = C[lσ] and t = C[rσ] for some rewrite rule l→ r ∈ R, context C, and
substitution σ. We show (1) by induction on C. If C = � then labα(s) = labα(lσ)
and labα(t) = labα(rσ). Define the assignment β = [α]A ◦ σ and the substitu-
tion τ = labα ◦ σ (i.e., σ is applied first). An easy induction proof (e.g. [23,
Lemma 2]) reveals that labα(lσ) = labβ(l)τ and labα(rσ) = labβ(r)τ . By defi-
nition labβ(l)→ labβ(r) ∈ Rlab and hence labα(s) = labβ(l)τ →Rlab labβ(r)τ =
labα(t). For the induction step, let C = f(u1, . . . , C ′, . . . , un). The induction hy-
pothesis yields labα(C ′[lσ]) ∼E ·

+−→R labα(C ′[rσ]). Because A is a quasi-model
of R/E and C ′[lσ]→R C ′[rσ], we have [α]A(C ′[lσ]) � [α]A(C ′[rσ]). Let

a = �f ([α]A(u1), . . . , [α]A(C ′[lσ]), . . . , [α]A(un))
and

b = �f ([α]A(u1), . . . , [α]A(C ′[rσ]), . . . , [α]A(un)).

Monotonicity of the labelling function �f yields a � b. We distinguish two cases.
If a � b then

labα(s) ∼E ·
+−→R fa(labα(u1), . . . , labα(C ′[rσ]), . . . , labα(un))

→Dec fb(labα(u1), . . . , labα(C ′[rσ]), . . . , labα(un))
= labα(t).

If a ∼ b then
labα(s) 	
=Eq fb(labα(u1), . . . , labα(C ′[lσ]), . . . , labα(un))

∼E ·
+−→R fb(labα(u1), . . . , labα(C ′[rσ]), . . . , labα(un))

= labα(t).

Here 	
=Eq denotes 	
Eq ∪ =. Since ∼E ·
+−→R · →Dec ⊆ ∼E ·

+−→R and 	
=Eq · ∼E ·+−→R ⊆ ∼E ·
+−→R, in both cases we obtain the desired labα(s) ∼E ·

+−→R labα(t).
The proof of (2) follows along the same lines. In the induction step we have

[α]A(C ′[lσ]) ∼ [α]A(C ′[rσ]). Monotonicity of �f yields both a � b and b � a.
Hence a ∼ b and thus

labα(s) = fa(labα(u1), . . . , labα(C ′[lσ]), . . . , labα(un))
	
=Eq fb(labα(u1), . . . , labα(C ′[lσ]), . . . , labα(un))
∼E fb(labα(u1), . . . , labα(C ′[rσ]), . . . , labα(un))
= labα(t)

by the definition of Eq and the induction hypothesis.
From (1) and (2) it follows that any infinite R/E-rewrite sequence gives rise

to an infinite R/E-rewrite sequence. ��

Equational Termination by Semantic Labelling 461

The converse of the above theorem does not hold. Consider the terminating
ETRS R/E with R = ∅ and E = {f(a) ≈ a}. Let A be the algebra over the
carrier {0, 1} with 1 � 0 and operations fA(x) = x for all x ∈ {0, 1} and aA = 1.
Note that A is a (quasi-)model of R/E . By letting �f be the identity function
and by choosing La = ∅, we obtain the labelled ETRS R/E with Rlab = ∅,
Dec = {f1(x)→ f0(x)}, Elab = {f1(a) ≈ a}, and Eq = ∅. The ETRS R/E is not
terminating: a ∼Elab f1(a) →Dec f0(a) ∼Elab f0(f1(a)) →Dec · · · Nevertheless, in
this example there are no infinite R/E-rewrite sequences that contain infinitely
many Rlab/E-steps, which is known as the relative termination (Geser [10]) of
Rlab/E with respect to Dec. It is not difficult to show that under the assumptions
of Theorem 1 termination of R/E is equivalent to relative termination of Rlab/E
with respect to Dec.

Zantema [24] showed the necessity of the inclusion of Dec in R for the cor-
rectness of Theorem 1 (with E = ∅) by means of the TRS R = {f(g(x)) →
g(g(f(f(x))))}, the algebra A over the carrier {0, 1} with operations fA(x) = 1
and gA(x) = 0 for all x ∈ {0, 1}, and the order 1 � 0. By labelling f with the value
of its argument, we obtain the TRS Rlab = {f0(g(x))→ g(g(f1(f0(x)))), f0(g(x))
→ g(g(f1(f1(x))))} which is compatible with the recursive path order with prece-
dence f0 ❂ f1, g. However, R is not terminating: f(f(g(x)))→ f(g(g(f(f(x)))))→
g(g(f(f(g(f(f(x)))))))→ · · ·

The inclusion of Eq in E is also essential for the correctness of Theorem 1.
Consider the ETRS R/E with R = {f(a, b, x)→ f(x, x, x), g(x, y)→ x, g(x, y)→
y} and E = ∅. Let A be the algebra over the carrier {0, 1} with 0 ∼ 1 and
operations fA(x, y, z) = 1, gA(x, y) = 0, aA = 0, and bA = 1. We label function
symbol f as follows: �f(x, y, z) = 0 if x = y and �f(x, y, z) = 1 if x �= y. Note
that A is a quasi-model for R/E and �f is trivially monotone. We have Rlab =
{f1(a, b, x) → f0(x, x, x), g(x, y) → x, g(x, y) → y}, Dec = ∅, and Elab = ∅.
Termination of R is easily shown. It is well-known (Toyama [22]) that R is not
terminating. Note that in this example Eq = {f0(x, y, z) ≈ f1(x, y, z)} and hence
R/E is not terminating.

Finally, both monotonicity requirements are essential. Consider the TRSR =
{f(g(a)) → f(g(b)), b → a}. Let A be the algebra over the carrier {0, 1} with
1 � 0 and operations fA(x) = 0, gA(x) = 1 − x, aA = 0, and bA = 1. We
have l �A r for both rules l → r ∈ R. If �f(x) = x then we obtain the TRS
R = {f1(g(a)) → f0(g(b)), b → a, f1(x) → f0(x)} which is compatible with the
recursive path order with precedence f1 ❂ f0, g and f1 ❂ b ❂ a. However, R is
not terminating. Note that gA is not monotone. Next consider the algebra B
over the carrier {0, 1} with 1 � 0 and operations fB(x) = 0, gB(x) = x, aB = 0,
and bB = 1. If �f(x) = 1 − x then we obtain the same TRS R as before. Note
that now �f is not monotone.

If the algebra A is a model of the ETRS R/E then (similar to ordinary
semantic labelling [24]) we can dispense with Dec. Moreover, in this case the
converse of Theorem 1 also holds. This is expressed in the next theorem.
Theorem 2. Let R/E be an ETRS over a signature F , (A,�) a monotone
F-algebra, and � a monotone labelling for A. If A is a model of R/E then ter-
mination of Rlab/E is equivalent to termination of R/E.

462 H. Ohsaki, A. Middeldorp, and J. Giesl

Proof. The following statements are obtained by a straightforward modification
of the proof of Theorem 1:

1. if s→R t then labα(s) ∼E · →Rlab labα(t),
2. if s 	
E t then labα(s) ∼E labα(t).
Note that since A is a model we have [α]A(C ′[lσ]) ∼ [α]A(C ′[rσ]) and hence
a ∼ b in the induction step. This explains why there is no need for Dec. So
termination of Rlab/E implies termination of R/E . The converse also holds;
eliminating all labels in an infinite Rlab/E-rewrite sequence yields an infinite
R/E-rewrite sequence (because there are infinitely many Rlab-steps). ��

If the quasi-model A in Theorem 1 is equipped with a partial order (i.e., a
reflexive, transitive, and anti-symmetric relation) � instead of a quasi-order �
then we can dispense with Eq.

Theorem 3. Let R/E be an ETRS over a signature F , (A,�) a monotone F-
algebra, and � a monotone labelling for A. If A is a quasi-model of R/E and
R/Elab is terminating then R/E is terminating.

Proof. The proof of Theorem 1 applies; because the equivalence associated with
a partial order is the identity relation we have Eq = ∅. ��

The first example in this section shows that the converse of Theorem 3 does
not hold. Combining the preceding two theorems yields the following result.

Corollary 1. Let R/E be an ETRS over a signature F , (A,�) a monotone
F-algebra, and � a monotone labelling for A. If A is a model of R/E then ter-
mination of Rlab/Elab is equivalent to termination of R/E. ��

Note that if the pair (A,�) is a model of R/E then so is (A,=). Since in this
case monotonicity of both the algebra operations and the labelling functions is
trivially satisfied, we can rephrase the above corollary as follows.

Corollary 2. Let R/E be an ETRS over a signature F , A an F-algebra, and
� a labelling for A. If A is a model of R/E then termination of Rlab/Elab is
equivalent to termination of R/E. ��

Note that the unspecified quasi-order is assumed to be the identity relation,
so model here means l =A r for all rules l→ r ∈ R and all equations l ≈ r ∈ E .

Let us conclude this section by illustrating the power of equational semantic
labelling on a concrete example. Consider the ETRS R/E with R = {x − 0 →
x, s(x) − s(y) → x − y, 0 ÷ s(y) → 0, s(x) ÷ s(y) → s((x − y) ÷ s(y))} and
E = {(x÷ y)÷ z ≈ (x÷ z)÷ y}. Let A be the algebra with carrier N, standard
order �, and operations 0A = 0, sA(x) = x+ 1, and x−A y = x÷A y = x. This
algebra is a quasi-model of R/E . If �÷(x, y) = x then we have Rlab = {x− 0→
x, s(x)− s(y) → x− y, 0÷0 s(y) → 0} ∪ {s(x)÷n+1 s(y) → s((x− y)÷n s(y)) |
n �},

Equational Termination by Semantic Labelling 463

Dec = {x÷m y → x÷n y | m > n}, and Elab = {(x÷n y)÷n z ≈ (x÷n z)÷n
y | n � 0}. Termination of R/Elab can be shown by the following polynomial
interpretation: [0] = 0, [s](x) = x + 1, x [−] y = x + y + 1, and x [÷n] y =
x + ny + n + y for all n � 0. According to Theorem 3 the original ETRS
R/E is terminating as well. Note that a direct termination proof with standard
techniques is impossible since an instance of the last rule of R is self-embedding.
In order to make this rule non-self-embedding it is essential that we label ÷. This
explains why Zantema’s version of equational semantic labelling—presented in
the next section—will fail here.

4 Semantic Labelling Cube

The original version of equational semantic labelling described in Zantema [24]
is presented below.

Theorem 4 ([24]). Let R/E be an ETRS over a signature F , A an F-algebra,
and � a labelling for A such that function symbols occurring in E are unlabelled.
If A is a model of R/E then termination of Rlab/E is equivalent to termination
of R/E. ��

In [24] it is remarked that the restriction that symbols in E are unlabelled is
essential. Corollary 2, of which Theorem 4 is an immediate consequence, shows
that this is not true. Zantema provides the non-terminating ETRS R/E with
R = {(x + y) + z → x + (y + z)} and E = {x + y ≈ y + x}, and the model A
consisting of the positive integers N+ with the function symbol + interpreted as
addition. By labelling + with the value of its first argument, we obtain Rlab =
{(x+i y) +i+j z → x+i (y +j z) | i, j ∈ N+} and Elab = {x+i y ≈ y +j x | i, j ∈
N+}. According to Corollary 2 the labelled ETRS Rlab/Elab is not terminating
and indeed there are infinite rewrite sequences, e.g.

(x+1 x) +2 x→ x+1 (x+1 x) ∼ (x+1 x) +2 x→ · · ·

In [24] it is remarked that Rlab/E ′ with E ′ = {x +i y → y +i x | i ∈ N+} is
terminating, since it is compatible with the polynomial interpretation in which
the function symbol +i is interpreted as addition plus i, for every i ∈ N+.
However, E ′ is not a labelled version of E .

The various versions of equational semantic labelling presented above differ
in three choices: (1) the order on the algebra A (partial order vs. quasi-order),
(2) the relation between the algebra A and the ETRS R/E (model vs. quasi-
model), and (3) the labelling of the function symbols appearing in E (forbidden
vs. allowed). This naturally gives rise to the cube of eight versions of equational
semantic labelling possibilities shown in Figure 1. Every possibility is given as
a string of three choices, each of them indicated by −/+ and ordered as above,
so −++ denotes the version of equational semantic labelling with partial order,
quasi-model, and (possibly) labelled function symbols in E . All eight versions of
equational semantic labelling are sound, i.e., termination of the labelled ETRS

464 H. Ohsaki, A. Middeldorp, and J. Giesl

−++ +++

−−+

�������
+−+

�������

−+− ++−

−−−

�������
+−−

�������

+++ Theorem 1
+−+ Theorem 2
−++ Theorem 3
−−+ Corollary 1 (2)
−−− Theorem 4

Fig. 1. Equational semantic labelling cube.

implies termination of the original ETRS. The versions in which termination
of the labelled ETRS is equivalent to termination of the original ETRS are
indicated by a surrounding box.

We present one more version of equational semantic labelling, stating that
the implication of Theorem 1 becomes an equivalence in the special case that
E is variable preserving (i.e., every equation l ≈ r ∈ E has the property that l
and r have the same number of occurrences of each variable), the (strict part
of the) quasi-order � is well founded, and function symbols occurring in E are
unlabelled. In other words, if E is variable preserving (which in particular is true
for AC) and the quasi-order � is well founded then we can put a box around
++− in Figure 1. Before presenting the proof, we show the necessity of the
three conditions. First consider the ETRS R/E with R = ∅ and E = {f(x, x) ≈
x} where the signature contains a unary function symbol g in addition to the
function symbol f. Let A be the algebra over the carrier {0, 1} with 1 � 0 and
operations fA(x, y) = x and gA(x) = x. Note that A is a (quasi-)model of R/E .
By labelling g with the value of its argument, we obtain the ETRS R/E with
R = Dec = {g1(x)→ g0(x)} and E = E . The ETRSR/E is trivially terminating,
but R/E admits the following infinite rewrite sequence:

g1(x) ∼ f(g1(x), g1(x))→ f(g0(x), g1(x)) ∼ f(g0(x), f(g1(x), g1(x)))→ · · ·
Note that E is not variable preserving. The necessity of the well-foundedness of
the quasi-order � follows by considering the terminating TRS R/E with R =
{f(x)→ g(x)} and E = ∅, the algebra A over the carrier Z with standard order
� and operations fA(x) = gA(x) = x, and the labelling �f(x) = x. In this case
we have Rlab = {fi(x) → g(x) | i ∈ Z} and Dec = {fi(x) → fj(x) | i > j}, so R
lacks termination. Finally, the requirement that function symbols occurring in
E must be unlabelled is justified by the counterexample following Theorem 1.

Theorem 5. Let R/E be an ETRS over a signature F with E variable pre-
serving, (A,�) a monotone F-algebra with � well-founded, and � a monotone
labelling for (A,�) such that function symbols occurring in E are unlabelled. If
A is a quasi-model of R/E then termination of R/E is equivalent to termination
of R/E.

Equational Termination by Semantic Labelling 465

Proof. First note that R/E = (Rlab ∪ Dec)/(E ∪ Eq) because function symbols
occurring in E are unlabelled. The “if” part is a consequence of Theorem 1. For
the “only if” part we show that the ETRS Dec/(E ∪ Eq) is terminating. For a
term t ∈ T (Flab,V) let φ(t) denote the multiset of all labels occurring in t. The
following facts are not difficult to show:

– if s→Dec t then φ(s) �mul φ(t),
– if s 	
Eq t then φ(s) ∼mul φ(t),
– if s 	
E t then φ(s) = φ(t).

Here �mul denotes the multiset extension of � ([5]) and ∼mul denotes the multi-
set extension of the equivalence relation ∼ (which coincides with the equivalence
relation associated with the multiset extension �mul of �, see e.g. [17, Defini-
tion 5.6]). For the validity of the last observation it is essential that E is variable
preserving and that function symbols occurring in E are unlabelled. From these
facts and the well-foundedness of �mul we obtain the termination of Dec/(E∪Eq).
Now, if R/E is not terminating then it admits an infinite rewrite sequence which
contains infinitely many Rlab-steps. Erasing all labels yields an infinite R/E-
rewrite sequence, contradicting the assumption that R/E is terminating. ��

5 Dummy Elimination for Equational Rewriting

Ferreira, Kesner, and Puel [7] extended dummy elimination [8] to AC-rewriting
by completely removing the AC-axioms. We show that their result is easily ob-
tained in our equational semantic labelling framework. Our definition of
dummy(R) is different from the one in [7,8], but easily seen to be equivalent.

Definition 3. Let R be a TRS over a signature F . Let e be a distinguished
function symbol in F of arity m � 1 and let � be a fresh constant. We write F�
for (F \{e})∪{�}. The mapping cap: T (F ,V)→ T (F�,V) is inductively defined
as follows: cap(t) = t if t ∈ V, cap(e(t1, . . . , tm)) = �, and cap(f(t1, . . . , tn)) =
f(cap(t1), . . . , cap(tn)) if f �= e. The mapping dummy assigns to every term in
T (F ,V) a subset of T (F�,V):

dummy(t) = {cap(t)} ∪ {cap(s) | s is an argument of an e symbol in t}.
Finally, we define

dummy(R) = {cap(l)→ r′ | l→ r ∈ R and r′ ∈ dummy(r)}.
Note that dummy(R) may contain invalid rewrite rules because cap(l) can

have fewer variables than l. In that case, however, dummy(R) is not terminating
and the results presented below hold vacuously. Ferreira and Zantema [8] showed
that if dummy(R) is terminating then R is terminating. A simple proof of this
fact using self-labelling, a special case of semantic labelling, can be found in
Middeldorp et al. [16]. Two extensions of this result to equational rewriting are
known. In [6] Ferreira showed that termination of R/E follows from termination
of dummy(R)/E provided that E is variable preserving and does not contain the
function symbol e. The extension presented in Ferreira et al. [7] is stated below.

466 H. Ohsaki, A. Middeldorp, and J. Giesl

Theorem 6. Let R/E be an ETRS with E = AC(e). If dummy(R) is terminat-
ing then R/E is terminating.

In other words, AC-termination ofR is reduced to termination of dummy(R).
Proof. We turn the set of terms T (F�,V) into an F-algebra A by defining
eA(t1, . . . , tn) = � and fA(t1, . . . , tn) = f(t1, . . . , tn) for all other function sym-
bols f ∈ F and terms t1, . . . , tn ∈ T (F�,V). We equip A with the (well-founded)
partial order �=→∗dummy(R). One can verify that A is monotone with respect to
�. An easy induction proof shows that [α](t) = cap(t)α for all terms t ∈ T (F ,V).
We show that A is a quasi-model of R/E . Let α : V → T (F�,V) be an arbitrary
assignment and let l→ r ∈ R. We have [α](l) = cap(l)α and [α](r) = cap(r)α by
the above property. The rewrite rule cap(l)→ cap(r) belongs to dummy(R) by
definition and hence [α](l) � [α](r). For the two equations l ≈ r ∈ E we clearly
have [α](l) = � = [α](r). Hence A is a quasi-model of R/E .

Define the (monotone) labelling � as follows: �f = fA for all function symbols
f ∈ F . According to Theorem 3 it is sufficient to show thatR/Elab is terminating.
Define a precedence ❂ on Flab as follows: fs ❂ gt if and only if s (� ∪ �)+ t,
where � is the proper superterm relation. Note that ❂ inherits well-foundedness
from �. We claim that R is precedence terminating with respect to ❂. Rewrite
rules in Dec are of the form fs(x1, . . . , xn)→ ft(x1, . . . , xn) with s � t and thus
fs ❂ ft. For rules in Rlab we make use of the following property:

if t � r then cap(t) � r′ for some term r′ ∈ dummy(r). (∗)
Now let l→ r ∈ Rlab. By definition there exist an assignment α : V → T (F�,V)
and a rewrite rule l′ → r′ ∈ R such that l = labα(l′) and r = labα(r′). The
label of the root symbol of l is [α](l′) = cap(l′)α. Let s be the label of a function
symbol in r. By construction s = [α](t) = cap(t)α for some subterm t of r′.
According to (1) we have cap(t) � r′′ for some r′′ ∈ dummy(r′). By definition
cap(l′) → r′′ ∈ dummy(R) and hence cap(l′)α � r′′α � cap(t)α = s. Conse-
quently, root(l) ❂ f for every function symbol f in r. This completes the proof of
precedence termination of R. Since Elab = AC(e�), termination of R/Elab follows
from Lemma 1. ��

The reader is invited to compare our proof with the one in [7]. For the above
simple proof we indeed needed our new powerful version of equational semantic
labelling, i.e., Zantema’s restricted version (Theorem 4) would not have worked.

One may wonder whether the soundness proof of the version of equational
dummy elimination presented in [6] can also be simplified by equational semantic
labelling. This turns out not to be the case. One reason is that function symbols
of E that also appear in R will be labelled, causing Elab (and E) to be essentially
different from E . In particular, if E consists of AC-axioms then Elab contains
non-AC axioms and hence AC-compatible orders are not applicable to R/E .
Moreover, Lemma 1 does not extend to arbitrary ESs E and it is unclear how to
change the definition of precedence termination such that it does.

Recently, Nakamura and Toyama [18] improved dummy elimination by re-
stricting r′ in the definition of dummy(R) to terms in (dummy(r) \ T (FC ,V))∪

Equational Termination by Semantic Labelling 467

{cap(r)} with FC denoting the constructors of R. In other words, elements
of dummy(r) \ {cap(r)} that do not contain a defined function symbol need
not be considered when forming the right-hand sides of the rewrite rules in
dummy(R). For example, the TRS R = {f(a) → f(b), b → e(a)} is trans-
formed into the non-terminating TRS dummy(R) = {f(a)→ f(b), b→ �, b→ a}
by dummy elimination whereas the above improvement yields the terminating
TRS {f(a) → f(b), b → �}. Aoto1 suggested that a further improvement is
possible by stripping off the outermost constructor context of every element in
dummy(r) \ {cap(r)}. For R = {f(a(x))→ f(b), b→ e(a(f(c)))} this would yield
the terminating TRS {f(a(x))→ f(b), b→ �, b→ f(c)} whereas the transforma-
tion of [18] produces dummy(R) = {f(a(x)) → f(b), b → �, b → a(f(c))}, which
is clearly not terminating.

These ideas are easily incorporated in our definition of dummy elimination.
Here FD = F \ FC denotes the defined symbols of R.
Definition 4. Let R be a TRS over a signature F . The mapping dummy′ as-
signs to every term in T (F ,V) a subset of T (F�,V), as follows:

dummy′(t) = cap(t) ∪
{
cap(s)

∣∣∣∣ s is a maximal subterm of an argument
of e in t such that root(s) ∈ FD \ {e}

}
.

We define

dummy′(R) = {cap(l)→ r′ | l→ r ∈ R and r′ ∈ dummy′(r)}.

Theorem 7. Let R/E be an ETRS with E = AC(e). If dummy′(R) is termi-
nating then R/E is terminating.
Proof. Very similar to the proof of Theorem 6. The difference is that we do not
label the function symbols in FC . In order to obtain precedence termination of
R we extend the precedence ❂ on Flab by ft ❂ g for every f ∈ FD, t ∈ T (F�,V),
and g ∈ FC . In addition, (∗) is replaced by the following property:

if t � r and root(t) ∈ FD then cap(t) � r′ for some term r′ ∈ dummy′(r).
Taking these changes into consideration, termination of R/E is obtained as in
the proof of Theorem 6. ��

6 Distribution Elimination for Equational Rewriting

Next we show that our results on equational semantic labelling can also be used
to extend the distribution elimination transformation of [23] to the AC case.
Again, for that purpose we need our powerful version of equational semantic
labelling, i.e., Theorem 4 does not suffice. Let R be a TRS over a signature F
1 Remark made at the 14th Japanese Term Rewriting Meeting, Nara Institute of
Science and Technology, March 15–16, 1999.

468 H. Ohsaki, A. Middeldorp, and J. Giesl

and let e ∈ F be a designated function symbol whose arity is at least one. A
rewrite rule l → r ∈ R is called a distribution rule for e if l = C[e(x1, . . . , xm)]
and r = e(C[x1], . . . , C[xm]) for some non-empty context C in which e does
not occur and pairwise different variables x1, . . . , xm. Distribution elimination
is a technique that transforms R by eliminating all distribution rules for e and
removing the symbol e from the right-hand sides of the other rules. Let Fdistr =
F \ {e}. We inductively define a mapping distr that assigns to every term in
T (F ,V) a non-empty subset of T (Fdistr,V), as follows:

distr(t) =

{t} if t ∈ V,
m⋃
i=1

distr(ti) if t = e(t1, . . . , tm),

{f(s1, . . . , sn) | si ∈ distr(ti)} if t = f(t1, . . . , tn) with f �= e.
It is extended to rewrite systems as follows:

distr(R) = {l→ r′ | l→ r ∈ R is no distribution rule for e and r′ ∈ distr(r)}.
A rewrite system is called right-linear if no right-hand side of a rule contains
multiple occurrences of the same variable. The following theorem extends Zan-
tema’s soundness result for distribution elimination to the AC case.

Theorem 8. Let R/E be an ETRS with E = AC(e) such that e does not occur
in the left-hand sides of rewrite rules of R that are not distribution rules for e.
If distr(R) is terminating and right-linear then R/E is terminating.
Proof. We turn the set of finite non-empty multisets over T (Fdistr,V) into an
F-algebra A by defining

fA(M1, . . . ,Mn) =

{
{f(t1, . . . , tn) | ti ∈Mi for all 1 � i � n} if f �= e,
M1 ∪M2 if f = e

for all function symbols f ∈ F and finite non-empty multisets M1, . . . ,Mn of
terms in T (Fdistr,V). (Note that n = 2 if f = e.) We equip A with the (well-
founded) partial order �� = �=

mul where � = →+
distr(R). One easily shows that

(A,��) is a monotone F-algebra. It can be shown (cf. the nontrivial proof of
Theorem 12 in [23]) that

1. l =A r for every distribution rule l→ r ∈ R,
2. l ��A r for every other rule l→ r ∈ R.
For (2) we need the right-linearity assumption of distr(R). From the definition of
eA we obtain e(x, y) =A e(y, x) and e(e(x, y), z) =A e(x, e(y, z)). Hence (A,��)
is a quasi-model of R/E .

Define the (monotone) labelling � as follows: �f = fA for all function symbols
f �= e. According to Theorem 3 it is sufficient to show thatR/Elab is terminating.
Define the precedence ❂ on Flab as follows: f ❂ g if and only if either f �= e
and g = e or f = f ′M and g = g′N with M ((� ∪ �)+)mul N . Note that ❂ is well
founded. We claim that R is precedence terminating with respect to ❂. Rewrite

Equational Termination by Semantic Labelling 469

rules in Dec are of the form fM (x1, . . . , xn) → fN (x1, . . . , xn) with M �mul N
and thus fM ❂ fN . For rules in Rlab we make use of the following property,
which is not difficult to prove:

3. if t � r then [α](r) �mul [α](t) for every assignment α.

Now let l→ r ∈ Rlab. By definition there is an assignment α : V → T (Fdistr,V)
and a rewrite rule l′ → r′ ∈ R such that l = labα(l′) and r = labα(r′). Since
root(l′) �= e, the label of the root symbol of l is [α](l′). If e occurs in r′ then
root(l) ❂ e by definition. Let M be the label of a function symbol in r. By
constructionM = [α](t) for some subterm t of r′. We distinguish two cases. First
consider the case that l′ → r′ ∈ R is a distribution rule. Because root(r′) = e, t is
a proper subterm of r′. Property (3) yields [α](r′) �mul [α](t). We have [α](l′) =
[α](r′) by (1). Hence [α](l′) ((� ∪ �)+)mul M as required. Next let l′ → r′ ∈ R
be a non-distribution rule. From (3) we infer that [α](r′) �mul [α](t) (if t = r′

then [α](r′) = [α](t) holds). According to (2) we have [α](l′) �mul [α](r′). Hence
also in this case we obtain [α](l′) ((� ∪ �)+)mul M . This completes the proof
of precedence termination of R. Since Elab = E = AC(e), termination of R/Elab
follows from Lemma 1. ��

Next we show that the right-linearity requirement in the preceding theorem
can be dropped if termination is strengthened to total termination. A TRS is
called totally terminating if it is compatible with a well-founded monotone al-
gebra in which the underlying order is total. Since adding a constant to the
signature does not affect total termination, from now on we assume that the
set of ground terms is non-empty. Total termination is equivalent (see [9, The-
orem 13]) to compatibility with a well-founded monotone total order on ground
terms. Here, “compatibility” means that lσ � rσ holds for all rules l → r ∈ R
and all substitutions such that lσ is a ground term. It should be noted that
standard termination techniques like polynomial interpretations, recursive path
order, and Knuth-Bendix order all yield total termination.

Theorem 9. Let R/E be an ETRS with E = AC(e) such that e does not occur
in the left-hand sides of rewrite rules of R that are not distribution rules for e.
If distr(R) is totally terminating then R/E is terminating.
Proof. There is a well-founded monotone total order � on T (Fdistr) which is
compatible with distr(R). We turn T (Fdistr) into an F-algebra A by defining
fA(t1, . . . , tn) = f(t1, . . . , tn) if f �= e and fA(t1, . . . , tn) = max {t1, t2} if f =
e for all symbols f ∈ F and terms t1, . . . , tn in T (Fdistr). We equip A with
the (well-founded) partial order �. One can show that (A,�) is a monotone
F-algebra. It is not difficult to verify that l =A r for every distribution rule
l→ r ∈ R and the two equations l ≈ r ∈ E . An easy induction proof shows that

1. for all terms r ∈ T (F ,V) and assignments α there exists a term s ∈ distr(r)
such that [α](r) = [α](s).

Using this property, we obtain (by induction on r) that l �A r for every non-
distribution rule l→ r ∈ R. Hence (A,�) is a quasi-model of R/E .

470 H. Ohsaki, A. Middeldorp, and J. Giesl

Define the (monotone) labelling � as follows: �f = fA for all function symbols
f �= e. According to Theorem 3 it is sufficient to show thatR/Elab is terminating.
Define the precedence ❂ on Flab as follows: f ❂ g if and only if either f �= e and
g = e or f = f ′s and g = g

′
t with s (� ∪ �)+ t. Note that ❂ is well founded. The

following property is not difficult to prove:

2. if t � r then [α](r) � [α](t) for every assignment α.

However, [α](r) � [α](t) need not hold (consider e.g. t � e(t, t)) and as a con-
sequence the labelled distribution rules in R are not precedence terminating
with respect to ❂. Nevertheless, the precedence termination of the labelled non-
distribution rules in Rlab as well as the rules in Dec is obtained as in the proof of
Theorem 8. Hence any AC-compatible recursive path order ❂AC

rpo induced by the
precedence ❂ that is defined on terms with variables (cf. the proof of Lemma 1)
will orient these rules from left to right. Let l = C[e(x, y)] → e(C[x], C[y]) = r
be a distribution rule in R and let α be an arbitrary assignment. We claim that
labα(l) ❂AC

rpo labα(r). Since C �= �, root(labα(l)) ❂ e = root(labα(r)) by defini-
tion. It suffices to show that labα(l) ❂AC

rpo labα(C[x]) and labα(l) ❂AC
rpo labα(C[y]).

We have labα(C[x]) = C1[x], labα(C[y]) = C2[y] for some labelled contexts C1
and C2, and labα(l) = C1[e(x, y)] if α(x) � α(y) and labα(l) = C2[e(x, y)] other-
wise. We consider only the case α(x) � α(y) here. We have C1[e(x, y)] ❂AC

rpo C1[x]
by the subterm property of ❂AC

rpo. If α(x) = α(y) then C2[y] = C1[y] and
thus also C1[e(x, y)] ❂AC

rpo C2[y] by the subterm property. If α(x) � α(y) then
C1[e(x, y)] ❂AC

rpo C2[y] because the rewrite rule C1[e(x, y)] → C2[y] is prece-
dence terminating. This can be seen as follows. The label of the root symbol
of C1[e(x, y)] is [α](C[x]). Let q be the label of a function symbol in C2[y].
By construction q = [α](t) for some subterm t of C[y]. We obtain [α](C[y]) �
[α](t) = q from (2). The monotonicity of A yields [α](C[x]) � [α](C[y]). Hence
[α](C[x]) (� ∪ �)+ q as desired. We conclude that R/Elab is terminating. The-
orem 3 yields the termination of R/E . ��

The above theorem extends a similar result for TRSs in Zantema [23]. Ac-
tually, in [23] it is shown that R is totally terminating if distr(R) is totally
terminating. Our semantic labelling proof does not give total termination of
R/E . Nevertheless, the more complicated proof in [23] can be extended to deal
with AC(e), so R/E is in fact totally terminating.

In Middeldorp et al. [16] it is shown that for E = ∅ the right-linearity re-
quirement in Theorem 8 can be dropped if there are no distribution rules in R.
It remains to be seen whether this result is also true if E = AC(e). We note
that the semantic labelling proof in [16] does not extend to R/E because the in-
terpretation of e defined there, an arbitrary projection function, is inconsistent
with the commutativity of e.

Acknowledgements. We are grateful to the anonymous referees for their careful
reading. Aart Middeldorp is partially supported by the Grant-in-Aid for Scientific
Research C(2) 11680338 of the Ministry of Education, Science, Sports and Culture of
Japan. Jürgen Giesl is supported by the DFG under grant GI 274/4-1.

Equational Termination by Semantic Labelling 471

References

1. T. Arts and J. Giesl, Termination of Term Rewriting Using Dependency Pairs,
Theoretical Computer Science 236, pp. 133–178, 2000.

2. A. Ben Cherifa and P. Lescanne, Termination of Rewriting Systems by Polynomial
Interpretations and its Implementation, Science of Computer Programming 9(2),
pp. 137–159, 1987.

3. F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge University
Press, 1998.

4. N. Dershowitz, Termination of Rewriting, Journal of Symbolic Computation 3,
pp. 69–116, 1987.

5. N. Dershowitz and Z. Manna, Proving Termination with Multiset Orderings, Com-
munications of the ACM 22(8), pp. 465–476, 1979.

6. M.C.F. Ferreira, Dummy Elimination in Equational Rewriting, Proc. 7th RTA,
LNCS 1103, pp. 78–92, 1996.

7. M.C.F. Ferreira, D. Kesner, and L. Puel, Reducing AC-Termination to Termina-
tion, Proc. 23rd MFCS, LNCS 1450, pp. 239–247, 1998.

8. M.C.F. Ferreira and H. Zantema, Dummy Elimination: Making Termination Eas-
ier, Proc. 10th FCT, LNCS 965, pp. 243–252, 1995.

9. M.C.F. Ferreira and H. Zantema, Total Termination of Term Rewriting, Applicable
Algebra in Engineering, Communication and Computing 7, pp. 133–162, 1996.

10. A. Geser, Relative Termination, Ph.D. thesis, Universität Passau, 1990.
11. J.-P. Jouannaud and M. Muñoz, Termination of a Set of Rules Modulo a Set of

Equations, Proc. 7th CADE, LNCS 170, pp. 175–193, 1984.
12. D. Kapur and G. Sivakumar, A Total, Ground Path Ordering for Proving Termi-

nation of AC-Rewrite Systems, Proc. 8th RTA, LNCS 1232, pp. 142–155, 1997.
13. D. Kapur, G. Sivakumar, and H. Zhang, A New Method for Proving Termination

of AC-Rewrite Systems, Proc. 10th FSTTCS, LNCS 472, pp. 133–148, 1990.
14. C. Marché and X. Urbain, Termination of Associative-Commutative Rewriting by

Dependency Pairs, Proc. 9th RTA, LNCS 1379, pp. 241–255, 1998.
15. A. Middeldorp and H. Ohsaki, Type Introduction for Equational Rewriting, Acta

Informatica, 2000. To appear.
16. A. Middeldorp, H. Ohsaki, and H. Zantema, Transforming Termination by Self-

Labelling, Proc. 13th CADE, LNAI 1104, pp. 373–387, 1996.
17. A. Middeldorp, H. Zantema, Simple Termination of Rewrite Systems, Theoretical

Computer Science 175, pp. 127–158, 1997.
18. M. Nakamura and Y. Toyama, On Proving Termination by General Dummy Elim-

ination, Technical report of IEICE, COMP 98-58 (1998-11), pp. 57–64, 1998. In
Japanese.

19. A. Rubio, A Fully Syntactic AC-RPO, Proc. 10th RTA, LNCS 1631, pp. 133–147,
1999.

20. A. Rubio and R. Nieuwenhuis, A Total AC-Compatible Ordering Based on RPO,
Theoretical Computer Science 142, pp. 209–227, 1995.

21. J. Steinbach, Termination of Rewriting: Extensions, Comparison and Automatic
Generation of Simplification Orderings, Ph.D. thesis, Univ. Kaiserslautern, 1994.

22. Y. Toyama, Counterexamples to Termination for the Direct Sum of Term Rewriting
Systems, Information Processing Letters 25, pp. 141–143, 1987.

23. H. Zantema, Termination of Term Rewriting: Interpretation and Type Elimination,
Journal of Symbolic Computation 17, pp. 23–50, 1994.

24. H. Zantema, Termination of Term Rewriting by Semantic Labelling, Fundamenta
Informaticae 24, pp. 89–105, 1995.

On the Computational Interpretation
of Negation

Michel Parigot

Equipe de Logique Mathématique
case 7012, Université Paris 7

2 place Jussieu, 75251 Paris cedex 05, France

Abstract. We investigate the possibility of giving a computational in-
terpretation of an involutive negation in classical natural deduction. We
first show why this cannot be simply achieved by adding ¬¬A = A to
typed λ-calculus: the main obstacle is that an involutive negation can-
not be a particular case of implication at the computational level. It
means that one has to go out typed λ-calculus in order to have a safe
computational interpretation of an involutive negation.
We then show how to equip λµ-calculus in a natural way with an involu-
tive negation: the abstraction and application associated to negation are
simply the operators µ and [] from λµ-calculus. The resulting system is
called symmetric λµ-calculus.
Finally we give a translation of symmetric λ-calculus in symmetric λµ-
calculus, which doesn’t make use of the rule of µ-reduction of λµ-calculus
(which is precisely the rule which makes the difference between classical
and intuitionistic proofs in the context of λµ-calculus). This seems to
indicate that an involutive negation generates an original way of com-
puting. Because symmetric λµ-calculus contains both ways, it should be
a good framework for further investigations.

1 Introduction

A lot of efforts have been done in the past 10 years to give computational inter-
pretations of classical logic, starting from the work of Felleisen [5,6], Griffin [9]
and Murthy [15]. It has been shown that classical natural deduction allows to
modelize imperative features added to functional languages like Scheme, Com-
mon Lisp or ML. Two particular systems, λC-calculus ([5], [6]) and λµ-calculus
([17]), have been intensively studied and the relation between features of lan-
guages, rules of natural deduction, machines and semantics seems to be well
understood.

In the context of sequent calculus, several other computational interpreta-
tions of classical logic have been constructed following the spirit of Girard’s linear
logic [7]. It is often claimed in this context that computational interpretations
of negation in classical logic should be involutive, that is ¬¬A = A should be

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 472–484, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

On the Computational Interpretation of Negation 473

realised at the computational level. It is even sometimes claimed that this is the
distinguishing feature of classical logic. But the real computational effect of the
involutive character is not clear.

Systems coming from a natural deduction setting, like λC-calculus or λµ-
calculus, don’t have an involutive negation. There is only one exception: the
symmetric λ-calculus of Barbanera and Berardi [2,3], which is explicitely based
on an involutive negation, but whose concrete programming counterpart is not
so well understood.

This paper is devoted to the study of the possibility of having an involu-
tive negation in a computational interpretation of the usual natural deduction
system.

In section 2 we discuss in details the possiblity of adding ¬¬A = A to typed
λ-calculus (as a way of adding the classical absurdity rule to intuitionistic natural
deduction). We show that there are two obstacles: negation cannot be a partic-
ular case of implication and ⊥ cannot be an atomic type, contrary to the use
coming from intuitionistic logic. The fact that negation and implication need to
have different computational interpretations means that one has to go out typed
λ-calculus in order to have a safe computational interpretation of an involutive
negation.

In section 3 we show how to equip λµ-calculus in a natural way with an
involutive negation: the abstraction and application associated to negation are
simply the operators µ and [] from λµ-calculus. The resulting system is called
symmetric λµ-calculus.

In section 4 we give a translation of symmetric λ-calculus in symmetric λµ-
calculus, which doesn’t make use of the rule of µ-reduction of λµ-calculus (which
is precisely the rule which makes the difference between classical and intuitionis-
tic proofs in the context of λµ-calculus). This seems to indicate that an involutive
negation generates an original way of computing. Because symmetric λµ-calculus
contains both ways, it should be a good framework for further investigations.

In the sequel types are designated by letters A,B,C etc., while atomic types
are designated by P,Q,R, etc. Terms of λ-calculus are constructed upon variables
x, y, z using two rules:

(abstraction) if x is a variable and u a term, then λx.u is a term.
(application) if u and v are terms, then (u)v is a term.

Reduction of λ-calculus is denoted by � .

2 About Typed λ-Calculus and ¬¬A = A

Let us consider usual typed λ-calculus whose types are constructed from atomic
types using →, ¬ and ⊥ (⊥ is considered as an atomic type). We denote this
system by S→,¬,⊥. Judgements are expressions of the form Γ � u : A, where A is
a type, u is a term of λ-calculus and Γ is a context of the form x1 : A1, ..., xn : An.

The rules of derivation of S→,¬,⊥ are the following:

474 M. Parigot

x : A � x : A

Γ, x : A � u : B

Γ � λx.u : A→ B

Γ1 � u : A→ B Γ2 � v : A

Γ1, Γ2 � (u)v : B

Γ, x : A � u :⊥
Γ � λx.u : ¬A

Γ1 � u : ¬A Γ2 � v : A

Γ1, Γ2 � (u)v :⊥

We adopt in these rules an implicit management of contraction and weakening.
Contraction is obtained through the fact that contexts are considered as sets: in
a conclusion of a rule a context Γ1, Γ2 denotes the union of the contexts Γ1 and
Γ2. Weakening is obtained by the convention that in a premise of an introduction
rules, Γ, x : A denotes a context where x : A doesn’t necessary appear.
Note that in S→,¬,⊥, ¬A is identified with A→⊥. Indeed ¬ is often considered
as a derived connective whose definition is precisely ¬A = A→⊥.
Suppose now that we add the rule ¬¬A ⊆ A, i.e.

Γ � u : ¬¬A
Γ � u : A

which is equivalent (up to η-equivalence) to the trivial interpretation of the
absurdity rule

Γ, x : ¬A � u : ⊥
Γ � λx.u : A

We call the resulting system S∗→,¬,⊥. In this system one can prove
x : A � λk.(k)x : A as follows

k : ¬A � k : ¬A x : A � x : A

k : ¬A, x : A � (k)x :⊥
x : A � λk.(k)x : A

The term λk.(k)x will play a fundamental role in the examples of sections 2.1
and 2.2.
We show in the next sections that the system S∗→,¬,⊥ doesn’t satisfy normal-
isation and correctness properties. This means that the addition of the rule
¬¬A ⊆ A (and a fortiori the addition of ¬¬A = A) to S→,¬,⊥ destroys normal-
isation and correctness properties.

2.1 Normalisation

Proposition 1. Let θ = λf.λx.(λk.(k)f)(f)x. The term ((θ)θ)θ is typable in
S∗→,¬,⊥ and not normalisable.

Proof. Let C be a type. One defines Cn by induction on n by: C1 = C and
Cn+1 = Cn → Cn.
One proves that � θ : Cn+2, for each n ≥ 1. We have

f : Cn+1, x : Cn � (f)x : Cn

On the Computational Interpretation of Negation 475

Because f : Cn+1 � λk.(k)f : Cn+1, we have also

f : Cn+1, x : Cn � (λk.(k)f)(f)x : Cn

and thus � λf.λx.(λk.(k)f)(f)x : Cn+2, i.e � θ : Cn+2.
It follows that � ((θ)θ)θ : Cn+2, for each n ≥ 1: it suffices to type the first
occurence of θ with Cn+4, the second with Cn+3 and the third with Cn+2.
Now it is easy to check that ((θ)θ)θ is not normalisable because
θ = λf.λx.(λk.(k)f)(f)x and θ reduces in one step to θ1 = λf.λx.((f)x)f and
((θ1)θ1)θ1 has only one reduction sequence and reduces to itself in two steps as
follows:

((θ1)θ1)θ1 = ((λf.λx.((f)x)f)θ1)θ1

� (λx.((θ1)x)θ1)θ1

� ((θ1)θ1)θ1

2.2 Correctness

In S∗→,¬,⊥ types are not preserved by reduction in an essential way, which forbids
the derivation of correct programs from proofs. This loss of correctness can be
easily shown if one extends typed λ-calculus to a second order typed λ-calculus.
Let us take for example the simplest such system, due to Leivant [14] and widely
developed in [12,13], which allows to derive correct programs from equational
specifications of functions. In such a system one can easely prove that λx.λy.(x)y
is a program which computes the exponential yx. More precisely one has a term
e, βη-equivalent to λx.λy.(x)y such that:
� e : ∀u∀v(Nu→ (Nv → Nvu))

where Nx is the second order type ∀X(∀y(Xy → Xsy) → (X0 → Xx)) saying
that x is a natural number.
If one adds ¬¬A ⊆ A, one can prove that λx.λy.(y)x is a also a program which
computes the exponential yx. In other words, the calculus mixed up xy and yx!
This forbids obviously any hope to derive correct programs in this calculus.

Proof. Suppose � e : ∀u∀v(Nu→ (Nv → Nvu)) . Then
x : Nu � (e)x : Nv → Nvu and y : ¬(Nv → Nvu), x : Nu � (y)(e)x : ⊥ . It
follows x : Nu � λy.(y)(e)x : ¬¬(Nv → Nvu) and because ¬¬A ⊆ A,
x : Nu � λy.(y)(e)x : Nv → Nvu.
Therefore � λx.λy.(y)(e)x : Nu→ Nv → Nvu and
� λx.λy.(y)(e)x : ∀u∀v(Nu→ (Nv → Nvu)).
This means that λx.λy.(y)(e)x is also a program for yx. But λx.λy.(y)(e)x is
βη-equivalent to λx.λy.(y)x:

λx.λy.(y)(e)x ≡βη λx.λy.(y)(λx.λy.(x)y)x
≡βη λx.λy.(y)λy.(x)y
≡βη λx.λy.(y)x

476 M. Parigot

2.3 Discussion

The problem behind the examples of sections 2.1 and 2.2 appears clearly in the
following derivation:

k : ¬(A→ B) � k : ¬(A→ B) f : A→ B � f : A→ B

k : ¬(A→ B), f : A→ B � (k)f :⊥
f : A→ B � λk.(k)f : ¬¬(A→ B)

f : A→ B � λk.(k)f : A→ B x : A � x : A

f : A→ B, x : A � (λk.(k)f)x : B

This derivation shows that in S∗→,¬,⊥, the term (λk.(k)f)x is typable of type B
in the context f : A→ B, x : A. But (λk.(k)f)x reduces to the term (x)f , which
is not typable in the context f : A → B, x : A. Therefore typing in S∗→,¬,⊥ is
not preserved under reduction.
This derivation also shows that the addition of the trivial absurdity rule to typed
λ-calculus produces the effect of adding the following rule:

Γ1 � u : A→ B Γ2 � v : A

Γ1, Γ2 � (v)u : B

to the usual rule of elimination of implication:

Γ1 � u : A→ B Γ2 � v : A

Γ1, Γ2 � (u)v : B

The effect of choosing an involutive negation is indeed to induce a symetry at the
level of application. As the application associated to → cannot be symmetric,
the only possibility to get a safe calculus with an involutive negation is to keep
separated the computational interpretations of ¬ and →. The obvious way of
doing is to choose two different abstractions and two different applications.
As shown below there is one more obstacle to an involutive negation in the
context of typed λ-calculus.

2.4 The Role of ⊥
Suppose now that we restrict our system by forgetting →. The resulting system
S∗¬,⊥ has the following rules:

x : A � x : A

Γ x : A � u :⊥
Γ � λx.u : ¬A

Γ1 � u : ¬A Γ2 � v : A

Γ1, Γ2 � (u)v :⊥

and in addition the trivial absurdity rule:
Γ, x : ¬A � u : ⊥

Γ � λx.u : A

We show that normalisation fails for S∗¬,⊥.

On the Computational Interpretation of Negation 477

Proposition 2. Let ξ = λx.λf.(λk.(k)f)(f)x and y a variable.
The term (λk.(k)ξ)(ξ)y is typable in S∗¬,⊥ and not normalisable.

Proof. We first show that (λk.(k)ξ)(ξ)y is typable in S∗¬,⊥.
We have x : ⊥, f : ¬⊥ � (f)x : ⊥ and f : ¬⊥ � λk.(k)f : ¬⊥. Therefore

x : ⊥ , f : ¬⊥ � (λk.(k)f)(f)x : ⊥ and x : ⊥ � λf.(λk.(k)f)(f)x : ¬¬⊥.
Because ¬¬⊥ ⊆ ⊥, we also � λx.λf.(λk.(k)f)(f)x : ¬⊥ i.e. � ξ : ¬⊥. It follows
� λk.(k)ξ : ¬⊥ and y :⊥ � (λk.(k)ξ)(ξ)y :⊥ .
Let ξ′ = λx.λf.((f)x)f . The term (λk.(k)ξ)(ξ)y reduces to the term ((ξ′)y)ξ′

which has only one reduction sequence and reduces in two steps to itself as
follows:

((ξ′)y)ξ′ = ((λx.λf.((f)x)f)y)ξ′

� (λf.((f)y)f)ξ′

� ((ξ′)y)ξ′

In order to type a non normalisable term in the system S∗¬,⊥ we have made an
essential use of the fact that ⊥ is an atomic type of the system, which can be
used to built other type (we used the type ¬⊥). The problem lies in the confusion
between two uses of ⊥: as indicating a contradiction in a proof and as an atomic
type. Therefore in order to get normalising calculus with an involutive negation
we have to forbid ⊥ as an atomic type (it can be a “special” type, which is
outside the system).
Note that the two obstacles to an involutive computational interpretation of
negation are completely different. In particular, the examples of sections 2.1 and
2.2 do not use the fact that ⊥ is an atomic type of the system: they hold for the
system S∗→,¬, where ⊥ is used only for indicating a contradiction in a proof.

3 Typed λµ-Calculus with ¬¬A = A

In this section, we extend typed λµ-calculus in a natural way with an involutive
negation: the abstraction and application associated to negation are simply the
operator µ and [] from λµ-calculus.

3.1 λµ-Calculus

Typed λµ-calculus is a simple computational interpretation of classical logic
introduced in [17]. It has both a clear interpretation in terms of environment
machines and a clear semantics in terms of continuations [10,11,20].
The λµ-calculus has two kinds of variables: the λ-variables x, y, z, ..., and the
µ-variables α, β, γ, ... Terms are defined inductively as follows:

- x is a term, for x a λ-variable;
- λx.u is a term, for x a λ-variable and u a term;
- (t)u is a term, for t and u terms;
- µα.[β]t is a term, for t a term and α, β µ-variables.

Expressions of the form [β]t, where β is µ-variables and t a term, are called
named terms. They correspond to type ⊥ in typed λµ-calculus.

478 M. Parigot

Typed λµ-calculus is a calculus for classical logic, enjoying confluence and strong
normalisation [17,18], which doesn’t make use of negation. Types are build from
atomic types using → only. Type ⊥ is not needed, but is added for convenience
as a special type denoting a contradiction in a proof (in the context of typed
λµ-calculus one could also consider it as an atomic type). Judgments have two
contexts: one to the left for λ-variables and one to the right for µ-variables. In
order to make the symmetric extension easier to understand, we adopt here a
presentation where the right context is replaced by a negated left context. Of
course, this doesn’t change the calculus; in particular negation is not needed
inside types.
Judgments are expressions of the form Γ ; ∆ � u : A, where A is a type, u is
a term of λµ-calculus, Γ is a context of the form x1 : A1, ..., xn : An and ∆ a
context of the form α1 : ¬A1, ..., αn : ¬An.
The typing rules of λµ-calculus are the following:

x : A � x : A

Γ, x : A; ∆ � u : B

Γ ; ∆ � λx.u : A→ B

Γ1; ∆1 � u : A→ B Γ2; ∆2 � v : A

Γ1, Γ2; ∆1, ∆2 � (u)v : B

Γ ; ∆, α : ¬A � u :⊥
Γ ; ∆ � µα.u : A

Γ ; ∆ � u : A

Γ ; ∆, α : ¬A � [α]u :⊥
As for typed λ-calculus we adopt in these rules an implicit management of con-
traction and weakening, with the same conventions as in section 2.
The λµ-calculus has two fundamental reduction rules:

(R1) (λx.u)v � u[v/x]

(R2) (µα.u)v � µα′.u[[α′](w)v/[α]w]

and in addition simplification rules (like η-rule of λ-calculus):

(S1) λx.(u)x � u

(S2) µα.[α]u � u

Simplification rules are subject to the following restrictions: in (S1), x has no
free occurences in u; in (S2), α has no free occurences in u.
In (R2), the term u[[α′](w)v/[α]w] is defined as the result of substituting to each
subterm of u of the form [α]w, the new subterm [α′](w)v. Note that if α has
type ¬(A→ B), then α′ has type ¬B.

3.2 Symmetric λµ-Calculus

We introduce an extension of λµ-calculus with an involutive negation, called
symmetric λµ-calculus. We simply take the abstraction µ and the application []
of λµ-calculus as beeing the new abstraction and application corresponding to
the computational content of this involutive negation.

On the Computational Interpretation of Negation 479

Types of symmetric λµ-calculus are defined as follows:

A := P | ¬P |A→ B | ¬(A→ B)

where P denotes atomic types.
The negation ¬ is extended to an involutive negation on types in the obvious
way.
For convenience, one adds a special type ⊥ . For the reason explained in section
2.4 , ⊥ doesn’t belong to the set of atomic types.
Note that an involutive negation, invites to confuse the rule of introduction of
negation

Γ, x : A � u : ⊥
Γ � µx.u : ¬A

and the absurdity rule
Γ, x : ¬A � u : ⊥

Γ � µx.u : A

and also to have only one kind of variable.
This is this drastic solution that we adopt with symmetric λµ-calculus, because it
should better capture the essence of an involutive negation, but more permissive
ones might also be interesting at the computational level.

Terms of Symmetric λµ-Calculus.

Symmetric λµ-calculus has only one kind of variables. Terms are defined induc-
tively as follows:

- x is a term, for x a λ-variable;
- λx.u is a term, for x a variable and u a term;
- (t)u is a term, for t and u terms;
- µx.[u]v is a term, for x a variable and u, v terms.

Expressions of the form [u]v, where u, v are terms, are called named terms. They
correspond to type ⊥ in typed symmetric λµ-calculus.

Typing Rules of Symmetric λµ-Calculus.

x : A � x : A

Γ, x : A � u : B

Γ � λx.u : A→ B

Γ1 � u : A→ B Γ2 � v : A

Γ1, Γ2 � (u)v : B

Γ, x : A � u :⊥
Γ � µx.u : ¬A

Γ1 � u : ¬A Γ2 � v : A

Γ1, Γ2 � [u]v :⊥
As for typed λ-calculus one adopts in these rules an implicit management of
contraction and weakening, with the same conventions as in section 2.

480 M. Parigot

Reduction Rules of Symmetric λµ-calculus.

The symmetric λµ-calculus has the following reduction rules:

(R1) (λx.u)v � u[v/x]

(R2) (µx.u)v � µx′.u[µz.[x′](z)v/x]

(R3) [µx.u]v � u[v/x]

(R4) [u]µx.v � v[u/x]

and in addition simplification rules (like η-rule of λ-calculus):

(S1) λx.(u)x � u

(S2) µx.[x]u � u

(S3) µx.[u]x � u

Simplification rules are subject to the following restriction: in (S1), (S2), (S3), x
has no free occurences in u.
Symmetric λµ-calculus is clearly an extension of λµ-calculus. Rule (R1) is the
usual β-reduction of λ-calculus. Because we make a more liberal use of variables
in symmetric λµ-calculus, the rule (R2) of µ-reduction is stated in a more gen-
eral setting than the corresponding rule of λµ-calculus, but his effect is exactly
the same when restricted to terms of λµ-calculus.
In λµ-calculus the substituted variable x (which is a µ-variable) always occurs
in a subterm [x]w and the result of the substitution is in this case [µz.[x′](z)v]w
which reduces to [x′](w)v. This corresponds exactly to the substitution of the
rule (R2) of λµ-calculus.
The reduction rule (R2) of symmetric λµ-calculus is simpler to understand with
typed terms. Suppose that one reduces the term (µx¬(A→B).u⊥)vA. One re-
places in u the occurences of x¬(A→B) by a canonical term of type ¬(A → B)
which is µzA→B .[x′¬B](zA→B)vA. This term can be thought as a pair 〈vA, x′¬B〉.
The two new rules are the rules (R3) and (R4), which correspond respectively to
a kind β-reduction for µ and its symmetric, are exactly those of the symmetric
λ-calculus of Barbanera and Berardi [2].
Note that the rule (R2) introduces a “communication” between→ and ¬, which
has no real equivalent in the symmetric λ-calculus.
Because of its symmetric nature (appearing in rules (R3) and (R4)), symmetric
λµ-calculus is essentially not confluent. As in symmetric λ-calculus, this non
confluence could be used in positive way to derive symmetric programs.
Indeed symmetric λµ-calculus contains two different ways of computing with
classical proofs: the one of λµ-calculus, based on the specific rule (R2) of µ-
reduction, which is well understood in terms of machines and continuations; the
one of symmetric λ-calculus, based on rules (R3) and (R4), which is of a different
computational nature. The embedding of λµ-calculus in symmetric λµ-calculus
is obvious and doesn’t make use of (R3) and (R4). In the next section we develop

On the Computational Interpretation of Negation 481

an embedding of symmetric λ-calculus in symmetric λµ-calculus, which doesn’t
make use of (R2).

4 Interpretation of Symmetric λ-Calculus
in Symmetric λµ-Calculus

In this section, we give a translation of symmetric λ-calculus in symmetric λµ-
calculus, which doesn’t make use of rule (R2): reduction involves only the rules
(R1), (R3) and (R4).

4.1 The Symmetric λ-Calculus of Barbanera and Berardi

The types of the system are defined by:

A := P |¬P |A ∧B|A ∨B

where P denotes atomic types.
An involutive negation on types is defined as follows:
¬(A) = ¬A
¬(¬A) = A
¬(A ∧B) = ¬A ∨ ¬B
¬(A ∨B) = ¬A ∧ ¬B

There is also a special type ⊥ , which doesn’t belong to the set of atomic types.

Derivation Rules of Symmetric λ-Calculus

x : A � x : A

Γ � u : A ∆ � v : B

Γ,∆ � 〈u, v〉 : A ∧B
∧−intro

Γ � ui : Ai
Γ � σi(ui) : A1 ∨A2

∨−intro (i=1,2)

Γ, x : A � u : ⊥
Γ � λx.u : ¬A ¬−intro

Γ � u : ¬A ∆ � v : A

Γ,∆ � u ∗ v : ⊥ ¬−elim

As for typed λ-calculus one adopts in these rules an implicit management of
contraction and weakening, with the same conventions as in section 2.

Reduction Rules of Symmetric λ-Calculus

(β) λx.u ∗ v � u[v/x]

(β⊥) u ∗ λx.v � v[u/x]

(π) 〈u1, u2〉 ∗ σi(vi) � ui ∗ vi

(π⊥) σi(vi) ∗ 〈u1, u2〉 � vi ∗ ui

482 M. Parigot

Symmetric λ-calculus is obviously not confluent but enjoys strong normalisa-
tion [2,3]. Moreover its non-confluence can be used in a positive way to derive
symmetric programs [4].

4.2 Interpretation of the Symmetric λ-Calculus
in the Symmetric λµ-Calculus

Connectives ∧ and ∨ are translated as follows:
A ∨B = ¬A→ B
A ∧B = ¬(A→ ¬B)

The rules ∧-intro, ∨-intro, ¬-intro and ¬-elim are translated as follows:
∧-intro

z : A→ ¬B � z : A→ ¬B Γ1 � u : A

Γ1, z : A→ ¬B � (z)u : ¬B Γ2 � v : B

Γ1, Γ2, z : A→ ¬B � [(z)u]v :⊥
Γ1, Γ2 � µz.[(z)u]v : ¬(A→ ¬B)

∨-intro1
z : ¬A � z : ¬A Γ � u : A

Γ, z : ¬A � [z]u : ⊥
Γ, z : ¬A � µd.[z]u : B

Γ � λz.µd.[z]u : ¬A→ B

∨-intro2
z : ¬B � z : ¬B Γ � u : B

Γ, z : ¬B � [z]u : ⊥
Γ � µz.[z]u : B

Γ � λd.µz.[z]u : ¬A→ B

¬-intro
Γ, x : A � u : ⊥
Γ � µx.u : ¬A

¬-elim
Γ1 � u : ¬A Γ2 � v : A

Γ1, Γ2 � [u]v : ⊥

Let T be the translation defined inductively as follows:
T (x) = x
T (〈u, v〉) = µz[(z)T (u)]T (v)
T (σ1(u) = λz.µd.[z]T (u)
T (σ2(u) = λd.µz.[z]T (u)
T (λx.u) = µx.T (u)
T (u ∗ v) = [T (u)]T (v)

On the Computational Interpretation of Negation 483

As shown before, T preserves types and it is easy to check that T is compatible
with substitution, i.e. T (u[v/x]) = T (u)[T (v)/x]. We prove now that T preserves
reduction, in a way which doesn’t make use of rule (R2).

T ({λx.u} ∗ v) = [µx.T (u)]T (v)
� T (u)[T (v)/x]
= T (u[v/x])

T (〈u1, u2〉 ∗ σ1(v)) = [µz.[(z)T (u1)]T (u2)]λz.µd.[z]T (v)
� [(λz.µd.[z]T (v))T (u1)]T (u2)
� [µd.[T (u1)]T (v)]T (u2)
� [T (u1)]T (v)
= T (u1 ∗ v)

T (〈u1, u2〉 ∗ σ2(v)) = [µz.[(z)T (u1)]T (u2)]λd.µz.[z]T (v)
� [(λd.µz.[z]T (v))T (u1)]T (u2)
� [µz.[z]T (v)]T (u2)
� [T (u2)]T (v)
= T (u2 ∗ v)

The symmetric rules are preserved in the same way.

References

1. H. Barendregt : The Lambda-Calculus. North-Holland, 1981.
2. F. Barbanera, S. Berardi : A symmetric lambda-calculus for classical program

extraction. Proceedings TACS’94, Springer LNCS 789 (1994).
3. F. Barbanera, S. Berardi : A symmetric lambda-calculus for classical program

extraction. Information and Computation 125 (1996) 103-117.
4. F. Barbanera, S. Berardi, M. Schivalocchi : “Classical” programming-with-proofs

in lambda-sym: an analysis of a non-confluence. Proc. TACS’97.
5. M. Felleisen, D.P. Friedman, E. Kohlbecker, B. Duba : A syntactic theory of se-

quential control. Theoretical Computer Science 52 (1987) pp 205-237.
6. M. Felleisen, R. Hieb : The revised report on the syntactic theory of sequential

control and state. Theoretical Computer Science 102 (1994) 235-271.
7. J.Y. Girard : Linear logic. Theoretical Computer Science. 50 (1987) 1-102.
8. J.Y. Girard, Y. Lafont, and P. Taylor : Proofs and Types. Cambridge University

Press, 1989.
9. T. Griffin : A formulae-as-types notion of control. Proc. POPL’90 (1990) 47-58.
10. M. Hofmann, T. Streicher : Continuation models are universal for λµ-calculus.

Proc. LICS’97 (1997) 387-397.
11. M. Hofmann, T. Streicher : Completeness of continuation models for λµ-calculus.

Information and Computation (to appear).
12. J.L. Krivine, M. Parigot: Programming with proofs. J. of Information Processing

and Cybernetics 26 (1990) 149-168.
13. J.L. Krivine : Lambda-calcul, types et modèles. Masson, 1990.
14. D. Leivant : Reasoning about functional programs and complexity classes associ-

ated with type disciplines. Proc. FOCS’83 (1983) 460-469.
15. C. Murthy : Extracting Constructive Content from Classical Proofs. PhD Thesis,

Cornell, 1990.

484 M. Parigot

16. M. Parigot : Free Deduction: an Analysis of ”Computations” in Classical Logic.
Proc. Russian Conference on Logic Programming, 1991, Springer LNCS 592 361-
380.

17. M. Parigot : λµ-calculus: an Algorithmic Interpretation of Classical Natural De-
duction. Proc. LPAR’92, Springer LNCS 624 (1992) 190-201.

18. M. Parigot : Strong normalisation for second order classical natural deduction,
Proc. LICS’93 (1993) 39-46.

19. C.H.L. Ong, C.A. Stewart : A Curry-Howard foundation for functional computa-
tion with control. Proc. POPL’97 (1997)

20. P. Selinger : Control categories and duality: on the categorical semantics of lambda-
mu calculus, Mathematical Structures in Computer Science (to appear).

From Programs to Games:
Invariance and Safety for Bisimulation

Marc Pauly

Center for Mathematics and Computer Science (CWI)
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

pauly@cwi.nl

Abstract. Bisimulation is generalized from process models to game
models which are described using Game Logic (GL), a logic which ex-
tends Propositional Dynamic Logic by an additional operator dual which
allows for the construction of complex 2-player games. It is shown that
bisimilar states satisfy the same GL-formulas (invariance), and that an
atomic bisimulation can be lifted to non-atomic GL-games (safety). Over
process models, GL forms a highly expressive fragment of the modal µ-
calculus, and within first-order logic, the game operations of GL are
complete: they suffice to construct all first-order definable games which
are monotonic and safe for bisimulation.

1 Introduction

Among the different notions of process equivalence one can consider, bisimula-
tion has received much attention especially within the logic community. From
the perspective of modal logic, there is a tight correspondence between bisimi-
lar states of a process (Kripke model) and states which make the same modal
formulas true: Bisimilar states satisfy the same modal formulas, and for cer-
tain classes of Kripke models (e.g. finite models), the converse holds as well.
This bisimulation-invariance result makes bisimulation an attractive notion of
equivalence between Kripke models, since it matches the expressive power of
the modal language rather well. On the other hand, bisimulation has provided
a characterization of the modal fragment of first-order logic (FOL). Modal for-
mulas can be translated into formulas of FOL, and it turns out (see [5] and
lemma 2) that the modal fragment of FOL is precisely its bisimulation-invariant
fragment.
This line of investigation and the two main results mentioned can be extended

from modal logic to Propositional Dynamic Logic (PDL) [12,16], a logic where
the modalities are indexed by programs. Programs can be constructed from
atomic programs using a number of program operations such as sequential com-
position, iteration, etc., and like modal formulas, PDL-formulas are bisimulation-
invariant. Secondly, iteration-free PDL-programs can be translated into FOL as
well, raising the question how to characterize the FOL-fragment which (trans-
lations of) PDL-programs define. In [6], such a result has been obtained: The
program-fragment of FOL can be characterized as its bisimulation-safe fragment,

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 485–496, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

486 M. Pauly

where roughly speaking a program is safe for bisimulation if it preserves bisim-
ulation. This result shows that if we take bisimulation as our notion of process
equivalence and FOL as our language, the program operations provided by PDL
are complete, i.e. no additional program operations will allow us to construct
new programs. This result has been extended to monadic second-order logic in
[13].
In this paper, we carry the investigation one step further, moving from non-

deterministic programs (i.e. 1-player games) to 2-player games. In the program
specification literature, such a move has been useful to obtain intermediate non-
implementable specifications which contain demonic as well as angelic choices
[2,3]. A formalism such as the refinement calculus models programs and speci-
fications as predicate transformers, i.e. functions which map postconditions to
weakest preconditions. This notion is general enough to model games as well as
programs, and it is the semantic foundation of Game Logic (GL), introduced in
[18]. In GL, the program operations of PDL are extended with a new construct
called dual. In the terminology of games, this operation introduces a role switch
between the players.
After introducing game models and GL in the next section, section 3 intro-

duces bisimulation for game models. The first main result of this paper (proposi-
tion 1) shows that GL-formulas are invariant and GL-operations safe for bisim-
ulation. Starting from section 4, we focus on a special class of models, Kripke
models. For Kripke models, the generalized notion of bisimulation coincides with
standard bisimulation and GL becomes a fragment of the modal µ-calculus which
can express properties requiring multiple nested fixpoints. Section 5 is devoted to
the second main result (proposition 2): Over Kripke models, iteration-free games
(like programs) can be translated into FOL, thus defining the game-fragment of
FOL. The result demonstrates that this fragment is precisely the monotonic
bisimulation-safe fragment of FOL.

2 Syntax and Semantics of Game Logic

GL is a logic to reason about winning strategies in strictly competitive deter-
mined games between two players who we shall call Angel and Demon. For a
game expression γ, the formula 〈γ〉ϕ will express that Angel has a strategy in
game γ for achieving ϕ, i.e. he can guarantee that the terminal position reached
after γ has been played satisfies ϕ. Similarly, [γ]ϕ will express that Demon has
a strategy in game γ for achieving ϕ.

GL provides a number of operations which allow for the construction of
complex games: A test game ϕ? consists of checking through a neutral arbiter
whether proposition ϕ holds at that state. If it does, nothing happens (i.e. an-
other game can be played) and otherwise, Demon wins. The game γ1 ∪ γ2 gives
Angel the choice of playing γ1 or γ2. The sequential composition γ1; γ2 of two
games consists of first playing γ1 and then γ2, and in the iterated game γ∗, Angel
can choose how often to play γ, possibly not at all. More precisely, after each

From Programs to Games: Invariance and Safety for Bisimulation 487

play of γ, Angel can decide whether or not to play γ another time, but γ may
not be played infinitely often (in that case, Demon wins).
In order to introduce interaction between the players, GL adds an operator

dual for role interchange: Playing the dual game γd is the same as playing γ with
the roles of the players reversed, i.e. any choice made by Angel in γ will be made
by Demon in γd and vice versa.
Formally, the language of GL consists of two sorts, games and propositions.

Given a set of atomic games Γ0 and a set of atomic propositions Φ0, games γ
and propositions ϕ can have the following syntactic forms, yielding the set of
games Γ and the set of propositions/formulas Φ:

γ := g | ϕ? | γ; γ | γ ∪ γ | γ∗ | γd

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 〈γ〉ϕ
where p ∈ Φ0 and g ∈ Γ0. As usual, we define 	 := ¬⊥, [γ]ϕ := ¬〈γ〉¬ϕ,
ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), ϕ→ ψ := ¬ϕ ∨ ψ and ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ).
As for the semantics, given a signature (Φ0, Γ0) of atomic propositions and

atomic games, a game model (also called neighborhood model or minimal model,
see [9]) I = (S, {Ng| g ∈ Γ0}, {Vp|p ∈ Φ0}), consists of a set of states S, a
valuation for each propositional letter p ∈ Φ0 such that Vp ⊆ S, and a function
Ng : P(S)→ P(S) for every atomic game g ∈ Γ0. We require monotonicity, i.e.
X ⊆ Y implies Ng(X) ⊆ Ng(Y) for all g ∈ Γ0.
Intuitively, we can think of every state s as being associated with a 2-player

game tree for every atomic game g ∈ Γ0. Every terminal position of such a
game tree is associated with a state t ∈ S. Since generally both players will have
choices in the game, a player will usually not be able to force a particular state
to come about at the end of the game. Rather, all he can do is force the outcome
to lie in a particular set Y ⊆ S, and the game model specifies the sets of states
which Angel can force, i.e. s ∈ Ng(Y) holds if Angel has a strategy for ending up
at a terminal position whose associated state is in Y . Given this interpretation,
the monotonicity requirement is a natural one: If Angel has a strategy to bring
about a state in Y , then that strategy trivially brings about a state in Y ′ for
every Y ′ ⊇ Y .
The semantics of formulas and games is then defined by simultaneously ex-

tending V and N to non-atomic cases:

V⊥ = ∅ Nα;β(X) = Nα(Nβ(X))
V¬ϕ = Vϕ Nαd(X) = Nα(X)
Vϕ∨ψ = Vϕ ∪ Vψ Nα∪β(X) = Nα(X) ∪Nβ(X)
V〈γ〉ϕ = Nγ(Vϕ) Nϕ?(X) = Vϕ ∩X

Nα∗(X) =
⋂{Y ⊆ S|X ∪Nα(Y) ⊆ Y }

By induction, all Nα can be shown to be monotonic, and hence the operation
fα,X(Y) = X ∪Nα(Y) will be monotonic as well. Thus, by the Knaster-Tarski
theorem, Nα∗(X) is the least fixpoint of fα,X(Y):

Nα∗(X) = µY.fα,X(Y) = µY.X ∪Nα(Y)

488 M. Pauly

i.e. fα,X(Nα∗(X)) = Nα∗(X) and for every Z ⊆ S, if fα,X(Z) = Z then
Nα∗(X) ⊆ Z.
Finally, we say that ϕ is true in I = (S, {Ng|g ∈ Γ0}, {Vp|p ∈ Φ0}) at s ∈ S

(notation: I, s |= ϕ) iff s ∈ Vϕ. Some more standard terminology: ϕ is valid in I
(denoted as I |= ϕ) iff Vϕ = S, and ϕ is valid (denoted as |= ϕ) iff it is valid in all
models. ϕ and ψ are equivalent iff |= ϕ↔ ψ. Lastly, ψ is a (global) consequence
of ϕ (denoted as ϕ |= ψ) iff for all models I, if I |= ϕ then I |= ψ.

3 Bisimulation for Game Models

Bisimulation provides an answer to the question when two models or processes
should be considered the same. Different criteria may come to mind depend-
ing on what aspects of the models one is interested in. If only interested in
observable properties of processes, one may choose for finite-trace equivalence,
but if interested in mathematical structure, one may choose isomorphism. These
equivalence notions (see e.g. [7] for an overview) partition the class of models
into equivalence classes, and one may order equivalence notions according to
how fine-grained the induced partition is. While finite-trace equivalence is often
considered as too coarse and isomorphism as too fine, bisimulation is situated
between these two extremes.
As it stands, bisimulation cannot be applied to the game models of GL since

these models are not processes. As will be discussed in the next section, the
following definition generalizes the standard notion of bisimulation to the more
general models used for GL. In a different context, this modification of bisimu-
lation has been proposed to deal with concurrency in [4].

Definition 1 (Bisimulation). Let I = (S, {Ng|g ∈ Γ0}, {Vp|p ∈ Φ0}) and
I ′ = (S′, {N ′g|g ∈ Γ0}, {V ′p |p ∈ Φ0}) be two models. Then ∼ ⊆ S × S′ is a
bisimulation between I and I ′ iff for any s ∼ s′ we have

1. For all p ∈ Φ0: s ∈ Vp iff s′ ∈ V ′p
2. For all g ∈ Π0: If s ∈ Ng(X) then ∃X ′ ⊆ S′ such that s′ ∈ N ′g(X ′) and
∀x′ ∈ X ′ ∃x ∈ X : x ∼ x′.

3. For all g ∈ Π0: If s′ ∈ N ′g(X ′) then ∃X ⊆ S such that s ∈ Ng(X) and
∀x ∈ X ∃x′ ∈ X ′ : x ∼ x′.

Two states s ∈ S and s′ ∈ S′ are bisimilar iff there is a bisimulation ∼ such
that s ∼ s′. If we want to make the underlying models explicit, we will write
(I, s) ∼ (I ′, s′).
The notions of invariance and safety generalize the bisimulation clauses from

atomic to general formulas and games.

Definition 2 (GL-Invariance & Safety). A GL-formula ϕ is invariant for
bisimulation if for all models I and I ′, (I, s) ∼ (I ′, s′) implies I, s |= ϕ ⇔
I ′, s′ |= ϕ. A GL-game γ is safe for bisimulation if for all models I and I ′,
(I, s) ∼ (I ′, s′) implies (1) if s ∈ Nγ(X) then ∃X ′ ⊆ S′ such that s′ ∈ N ′γ(X ′)

From Programs to Games: Invariance and Safety for Bisimulation 489

and ∀x′ ∈ X ′ ∃x ∈ X : x ∼ x′, and (2) if s′ ∈ N ′γ(X ′) then ∃X ⊆ S such that
s ∈ Nγ(X) and ∀x ∈ X ∃x′ ∈ X ′ : x ∼ x′.
As an equivalence notion for game models, bisimulation requires that if Angel

can guarantee ϕ in game g in one model, he must be able to guarantee something
at least as strong in the other model. If this were not the case, the two models
could be distinguished by playing g, since Angel can achieve more in one model
than in the other. The following result shows that GL is sound for bisimulation
equivalence, i.e. not too expressive: Bisimilar states cannot be distinguished by
formulas of the language (invariance), and the game constructions provided do
not produce games which can distinguish bisimilar states either (safety).

Proposition 1. All GL-formulas are invariant for bisimulation, and all GL-
games are safe for bisimulation.

Proof. We prove invariance and safety by simultaneous induction on Φ and
Γ . By definition, atomic games (formulas) are safe (invariant) for bisimula-
tion.Consider two models I = (S, {Ng|g ∈ Γ0}, {Vp|p ∈ Φ0}) and I ′ = (S′, {N ′g|g
∈ Γ0}, {V ′p |p ∈ Φ0}). For non-atomic formulas, the boolean cases are immedi-
ate and we shall only show one direction of invariance for 〈γ〉ϕ. If I, s |= 〈γ〉ϕ,
s ∈ Nγ(Vϕ) and so (by safety induction hypothesis for γ) there is some X ′ such
that s′ ∈ N ′γ(X ′) and for all x′ ∈ X ′ there is some x ∈ Vϕ such that x ∼ x′.
By invariance induction hypothesis for ϕ, this means that X ′ ⊆ V ′ϕ, and so by
monotonicity, s′ ∈ N ′γ(V ′ϕ), which establishes that I ′, s′ |= 〈γ〉ϕ.
As for proving that the game constructions of GL are safe for bisimulation,

consider first the case of test ϕ?: If s ∈ Nϕ?(X) = Vϕ ∩X, let X ′ := {x′|∃x ∈
X : x ∼ x′}, where ∼ denotes the bisimulation as usual. Then s′ ∈ N ′ϕ?(X ′) by
induction hypothesis (1.) for ϕ, and for all x′ ∈ X ′ there is some x ∈ X such
that x ∼ x′, simply by definition of X ′.
For union, if s ∈ Nα∪β(X) we can assume w.l.o.g. that s ∈ Nα(X) and apply

the induction hypothesis, i.e. for some X ′, we have s′ ∈ N ′α(X ′) and hence also
s′ ∈ N ′α∪β(X ′).
For composition, suppose that s ∈ Nα(Nβ(X)). Using the induction hypoth-

esis for α, there is some Y ′ such that s′ ∈ N ′α(Y ′) and for all y′ ∈ Y ′ there is
a u ∈ Nβ(X) such that u ∼ y′. Now let X ′ := {x′|∃x ∈ X : x ∼ x′}. We must
show that s′ ∈ N ′α(N ′β(X ′)). For this, it suffices by monotonicity to show that
Y ′ ⊆ N ′β(X ′). So suppose that y′ ∈ Y ′, i.e. for some u ∈ Nβ(X) we have u ∼ y′.
Using the induction hypothesis for β, there is some V ′ such that y′ ∈ N ′β(V ′)
and for all v′ ∈ V ′ there is some x ∈ X such that x ∼ v′. Hence V ′ ⊆ X ′ and so
by monotonicity, y′ ∈ N ′β(X ′)
Dual: Suppose s ∈ Nαd(X), i.e. s �∈ Nα(X). Again, let X ′ := {x′|∃x ∈ X :

x ∼ x′}. It is sufficient to show that s′ �∈ N ′α(X ′). Suppose by reductio the
contrary. Then there is some Z with s ∈ Nα(Z) and for all z ∈ Z there is some
x′ �∈ X ′ such that z ∼ x′. From this it follows that Z ⊆ X, so by monotonicity
s ∈ Nα(X), a contradiction.
Iteration: Let X ′ := {x′|∃x ∈ X : x ∼ x′} and Z := {z|∀z′ : z ∼ z′ ⇒ z′ ∈

N ′α∗(X ′)}. It is sufficient to show that Nα∗(X) ⊆ Z, and given the definition of

490 M. Pauly

Nα∗(X) as a least fixpoint, it suffices to show that X ∪Nα(Z) ⊆ Z. Supposing
that x ∈ X and for some x′ we have x ∼ x′, we have x′ ∈ X ′ ⊆ N ′α∗(X ′).
On the other hand, suppose that x ∈ Nα(Z) and x ∼ x′. Then by induction
hypothesis, there is some Z ′ such that x′ ∈ N ′α(Z ′) and for all z′ ∈ Z ′ there is
some z ∈ Z such that z ∼ z′. But then Z ′ ⊆ N ′α∗(X ′), and so by monotonicity
x′ ∈ N ′α(N ′α∗(X ′)) ⊆ N ′α∗(X ′) which completes the proof. ��

4 Games on Kripke Models I: µ-Calculus

In the remaining part of this paper, we shall look at a special class of game
models, namely Kripke models. A Kripke model I = (S, {Rg|g ∈ Γ0}, {Vp|p ∈
Φ0}) differs from a game model in providing an accessibility relation Rg ⊆ S×S
for every atomic game g ∈ Γ0. In Kripke models, atomic games are particularly
simple since they are 1-player games. For each atomic game, all choices within
that game are made by Angel so that Angel has complete freedom in determining
which terminal position will be reached. Thus, sRgt will hold if when playing
game g at state s, t is a possible final state. To obtain the corresponding game
model from a Kripke model, let Ng(X) = {s ∈ S|∃t ∈ X : sRgt}. Under this
correspondence, one can easily verify that for Kripke models, definition 1 indeed
reduces to the following standard notion of bisimulation:

Definition 3 (Bisimulation for Kripke models). Let I = (S, {Rg|g ∈ Γ0},
{Vp|p ∈ Φ0}) and I ′ = (S′, {R′g|g ∈ Γ0}, {V ′p |p ∈ Φ0}) be two Kripke models.
Then ∼⊆ S × S′ is a bisimulation between I and I ′ iff for any s ∼ s′ we have

1. For all p ∈ Φ0: s ∈ Vp iff s′ ∈ V ′p
2. For all g ∈ Γ0: If sRgt, then there is a t′ ∈ S′ such that s′R′gt

′ and t ∼ t′.
3. For all g ∈ Γ0: If s′R′gt′, then there is a t ∈ S such that sRgt and t ∼ t′.
Two well-known languages for describing Kripke models are PDL and the

modal µ-calculus. The language of PDL differs from the language of GL only in
not having the dual-operator available. Since this operator was responsible for
introducing interaction between the players, all games which can be constructed
within PDL will be 1-player games, i.e. nondeterministic programs.
The µ-calculus introduces fixpoint operators into the modal language, yield-

ing a logic which is strictly more expressive than PDL (see [15]). Besides proposi-
tional constants Φ0, the language contains propositional variablesX,Y, . . . ∈ V ar
and the set of formulas is defined inductively as

ϕ := ⊥ | p | X | ¬ϕ | ϕ ∨ ϕ | 〈γ0〉ϕ | µX.ϕ
where p ∈ Φ0, γ0 ∈ Γ0, X ∈ V ar and in µX.ϕ, X occurs strictly positively in ϕ,
i.e. every free occurrence of X in ϕ occurs under an even number of negations.
Note that in contrast to GL, modalities are always atomic in the µ-calculus.
Formulas of the µ-calculus are interpreted over Kripke models as before (using

the corresponding game model), but a variable assignment v : V ar → P(S) is
needed to interpret variables. The semantics of the fixpoint formula is given by

V vµX.ϕ =
⋂
{T ⊆ S|V v[X:=T]

ϕ ⊆ T}

From Programs to Games: Invariance and Safety for Bisimulation 491

where V v[X:=T]
ϕ differs from V vϕ in assigning T to variableX. Since ϕ was assumed

to be strictly positive in X, monotonicity is guaranteed and µX.ϕ denotes the
least fixpoint of the operation associated with ϕ(X).
Inspecting the semantics of GL, one can easily translate GL-formulas into

equivalent µ-calculus formulas, demonstrating that GL is a variable-free frag-
ment of the µ-calculus. While a characterization of the precise expressiveness of
this fragment is still lacking, some preliminary observations can be made: GL
is strictly more expressive than PDL, since GL can express the existence of an
infinite a-path by the formula

µX.[a]X = 〈(ad)∗〉⊥
which cannot be expressed in PDL (see [15]). More complex properties such as
“on some path p occurs infinitely often” (EF∞p in CTL∗ notation) can also be
expressed (we assume that Γ0 = {a}):

νX.µY.〈a〉((p ∧X) ∨ Y) = [((a∗; a; p?)d)∗]	
where νX.ϕ abbreviates ¬µX.¬ϕ(¬X) and yields the greatest fixpoint of ϕ(X).
More generally, if we let g0 = a and gn+1 = (gdn)

∗, the µ-calculus translation of
〈gn〉⊥ will be a formula of alternation depth n, so that GL formulas cover all
levels of the alternation hierarchy as defined in [10].

5 Games on Kripke Models II: First-Order Logic

It is well-known that modal logic and PDL without iteration can be translated
into FOL. In spite of the second-order appearance of Game Logic, a translation
into FOL is possible here as well: The signature contains a unary relation symbol
Vp for every propositional letter p ∈ Φ0, and a binary relation symbol Rg for
every atomic game g ∈ Γ0. Furthermore, we allow for second-order variables
X,Y, . . . as well. Thus, the unary relation symbols now comprise constants as
well as variables. As will become clear later, we will not quantify over these
variables but only use them as a matter of convenience to serve as place-holders
for substitution; hence, we can still consider the language to be first-order. We
define the translation function ◦ which maps a GL-formula ϕ to a FOL-formula
with one free variable x, and an iteration-free GL-game γ to a FOL-formula with
two free variables x and Y.

p◦ = Vpx for p ∈ Φ0 g◦ = ∃z(xRgz ∧ Yz) for g ∈ Γ0
(¬ϕ)◦ = ¬ϕ◦ (ϕ?)◦ = ϕ◦ ∧ Yx

(ϕ ∨ ψ)◦ = ϕ◦ ∨ ψ◦ (α ∪ β)◦ = α◦ ∨ β◦
(〈γ〉ϕ)◦ = γ◦[Y := ϕ◦] (α;β)◦ = α◦[Y := β◦]

(αd)◦ = ¬α◦[Y := ¬Yx]

In this definition, substitution for second-order variables is used as follows:
Given two FOL-formulas δ and ξ where ξ contains exactly one free first-order
variable, say x, δ[Y := ξ] denotes the result of replacing every occurrence Yt in

492 M. Pauly

δ by ξ[x := t]. As an example, ∃z(xRgz ∧ Yz)[Y := ¬Yx] yields ∃z(xRgz ∧ ¬Yz).
Some more remarks on notation: ϕ(x1, . . . , xn) refers to a formula ϕ whose free
variables (first- and second-order) are among x1, . . . , xn. When a formula has
been introduced in this way, ϕ(t1, . . . , tn) denotes ϕ[x1 := t1, . . . , xn := tn], i.e.
the simultaneous substitution of ti for xi in ϕ.
Regarding the semantics, we can interpret a Kripke model I = (S, {Rg|g ∈

Γ0}, {Vp|p ∈ Φ0}) as a first-order model in the obvious way, taking Rg as the
interpretation of Rg, and interpreting Vp as Vp. For a unary predicate symbol Vp
and X ⊆ S, let Ip:=X be the model which is the same as I except that Vp = X.
Given a model I, states s1, . . . , sm ∈ S, sets of states S1, . . . , Sn ⊆ S and a
FOL-formula ϕ(x1, . . . , xm,X1, . . . ,Xn), we write I |= ϕ[s1, . . . , sm, S1, . . . , Sn]
to denote that ϕ is true in I according to the standard FOL semantics when xi
is assigned the value si and Xi the value Si.
The following result states the semantic correctness of the translation func-

tion.

Lemma 1. For all GL-formulas ϕ, games γ and Kripke models I = (S, {Rg|g ∈
Γ0}, {Vp|p ∈ Φ0}): I, s |= ϕ iff I |= ϕ◦[s] and s ∈ Nγ(X) iff I |= γ◦[s,X].
As with the safety result for program constructions, the safety result for game

constructions makes use of the characterization of the modal fragment of FOL
as its bisimulation-invariant fragment. The definition of invariance and safety
(definition 2) which was phrased for GL has its natural first-order analogue:

Definition 4 (FOL-Invariance & Safety). A FOL-formula ϕ(x) is invariant
for bisimulation if for all models I and I ′, (I, s) ∼ (I ′, s′) implies that I |= ϕ[s]
iff I ′ |= ϕ[s′]. A first-order formula ϕ(x,Y) is safe for bisimulation if for all
models I and I ′, (I, s) ∼ (I ′, s′) implies (1) if I |= ϕ[s, T] then there is some T ′

such that I ′ |= ϕ[s′, T ′] and for all t′ ∈ T ′ there is some t ∈ T such that t ∼ t′,
and (2) if I ′ |= ϕ[s′, T ′] then there is some T such that I |= ϕ[s, T] and for all
t ∈ T there is some t′ ∈ T ′ such that t ∼ t′.
By amodal formula we mean a GL-formula which only contains atomic games

(i.e. also no tests). The classic result from [5] can now be stated as follows:

Lemma 2. A FOL-formula ϕ(x) is invariant for bisimulation iff it is equivalent
to the translation of a modal formula.

For the rest of this section, we will assume that games are iteration-free.
Call a FOL-formula ϕ(x,Y) monotonic iff for all Kripke models I and states
s, I |= ϕ[s,X] implies I |= ϕ[s,X ′] for every X ⊆ X ′. Similarly, call a modal
formula ϕ monotonic in p iff for all Kripke models I and states s, Ip:=X , s |= ϕ
implies Ip:=X′ , s |= ϕ for every X ⊆ X ′. Lastly, let Pos(ϕ) (Neg(ϕ)) be the
set of atomic propositions which occur positively (negatively) in ϕ, i.e. under an
even (odd) number of negations. Thus, formula ϕ is strictly positive (negative)
in p iff p �∈ Neg(ϕ) (p �∈ Pos(ϕ)).
The final lemma needed relates the syntactic notion of positivity to the se-

mantic notion of monotonicity. It makes use of the Lyndon interpolation theorem
for modal logic (see e.g. [17]) and the global deduction theorem (taken from [11]).

From Programs to Games: Invariance and Safety for Bisimulation 493

Lemma 3 (Lyndon Interpolation Theorem). If |= α → β for modal for-
mulas α, β, then there exists a modal formula γ such that (1) |= α → γ, (2)
|= γ → β, (3) Pos(γ) ⊆ Pos(α)∩Pos(β), and (4) Neg(γ) ⊆ Neg(α)∩Neg(β).

Lemma 4 (Global Deduction Theorem). For modal formulas δ and γ, δ |=
γ iff there is some n > 0 such that |= (✷1δ ∧ . . . ∧ ✷nδ) → γ, where each ✷i

represents a possibly empty sequence of universal modalities labeled by (possibly
different) atomic games.

Lemma 5. A modal formula ϕ is monotonic in p iff it is equivalent to a modal
formula strictly positive in p.

Proof. One can easily check by induction that strictly positive modal formulas
are monotonic, so we shall only prove the other direction. If ϕ(p) is monotonic
in p, then taking a proposition letter q not occurring in ϕ, we have p → q |=
ϕ(p)→ ϕ(q) (recall that semantic consequence was defined globally). By lemma
4, we know that

(✷1(p→ q) ∧ . . . ∧✷n(p→ q))→ (ϕ(p)→ ϕ(q))

is valid, and as a consequence,

ϕ(p)→ ((✷1(p→ q) ∧ . . . ∧✷n(p→ q))→ ϕ(q))

is also valid. By lemma 3, this implies that

ϕ(p)→ γ and γ → ((✷1(p→ q) ∧ . . . ∧✷n(p→ q))→ ϕ(q))

are valid, for some modal formula γ which does not contain q and which is strictly
positive in p. The second conjunct implies that γ → ϕ(p) is valid: For suppose
I, s |= γ and X = {t|I, t |= p}. Then since γ does not contain q, Iq:=X , s |= γ.
From this it follows that Iq:=X , s |= ϕ(q) and hence I, s |= ϕ(p). Thus, ϕ is
equivalent to γ, a modal formula strictly positive in p. ✷

The main lemma we need for our safety result relates monotonic modal for-
mulas to GL-formulas of a special kind.

Lemma 6. Every modal formula ϕ which is monotonic in p is equivalent to a
GL-formula 〈γ〉p, where γ is a game which does not contain p.

Proof. We prove by induction that every modal formula ϕ which is strictly
positive (negative) in p is equivalent to a GL-formula 〈γ〉p (¬〈γ〉p), where γ
does not contain p. Then the result follows by lemma 5. The following table
provides the equivalent GL-formulas for every modal formula ϕ depending on
whether ϕ is strictly positive or strictly negative in p.

494 M. Pauly

modal formula str. pos/neg GL-formula ind. hyp.
p pos 〈	?〉p −

q �= p pos 〈q?;⊥?d〉p −
q �= p neg ¬〈q?d;⊥?〉p −
¬ϕ pos 〈γ〉p |= ϕ↔ ¬〈γ〉p
¬ϕ neg ¬〈γ〉p |= ϕ↔ 〈γ〉p

ϕ1 ∨ ϕ2 pos 〈γ1 ∪ γ2〉p |= ϕi ↔ 〈γi〉p
ϕ1 ∨ ϕ2 neg ¬〈(γ1d ∪ γ2d)d〉p |= ϕi ↔ ¬〈γi〉p
〈g〉ϕ pos 〈g; γ〉p |= ϕ↔ 〈γ〉p
〈g〉ϕ neg ¬〈gd; γ〉p |= ϕ↔ ¬〈γ〉p

✷

Proposition 2. A FOL-formula ϕ(x,Y) is equivalent to the translation of a
GL-game iff it is safe for bisimulation and monotonic in Y.

Proof. If ϕ(x,Y) is equivalent to the translation of a GL-game γ, then using
lemma 1, ϕ will be monotonic in Y (because Nγ is monotonic) and safe for
bisimulation (by proposition 1).
For the converse, assume that ϕ(x,Y) is monotonic and safe for bisimulation.

Taking a new predicate symbol Vp which does not occur in ϕ, ϕ(x,Vp) will be
invariant for bisimulation. By lemma 2, ϕ(x,Vp) is equivalent to the translation
of a modal formula δ, i.e. |= ϕ(x,Vp) ↔ δ◦. Since ϕ(x,Y) was monotonic, δ
will be monotonic in p and by lemma 6, |= δ ↔ 〈γ〉p where γ is a GL-game
which does not contain p, and so |= ϕ(x,Vp) ↔ (〈γ〉p)◦. It can now be checked
that |= ϕ(x,Y) ↔ γ◦: If I |= ϕ[s,X] then given that Vp does not occur in ϕ,
Ip:=X |= ϕ(x,Vp)[s] and so Ip:=X |= (〈γ〉p)◦[s]. Since p does not occur in γ, this
implies that I |= γ◦[s,X]. The converse is proved along the same lines. ��
On the one hand, proposition 2 provides a characterization result for the

iteration-free games which can be constructed in Game Logic: GL-games are the
monotonic bisimulation-safe formulas ϕ(x,Vp) of first-order logic (we can simply
replace the variable Y by a designated unary predicate constant Vp). In other
words, the game-fragment of FOL is precisely the monotonic bisimulation-safe
fragment. On the other hand, looking at the set of operations on games which
GL provides, one may ask whether one could not add other natural operations to
create new games (e.g. playing games in parallel), thus increasing the expressive
power of the language. Proposition 2 demonstrates that if the new game opera-
tion is (1) first-order definable, (2) monotonic and (3) safe for bisimulation, then
it is expressible in GL already. As argued before, requirements (2) and (3) are
natural desiderata for games, i.e. they are minimal requirements for any alleged
game operation, and so the operations of test, union, composition and dual are
sufficient to construct all first-order definable games.
The result concerning bisimulation-safe programs from [6] can be reformu-

lated to fit the present framework. Semantically, the difference between games

From Programs to Games: Invariance and Safety for Bisimulation 495

and programs lies in the difference between monotonicity and continuity: Call
a FOL-formula ϕ(x,Y) continuous iff for all Kripke models I and states s,
I |= ϕ[s,⋃X∈V X] iff there is some X ∈ V for which I |= ϕ[s,X] holds. Then the
program-analogue of proposition 2 states that a FOL-formula ϕ(x,Y) is equiva-
lent to the translation of a GL-program iff it is safe for bisimulation and contin-
uous in Y, where GL-programs are dual-free GL-games. Thus, the dual operator
makes all the difference between programs and games; without dual, we obtain
all first-order definable programs, with dual, all first-order definable games.

6 Beyond First-Order Logic

The last two sections were concerned with Kripke models rather than game
models in general. The reason for this restriction is that game models are rather
unorthodox structures. We do not know of any logical languages besides non-
normal modal logics and Game Logic which have been proposed for these struc-
tures. Consequently, this prevents an easy extension of the definability result of
proposition 2 to GL over general game models.
Even for Kripke models, the translation into FOL carried out in the previous

section relied on the restriction to iteration-free games. For programs, a stronger
definability result covering iteration has been obtained in [13] which charac-
terizes the class of monadic-second-order definable programs which are safe for
bisimulation. The proof makes use of the fact that the bisimulation-invariant
fragment of monadic second-order logic is the µ-calculus [14]. An extension of
proposition 2 along these lines however would require a better understanding
of how exactly GL relates to the µ-calculus. As for the µ-calculus itself, many
fundamental properties were established only recently, such as completeness [19],
the non-collapse of the alternation-hierarchy [8] and uniform interpolation [1],
and others such as Lyndon interpolation are still open.
To summarize, the restriction of the scope of proposition 2 to FOL is due to

the fact that FOL is one of the logics we know most about and is able to express
the most fundamental game-operations. When moving to stronger languages
one has different options available, always depending on the game constructions
one is interested in. For besides playing a game iteratively, playing two games in
parallel or interleaved might present another attractive game construction worth
investigating in relation to bisimulation.

References

1. Giovanna D’Agostino. Modal Logic and non-well-founded Set Theory: translation,
bisimulation, interpolation. PhD thesis, University of Amsterdam, 1998.

2. Ralph-Johan Back and Joakim von Wright. Refinement Calculus - A systematic
introduction. Springer, 1998.

3. R.J.R. Back and J. von Wright. Games and winning strategies. Information
Processing Letters, 53:165–172, 1995.

4. J. van Benthem, J. van Eijck, and V. Stebletsova. Modal logic, transition systems
and processes. Computer Science Report CS-R9321, CWI, 1993.

496 M. Pauly

5. Johan van Benthem. Modal Correspondence Theory. PhD thesis, University of
Amsterdam, 1976.

6. Johan van Benthem. Program constructions that are safe for bisimulation. Studia
Logica, 60(2):311–330, 1998.

7. Johan van Benthem and Jan Bergstra. Logic of transition systems. ILLC Prepub-
lication Series CT-93-03, University of Amsterdam, 1993.

8. J. C. Bradfield. The modal mu-calculus alternation hierarchy is strict. In U. Mon-
tanari and V. Sassone, editors, Proceedings of CONCUR ’96, volume 1119 of LNCS,
pages 233–246. Springer, 1996.

9. Brian Chellas. Modal Logic - An Introduction. Cambridge University Press, 1980.
10. E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments of

the propositional mu-calculus. In Proceedings of the 1st IEEE Symposium on Logic
in Computer Science, pages 267–278, 1986.

11. Melvin Fitting. Basic modal logic. In D. Gabbay, C. Hogger, and J. Robinson,
editors, Handbook of logic in artificial intelligence and logic programming, volume 1,
pages 365–448. Oxford University Press, 1993.

12. David Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic, volume II. D. Reidel Publishing Company, 1984.

13. Marco Hollenberg. Logic and Bisimulation. PhD thesis, University of Utrecht,
1998.

14. David Janin and Igor Walukiewicz. On the expressive completeness of the propo-
sitional mu-calculus with respect to monadic second order logic. In Proceedings of
CONCUR ’96, volume 1119 of LNCS, pages 263–277. Springer, 1996.

15. Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

16. Dexter Kozen and Jerzy Tiuryn. Logics of programs. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B. MIT Press, 1990.

17. Larisa Maksimova. Amalgamation and interpolation in normal modal logics. Studia
Logica, 50(3-4):457–471, 1991.

18. Rohit Parikh. The logic of games and its applications. In Marek Karpinski and Jan
van Leeuwen, editors, Topics in the Theory of Computation, volume 24 of Annals
of Discrete Mathematics. Elsevier, 1985.

19. Igor Walukiewicz. A note on the completeness of Kozen’s axiomatisation of the
propositional µ-calculus. Bulletin of Symbolic Logic, 2(3):349–366, 1996.

Logical Relations and Data Abstraction

John Power�,1 and Edmund Robinson��,2

1 Laboratory for the Foundations of Computer Science, University of Edinburgh
ajp@dcs.ed.ac.uk

2 Department of Computer Science, Queen Mary and Westfield College,
edmundr@dcs.qmw.ac.uk

Abstract. We prove, in the context of simple type theory, that logical
relations are sound and complete for data abstraction as given by equa-
tional specifications. Specifically, we show that two implementations of
an equationally specified abstract type are equivalent if and only if they
are linked by a suitable logical relation. This allows us to introduce new
types and operations of any order on those types, and to impose equa-
tions between terms of any order. Implementations are required to re-
spect these equations up to a general form of contextual equivalence, and
two implementations are equivalent if they produce the same contextual
equivalence on terms of the enlarged language. Logical relations are in-
troduced abstractly, soundness is almost automatic, but completeness is
more difficult, achieved using a variant of Jung and Tiuryn’s logical rela-
tions of varying arity. The results are expressed and proved categorically.

Keywords: logical relations, cartesian closed fibrations, interpretations,
lambda calculus

1 Introduction

Logical relations are a standard tool for establishing the equivalence of data
representations. If one can find a family of relations on corresponding types which
is a congruence, i.e., are preserved by operations of the theory, and reduces to
equality on observable types, then clearly observable operations will be equal in
the two representations. Such a family need not form a logical relation (it may
form a lax or pre-logical relation [4,12]), but logical relations do provide a way
to construct such families by induction on type structure. So the establishment
of a logical relation suffices to determine equivalence of representation at least
for simple types. It has long been known that for algebraic theories with first
order operations and equations, equivalent representations are indeed linked by
a logical relation, see Mitchell [9,10]. It has also long been known that standard
logical relations are not complete in this sense for higher-order theories.
� This work has been done with the support of EPSRC grant GR/M56333 and a

British Council grant.
�� This author would like to acknowledge the support of an EPSRC Advanced Fellow-

ship, EPSRC grant GR/L54639, and ESPRIT Working Group 6811 Applied Seman-
tics

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 497–511, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

498 J. Power and E. Robinson

The purpose of this paper is to show that by relaxing the definition of logical
relation, we can extend Mitchell’s completeness result to higher-order theories.

The approach we take here has two major sources. The first is the work of
Achim Jung and Jerzy Tiuryn [5], who used a form of logical relations to charac-
terise lambda definability in the simple type hierarchy. The second is the thesis
of Claudio Hermida [3], which explores the connection between logical predi-
cates and logical formalisms expressed as fibrations defined over the semantic
category. Sadly there is still no really accessible reference for the material and
ideas in this thesis.

From a practical angle, the notion of abstract type we use here is quite re-
stricted as we only consider equationally specified types, albeit with equations
between higher-order operators. This is also the level of generality of Alimo-
hamed’s work on definability [1]. However, it raises a natural question of whether
the link with logic exploited in this paper could be further exploited to allow a
less restrictive specification language.

Finally, if data abstraction is the study of equivalence of representation, then
data refinement is the study of improvements. The two ideas are clearly linked,
and the fundamental notion of this paper, that of being “linked by a logical
relation”, is closely related to the notion of L-relation in [6] (see also [14]). The
work of that paper, which is also about data equivalence but from a purely
categorical perspective, and the work of this paper, and those on lax and pre-
logical relations [4,12] clearly need to be combined at some point.

A natural question, however, is why we chose to base our work on cartesian
closed categories rather than Henkin models.

Henkin models provide a natural extension of classical set-based first-order
model theory to the higher-order setting of simply typed lambda calculi. Much
of their appeal lies in the immediacy of this relation. Cartesian closed categories,
on the other hand, arose out of the desire to express in purely category theoretic
terms the characteristic properties of function spaces such as those found in Set.
The formal link with typed lambda calculus, though not surprising in itself, came
surprisingly late (cf. Lambek and Scott [7]), and prompted a slight redefinition
of the notion to allow categories which had products but not arbitrary finite
limits.

Cartesian closed categories and Henkin models are intimately linked. If one
starts with a Henkin model of λ→ one can easily extend it to model the type
theory with products, λ×→ (using the fact that the type (A1 × . . . × An) →
(B1×. . .×Bm) is isomorphic to a product of pre-existing types (A1 → (. . . (An →
B1) . . .))×. . .×(A1 → (. . . (An → Bm) . . .))). If one has a Henkin model of typed
lambda calculus with products, then one can obtain a (concrete) cartesian closed
category. The objects are types and the morphisms A −→ B are the elements of
the function type [A→ B] in the Henkin model. Conversely if one has a cartesian
closed category C, together with a product-preserving functor U : C −→ Set,
then one obtains an applicative structure with product types. The types are
the objects of the category, and the type A is interpreted as the set UA. This
automatically has representations of the combinators because of their presence

Logical Relations and Data Abstraction 499

as morphisms in the cartesian closed category. However it is not necessarily a
Henkin model because in general different elements of the function type may
represent the same function. If, however, C is a concrete category and U its
underlying set functor, this will not happen. In that case we do get a Henkin
model.

So, from this perspective, cartesian closed categories generalise Henkin mod-
els. The question is whether that generality, or that difference in structure, is
useful. We believe that it is.

One technical difference between the two approaches is apparent if one thinks
of semantics taken in some kind of sets with structure (e.g. domains). It is natu-
ral to ask when this collection of sets forms a model of the simply typed lambda
calculus. The category-theoretic answer is that one has to specify an appropriate
notion of homomorphism. The resulting category is then either cartesian closed,
in which case it supports a model structure, or it is not, when it doesn’t. More-
over, if it is cartesian closed then the structure we use to model the lambda
calculus is essentially unique. In contrast, it is much less clear what the con-
straints on a Henkin structure might be, or in what sense the structure would
be unique if it existed. Essentially the development has to mimic the category-
theoretic. First one defines an appropriate notion of homomorphism. Then one
asks whether the set of homomorphisms between two objects can be made to
carry the structure of the objects we are interested in. Or rather, since it almost
always can, whether it can be made to do so in a way that makes application
and the combinators homomorphisms. It is perhaps because of this apparently
greater complexity that domain theorists and others talk about specific cate-
gories of domains being cartesian closed, and not about Henkin structures on
classes of domains.

Moreover, Henkin models can only talk about models built on sets. This con-
straint is not always natural. For example it is natural to say that the canonical
way of viewing a partially-ordered set as a category turns a Heyting (or Boolean)
algebra into a cartesian closed category. It is not natural to say that they carry a
Henkin model structure, since that requires presenting the elements of the par-
tial order as themselves sets. A further example comes from the Curry-Howard
correspondence. This can be conveniently and precisely expressed by saying that
there is an isomorphism between a category whose objects are types and whose
morphisms are βη-equivalence classes of λ-terms, and a category whose objects
are propositions and whose morphisms are normalisation classes of proofs. The
Henkin model account has to be forced to apply to this, most notably because
in the event that A is not provable, then a proof of A ⇒ B cannot adequately
be described as a function which takes proofs of A to proofs of B.

We now turn to possible directions for our own future work. First, there are
links between this work and the work of Honsell and Sannella on pre-logical
relations. Unfortunately a preliminary account of these links had to be cut from
this paper for reasons of space. We intend to return to this theme. An obvious
direction in which to extend this work is to address models of call-by-value
lambda-calculi such as the computational lambda-calculus [11].

500 J. Power and E. Robinson

Several people have been of considerable help in making comments or sugges-
tions: they include Adam Eppendahl, Claudio Hermida, Peter O’Hearn, David
Pym, Makoto Takeyama, and Bob Tennent. We would also like to thank the
(many) anonymous referees of the original paper. We are sorry that we have not
been able to make all the improvements they suggested.

2 Contextual Equivalence

In this section, we give a categorical account of a standard Morris-style contex-
tual equivalence. As we are working in the context of simple type theory, and
the theory may well be strongly normalising, we use a denotational rather than
an operational approach, and observe values produced by computations rather
than termination.

The basic structure is as follows. We assume a given cartesian closed category
C. For instance, C may be the category Set of small sets, or, if we want to be
sure to include fixed point operators to model recursion, we could consider C to
be the category of ω-cpo’s with least element, and with maps being functions
that preserve the poset structure and sup’s of ω-chains. Other alternatives for
C include categories generated by axiomatic domain theory [2], or presheaf cat-
egories, or toposes. We simply require that C be cartesian closed. The category
C will represent our base category in which we take our denotational semantics.

We further assume that we are given a set of observable pairs of types
Obs ⊆ ob(C) × ob(C). The intuition behind this is that we are allowed to form
judgements of equality

x : A � e = e′ : B

where (A,B)εObs. An alternative approach is to use a set of observable types,
but we think this accords better with our open-term interpretation of the lambda
calculus, and will allow a simpler extension to dependent type theory.

We use the structure of observables to generate a contextual equivalence ≈
on C, which allows us to compare f ≈ g when f and g are maps with com-
mon domain and codomain: type-theoretically, this amounts to demanding that
contextually equivalent terms have the same type and are defined in the same
context.

Example 1. 1. The underlying category is CPO, and Obs = {(1, 1⊥)}. This
gives one of the standard forms of Morris-style contextual equivalence, in
which we are allowed to observe termination of closed terms.

2. The underlying category is Set, and Obs = {(1, Bool)}. Here, there is no
non-termination, but contexts produce closed terms of type Bool. We can
observe the boolean produced.

3. Obs = ob(C)× ob(C). In this case everything is observable. Not surprisingly
≈ is just equality.

Logical Relations and Data Abstraction 501

Definition 1. Given f, g : X −→ Y , we define ∼ by f ∼ g if for all (A,B)εObs,
and for all α : A −→ X and β : Y −→ B, we have

A
α ✲ X

f ✲ Y
β ✲ B

equals

A
α ✲ X

g ✲ Y
β ✲ B

The category theoretic definition of a congruence is often used to mean an
equivalence relation on each homset of a category C such that that equivalence
relation is respected by composition on either side. Here, by a congruence, we
mean that notion together with invariance under products and exponentials.
That allows us to make the primary definition of this section as follows.

Definition 2. We define ≈ to be the largest congruence contained in ∼.
Mercifully, we can characterise ≈ more directly by means of the following

proposition. We denote the exponential of X raised to the power U by [U,X].
We follow this convention for exponentials in a category, for exponentials of
not only objects but maps, and for exponentials of categories, i.e., for functor
categories, when we need them.

Proposition 1. Given f, g : X −→ Y , the following are equivalent:

1. f ≈ g
2. for all U , V in ob(C), we have [U, f]× V ∼ [U, g]× V

To prove this proposition, apply the following lemma.

Lemma 1. Let ∼ be an equivalence relation on parallel pairs of arrows of a
category C. Then

1. composition preserves ∼, and hence C/ ∼ is a category and C −→ C/ ∼ is
a functor if and only f ∼ g implies β · f · α ∼ β · g · α.

2. if C has finite products, then C/ ∼ has finite products, and passage to the
quotient preserves them if and only if 1 holds and f ∼ g implies f×V ∼ g×V
for all V in ob(C).

3. if C is cartesian closed, then C/ ∼ is a cartesian closed category and passage
to the quotient is a cartesian closed functor if and only if 1 and 2 hold and
f ∼ g implies [U, f] ∼ [U, g] for all U in ob(C), or equivalently if and only if
1 holds and f ∼ g implies [U, f]× V ∼ [U, g]× V for all U ,V in ob(C).

We can also make precise the relationship with Morris-style contextual equiv-
alence. Any cartesian closed category can be regarded as a model of an applied
lambda calculus in which we have base types corresponding to the objects of the
category, and for each morphism f : X −→ Y , we are given a term constructor
(function) f̂ , such that if e is a term of type X, then f(e) is a term of type Y

502 J. Power and E. Robinson

(as in Lambek and Scott [7]). As usual, a context, C[−] is a term with a hole
(written [−]), such that when we plug a term of suitable type into the hole, we
get something that we can run and observe. Making this precise for typed open
terms is always messy. The simplest solution is to consider terms in context. In
that case, we demand

x : X � e : Y
a : A � C[e] : B

should be an admissible rule for the type system (here, in order to make C[e]
directly observable, (A,B) ∈ Obs). This can be achieved by ensuring that

x : X � [−] : Y
a : A � C[−] : B

is a derived rule.

Definition 3. Two terms e and e′ (more accurately, two terms in the same
context: x : X � e : Y and x : X � e′ : Y . . .) are contextually equivalent, e ∼= e′

if and only if for all contexts C[−], M{C[e]} = M{C[e′]}, where M{e} is the
semantics of e as taken in the category C.

Proposition 2. e ∼= e′ if and only if M{e} ≈M{e′}.
Proof. In the if direction, this is a simple structural induction on the context. In
the other, it depends on the expressibility of substitution via abstraction, appli-
cation, and beta reduction, and on the fact that all morphisms in the category
are expressible as terms in the calculus.

3 Abstract Types

An equationally specified abstract type consists of a new type equipped with
operations linking it to pre-existing types, and certain equations on terms built
from those operations. The canonical example is stack. For our purposes, we may
as well have a number of new types, and we interpret the operations as (open)
terms in context

x : X � f : Y

where the X and Y may be arbitrary type expressions built up from old and
new types. This generates an extended lambda calculus in which the equations
are interpreted as equality judgements

x : X � e = e′ : Y

Such a system freely generates a cartesian closed category E which comes with
a cartesian closed functor i : C −→ E. This functor is injective on objects, but
in general is neither full nor faithful as we can add extra operations between
pre-existing types and impose new equations between pre-existing operations.

Logical Relations and Data Abstraction 503

Conversely, given any injective on objects cartesian closed functor i : C −→ E,
the category E is equivalent to a category constructed from C in this fashion,
as we may generate it using all objects in E\i(C) and take all valid equations.
So we can take i : C −→ E as the extension of C by some abstract types.

We split this construction into two stages: first adjoin types and operations
freely to give i : C −→ D, and then quotient by the equations to give q : D −→
D/ ≈E . In fact, we shall never use the free property of D and can take it to be an
arbitrary cartesian closed category. The free property of such a D is fundamental
to the work generalising logical relations for an account of data refinement in [6].

An implementation of the abstract type back in C is given by a cartesian
closed functor F : D −→ C. We do not want to change the interpretation of
the operations in C, so require F · i = idC . We also want the interpretation to
validate the equations of the abstract type, at least up to a suitable notion of
observational congruence. We illustrate the problems with the canonical simple
(but first-order) example:

Example 2. Let C be Set and let D consist of Set together with the formal ad-
dition of a type stack together with its operations (empty, top, pop and push)
and equations (pop(push(n, s)) = s, and top(push(n, s)) = n). An implementa-
tion amounts to a realisation of the type stack together with its operations and
subject to its equations in Set in both cases. Consider an array implementation,
in which stack is implemented by an (unbounded) array and a top pointer, and
pop simply decrements the top pointer, leaving the array unchanged. In this im-
plementation, the interpretation of pop(push(n, s)) is not equal to s. Moreover,
in Set we can apply an operation which reads the stack one place above the
top pointer, and hence observe the difference. Of course this violates the stack
abstraction.

The example above tells us that we cannot make the obvious restriction on
F : if e = e′ is an equation of the abstract type, then F (M{e}) ≈ F (M{e′}).
Instead we must build in the notion that contexts have restricted access to
abstract types. This leads to the following definition (cf. definitions 1 and 2):

Definition 4. 1. Suppose F is a functor D −→ C, and f, g : X −→ Y is a
parallel pair of morphisms in D, then f ∼F g if and only if for all (A,B)
in Obs, and for all α : iA −→ X and β : Y −→ iB, we have F (β · f · α) =
F (β · g · α).

2. If, in addition, C, D and F are cartesian closed, then ≈F is the largest
congruence on D contained in ∼F (i.e. f ≈F g if and only if for all U ,V in
ob(D), ([U, f]× V) ∼f ([U, g]× V)).

The implementation is valid if and only if all equations x : X � e = e′ : Y
hold up to contextual equivalence, i.e., M{e} ≈F M{e′}, or equivalently, the
quotient D −→ D/ ≈F factors through D −→ D/ ≈E . The only function of the
equational theory is to restrict the notion of implementation. It has no effect on
when two implementations are equivalent, and so now plays no further role in
the story: it just, so to speak, comes along for the ride.

504 J. Power and E. Robinson

Definition 5. Suppose i : C −→ D is an injective-on-objects cartesian closed
functor between cartesian-closed categories, and E is a set of parallel pairs of
morphisms in D (which we view as the equations of an abstract type system), then
an implementation F of (D, E) in C is a cartesian closed functor F : D −→ C,
such that F · i = idC , and for all (f, g) ∈ E, F (f) ≈F F (g).

We now observe some properties of ≈F that will help us to make precise
what we mean by two implementations being equivalent.

Proposition 3. Let F : D −→ C be a cartesian closed functor such that F · i =
idC . Then the following hold of ≈F :

1. for all f, g : X −→ Y in D, if Ff ≈ Fg, then f ≈F g.
2. for all f, g : X −→ Y in C, if f ≈ g, then if ≈F ig.
3. for all f, g : iX −→ iY in D, we have f ≈F g if and only if Ff ≈ Fg.
4. for all f, g : iA −→ iB in D, where (A,B)εObs, we have f ≈F g if and only

if Ff = Fg.

Proof. 1. Suppose Ff ≈ Fg. Then, given α : iA −→ [U,X] × V and β :
[U, Y]×V −→ iB, we have F (β ·([U, f]×V)·α) = Fβ ·([FU,Ff]×FV)·Fα =
Fβ · ([FU,Fg]× FV) · Fα = F (β · ([U, g]× V) · α)

2. Suppose f ≈ g. Then, given α : iA −→ [U, iX]×V and β : [U, iY]×V −→ iB,
we have F (β ·([U, if]×V) ·α) = Fβ ·([FU,F if]×FV) ·Fα = Fβ ·([FU, f]×
FV) · Fα = Fβ · ([FU, g] × FV) · Fα = Fβ · ([FU,F ig] × FV) · Fα =
F (β · ([U, ig]× V) · α)

3. Suppose f ≈F g. Then, given α : A −→ [U,X]×V and β : [U, Y]×V −→ B,
we have β ·([U,Ff]×V) ·α = Fiβ ·([FiU, Ff]×FiV) ·Fiα = F (iβ ·([iU, f]×
iV) · iα) = F (iβ · ([iU, g] × iV) · iα) = Fiβ · ([FiU, Fg] × FiV) · Fiα =
β · ([U,Fg]× V) · α. The converse has already been shown.

4. Ff ≈ Fg if and only if Ff = Fg for observable types.

Armed with these observations about the interaction of the definitions of ≈
and ≈F , we can now establish relationships between a pair of interpretations
F and G, where we understand an interpretation to be defined to be a functor
F : D −→ C such that F · i = idC .

Proposition 4. Let F,G : D −→ C be two interpretations. Then, the following
are equivalent:

1. F and G induce the same equivalence: ≈F =≈G
2. F and G induce the same equivalence on observable operations: ≈F |iObs =
≈G |iObs.

3. the interpretations of operations between pre-existing types are contextually
equivalent: for all f : iX −→ iY , we have Ff ≈ Gf .

4. the interpretations of observable operations are contextually equivalent (in
fact, equal): for all f : iA −→ iB where (A,B)εObs, we have Ff ≈ Gf .

Logical Relations and Data Abstraction 505

Proof. 1⇒ 2 and 3⇒ 4 are immediate.
2 ⇒ 1. Suppose f ≈F g : X −→ Y , and we have α : iA −→ [U,X] × V and

β : [U, Y]×V −→ iB. Then F (β ·([U, f]×V)·α) = F (β ·([U, g]×V)·α). But these
are between observable types, hence by Proposition 3(4), we have β · ([U, f] ×
V) ·α ≈F β · ([U, g]×V) ·α. So β · ([U, f]×V) ·α ≈G β · ([U, g]×V) ·α; and hence
by Proposition 3(4) again, we have G(β · ([U, f]×V) ·α) = G(β · ([U, g]×V) ·α).

1 ⇒ 3. Given f : iX −→ iY , we have Ff = FiFf , so by Proposition 3(1),
we have f ≈F iFf . So f ≈G iFf , and hence by Proposition 3(3), we have
Gf ≈ GiFf = Ff .

4 ⇒ 2. Given f, g : iA −→ iB where (A,B)εObs, suppose f ≈F g. Then
Ff = Fg. But by hypothesis, Ff = Gf , and Fg = Gg, so Gf = Gg. Hence
f ≈G g.

Any of the above conditions would be a reasonable definition of equivalence
of implementation. So the proposition conveniently justifies the following.

Definition 6. Two interpretations F,G : D −→ C are equivalent if they satisfy
the equivalent conditions of Proposition 4.

Example 3. 1. Suppose F and G correspond to two implementations of stack,
in both of which the underlying type of stack is the product of an unbounded
array of integers (giving the stack), and a non-negative integer (giving the
top pointer). In F , pop is implemented by decrementing the top pointer, and
leaving the stack unchanged. In G, the top pointer is decremented, and the
cell popped is set to zero in the array. F and G are otherwise identical. Then
F and G are equivalent implementations.

2. It is not necessary for the underlying types to be the same in the two imple-
mentations, if F is the array implementation of stack mentioned above, and
G is a list implementation, then F and G will be equivalent exactly when
they agree about top(empty) and pop(empty).

4 Logical Relations

In [8], Ma and Reynolds began by analysing the classical theory of logical re-
lations for simple types. They focussed on the structure needed to prove the
fundamental theorem. For binary relations, this amounts to a cartesian closed
category B equipped with a cartesian closed functor p = (p0, p1) : B −→ C ×C,
and that cartesian closed functor is typically a fibration [3]. In their theory, B is
constructed concretely as a category of relations, and so comes with a standard
diagonal ∆ : C −→ B. This is also a cartesian closed functor.

For instance, consider C being the category Set. Then an object of B consists
of a pair (X,Y) of sets together with a subset R of X × Y . The diagonal ∆ :
C −→ B is indeed the diagonal in the usual sense, taking a set X to the subset
{(x, x)|x ∈ X} of X ×X.

The significance of the fact that B has and all the functors preserve cartesian
closed structure, together with the fact that p = (p0, p1) : B −→ C × C is a

506 J. Power and E. Robinson

fibration, is that logical relations can be defined on base types, and then extended
inductively on the syntax of type expressions as usual. See [3] for a careful
analysis of this. Technically, we do not need this much structure for soundness,
but having it gives a stronger completeness result and a better link in to logics for
reasoning about the type systems. So we take this structure as a characterisation
of logical relations, but since our categories are more abstract than those of Ma
and Reynolds, we require an abstract characterisation of the diagonal. Moreover,
we would like the diagonal to characterise contextual equivalence, not equality.

In the standard relational setting, when R ⊆ X0×X1 and S ⊆ Y0×Y1, a map
in B from R to S is exactly a pair of maps f0 : X0 −→ Y0 and f1 : X1 −→ Y1,
such that f0× f1 maps R into S, i.e. a pair of maps which respects the relations
R and S. In our more abstract setting it is not necessarily true that a map in B
is given by a pair of maps in C, and so we shall regard a pair of maps (f0, f1)
as respecting the “relations” R and S exactly when there is a map f : R −→ S
such that p0(f) = f0 and p1(f) = f1. This enables us to pick out the essential
property we need of the diagonal functor: that if two maps preserve diagonals,
then they are contextually equivalent.

Definition 7. Let p = (p0, p1) : B −→ C×C be a cartesian closed functor, and
let D : C −→ B be a cartesian closed functor such that p ·D = ∆ : C −→ C×C.
Then we say D is diagonal if, for all f : DX −→ DY , it follows that p0f ≈ p1f .

For a formal definition and exposition of the notion of fibration, one may
see Claudio Hermida’s thesis [3], half of which is about the relationship between
logical relations and fibrations. The idea is that a fibration with structure, in
particular cartesian closed structure, provides a category theoretic equivalent to
having a predicate logic with which one can build logical relations. Formally, the
definition is as follows.

Definition 8. A functor p : P −→ C is called a fibration if for every object
X of P and every map of the form g : A −→ pX in C, there is an arrow
g∗X : g∗(X) −→ X in P such that p(g∗(X)) = A and p(g∗X) = g, and the
following universal property is satisfied:

for every arrow f : Z −→ X and every arrow h : pZ −→ p(g∗(X)) such that
g ·h = p(f), there exists a unique arrow k : Z −→ g∗(X) such that p(k) = h and
g∗X · k = f .

Example 4. We recast our major example of binary relations as follows. C is Set×
Set. The objects of P are binary predicates (formally, a pair of sets (X0, X1), to-
gether with a predicateR(x0, x1) on them). A morphism from (X0, X1, R(x0, x1))
to (Y0, Y1, S(y0, y1)) is a pair of functions (f0, f1), such that

|= ∀x0, x1. R(x0, x1)⇒ S(f0(x0), f1(x1))

If X = (X0, X1, R(x0, x1)), and g = (g0 : Z0 −→ X0, g1 : Z1 −→ X1), then
g∗(X) = (Z0, Z1, R(g0(z0), g1(z1))).

Logical Relations and Data Abstraction 507

Definition 9. F and G are linked by a logical relation if there is a cartesian
closed category B and a cartesian closed fibration p : B −→ C ×C together with
a cartesian closed functor L : D −→ B lying over (F,G) (i.e. p0 · L = F and
p1 · L = G) such that D = L · i is diagonal.

B

�
�

�
�

�
L

✒

C
i

✲ D
(F,G)

✲ C × C

p = (p0, p1)

❄

We can now immediately prove the soundness of this form of logical relation
for proving equivalence of implementations.

Proposition 5. If F and G are two implementations which are linked by a
logical relation, L, then F and G are equivalent.

Completeness involves a variant of Jung and Tiuryn’s Kripke logical relations
of varying arity.

5 Jung-Tiuryn’s Logical Relations of Varying Arity

In this section, we outline how we prove the completeness part of our main
result. Given equivalent interpretations F,G : D −→ C, we seek a cartesian
closed fibration p : B −→ C × C and a cartesian closed functor from D to
B. Our construction is motivated by Jung and Tiuryn’s construction of Kripke
logical relations of varying arity [5], though it corresponds to a variant and not
their precise construction. (It is possible to prove the result we want in a way
that corresponds precisely to theirs. The construction is, however, less compact
and less obviously generalisable.)

First, Jung and Tiuryn’s choice of name is questionable. Their paper is con-
cerned with definability in the simple type hierarchy. Definability is a unary
predicate, and there is a precise sense in which the relations they define are,
despite appearances to the contrary, unary relations. We try to explain this
viewpoint below giving first an informal motivational account, and then an ac-
count of the machinery which can be used to make the presentation rigorous.
Our informal account will confuse terms and their semantics.

Jung and Tiuryn’s work can be reconstructed as follows. We want to provide
an invariance property of the lambda definable functions. We hope this can
be expressed by a logical relation. In other words, we hope that the set of λ-
definable functions is a unary logical relation. Unfortunately in the standard
picture, it is not. This is because in the standard theory we can only talk about
the elements of the sets which are carriers (closed terms), and there are plenty
of functions which send definable elements to definable elements, but are not
themselves definable. One way of looking at Jung and Tiuryn’s achievement is

508 J. Power and E. Robinson

that they found a clever way of talking about open terms. This allows us to
take our operation and apply it to the definable open term “x”. If the result is
definable, by e say, then the operation must have been definable by λx.e.

In Jung and Tiuryn’s account the open terms appear semantically, and strati-
fied by context. That is to say we are given a signature of (typed) variables which
may appear in the operation, and the term (say of type D) appears as a function
from the set of environments for that signature to D. Instead of viewing this as
a function, Jung and Tiuryn view it as a tuple whose components are indexed by
environments, and hence as an element of a relation on D whose arity is the set
of environments. In order that a property of an open term remains true when we
enlarge the environment, Jung and Tiuryn use a Kripke structure in which the
worlds are the possible signatures. This means that from their perspective, what
they have is a relation which is always on the set D, but whose arity varies as we
move between worlds. However, another way of looking at the same structure is
that the relation is always unary, but that the set on which is a relation is the
set of terms definable at that world, and hence varies from world to world.

The standard way to obtain logical relations is to take a semantics in Set, and
to use subsets. A theme of this paper is that this can equally well be regarded
as using the standard logic of Set. This can be varied by using other categories
and other logics. The technical tool we use for doing this is to interpret a logic
as a fibration with structure. If the logic admits �, ∧, → and ∀, as well as
substitution, then it yields a category of logical relations. The observation that
these operations are all that is required to define product and exponential of
logical relations should make that immediately credible, even it does not furnish a
proof. These two approaches meet in the standard logic of predicates interpreted
as subobjects.

In standard Kripke logical relations for the simple type hierarchy, we are given
an indexing category W . The types of the hierarchy are interpreted as constant
functors in the presheaf topos [W op, Set], so (∆d)w = d. Kripke logical relations
are derived from the natural logic of the topos, that is predicates correspond
to subfunctors (a subfunctor of F is a functor G such that at each world w,
Gw ⊆ Fw). For connected W , the functor ∆ : Set −→ [W op, Set] is a full and
faithful cartesian closed functor. This means that the simple type hierarchy on
d in Set is sent by ∆ to the simple type hierarchy on ∆d in [W op, Set]. So we
can either regard this construction as the form of logical relations obtained from
a standard logic for a non-standard set in non-standard set theory, or we can
regard it as a non-standard logic for a standard set in standard set theory. The
Jung-Tiuryn construction resolves this in favour of the second.

In the Jung-Tiuryn construction, W is assumed to be a concrete category,
i.e., a category of sets and functions. So they have a functor J : W −→ Set,
which they assume to be faithful (although never using that), and essentially
what they do is replace the functor ∆ : Set −→ [W op, Set] above by the functor
J̃ : Set −→ [W op, Set], sending d to the functor Set[J−, d].

We make two minor modifications of this. First we start with a functor,
F : D −→ C. We turn it around to obtain the functor F̃ : C −→ [Dop, Set]

Logical Relations and Data Abstraction 509

sending X to the functor C(F−, X) : Dop −→ Set. We get unary logical relations
by considering the subobject fibration over [Dop, Set] (the standard logic there),
and we can take the pullback of that cartesian closed fibration along F̃ to obtain
a cartesian closed fibration over C (a non-standard logic). This involves some
delicacy. Although the functor F is cartesian closed, it does not follow that F̃ is
cartesian closed. But F̃ does preserve finite products, which is sufficient for the
results we seek.

Next we take a slightly unexpected binary version of this. It would be normal,
given a functor K : C −→ [Dop, Set] to consider the pullback of a fibration over
[Dop, Set]× [Dop, Set] along K ×K. But that is not what we propose. We have
functors F̃ , G̃ : C −→ [Dop, Set] and we shall take the pullback along F̃ × G̃.
We do obtain the result we seek, but this is a most unusual construction. For
instance, there seems no way to lift F̃×G̃ to a functor from the binary subobject
fibration Sub2(C) over C×C to the binary subobject fibration Sub2([Dop, Set])
over [Dop, Set]× [Dop, Set], but that is a fundamental construction of fibrations,
simply not one we need here.

Finally, one needs a little caution. Ideally, we would like the construction of
our cartesian closed fibration p : B −→ C×C to be independent of the choice of
F and G, with F and G only being required in order to construct L : D −→ B.
But we cannot see how to do that: that is a particular sense in which we see
the relationship with Jung and Tiuryn’s work, as they have an extra parameter
J : X −→ Set in their work too, and it was that extra parameter that inspired
us.

6 Completeness of Logical Relations

In this section, we consider the completeness half of the result we seek. So, given
a pair F,G : D −→ C of equivalent interpretations, we seek a cartesian closed
fibration p : B −→ C ×C and a cartesian closed functor L : D −→ B lying over
(F,G) such that the composite L · i is diagonal.

B

�
�

�
�

�
L

✒

C
i

✲ D
(F,G)

✲ C × C

p = (p0, p1)

❄

As mentioned in the previous section, given an arbitrary functor F : D −→ C,
we consider the functor H̃ : C −→ [Dop, Set] that sends an object X of C to
the functor C(F−, X) : Dop −→ Set. It follows from the Yoneda lemma that we
have

Proposition 6. For any F : D −→ C, if C has finite products, then the functor
F̃ : C −→ [Dop, Set] preserves finite products.

510 J. Power and E. Robinson

Also, as a standard example of a fibration [3], we have

Example 5. Let C be any category with finite limits. Let Sub2(C) have objects
(X,Y,R → X × Y) consisting of a pair (X,Y) of objects of C together with a
subobject R of X × Y , and with the evident arrows. Then the forgetful functor
Sub2(C) −→ C × C is a fibration. If C is cartesian closed, the fibration is a
cartesian closed fibration. It is the standard fibration of binary predicates for C.

Proposition 7. Given categories C and C′ with finite products, a finite product
preserving functor K : C′ −→ C, and a finite product preserving fibration p :
P −→ C, then the pullback K∗(P) of p along K gives a finite product preserving
fibration K∗(P) over C′.

A proof of this result appears in Hermida’s thesis [3], but it can also be
verified by direct calculation.

Corollary 1. Given F,G : D −→ C where C has finite products, the pullback
of Sub2[Dop, Set] along F̃ × G̃ gives a finite product preserving fibration (F̃ ×
G̃)∗(Sub2[Dop, Set]) over C × C.

In fact, the fibration (F̃ × G̃)∗(Sub2[Dop, Set]) is the one we want, so we
shall duly denote it by B. This is essentially a sconing of the ordinary binary
subobject fibration on the presheaf category [Dop, Set]. It is easy to prove by
direct calculation, using some pullbacks in the presheaf category, that we have

Theorem 1. Given F,G : D −→ C, supposing C is cartesian closed, then B =
(F̃ × G̃)∗(Sub2[Dop, Set]) is a cartesian closed fibration over C × C.

Proof. The only point here that requires checking is that B is cartesian closed
and that the functor to C ×C preserves the cartesian closed structure. This fol-
lows from a careful analysis of what the objects of B are. Given an object (X,X ′)
of C×C, an object of B over (X,X ′) is a subfunctor of C(F−, X)×C(G−, X ′).
Using cartesian closedness of Sub2([Dop, Set] over [Dop, Set]× [Dop, Set], given
subfunctors of C(F−, X) × C(G−, X ′) and C(F−, Y) × C(G−, Y ′), one can
construct a subfunctor of the exponential [C(F−, X)×C(G−, X ′), C(F−, Y)×
C(G−, Y ′)]. Finally, taking the pullback of that subfunctor along the canon-
ical comparison map from C(F−, [X,Y]) × C(F−, [X ′, Y ′]) to [C(F−, X) ×
C(G−, X ′), C(F−, Y)× C(G−, Y ′)] gives the exponential in B that we seek.

This is a specific example of a general construction [3]. Now we have the data
we require in order to state and prove our main result.

Theorem 2. If F and G are equivalent interpretations, they are linked by a
logical relation.

Proof. Define B as in Theorem 1. It remains to define L : D −→ B over (F,G),
prove it is cartesian closed, and prove that L · i is diagonal. So for an object d
of D, define Ld to be the subfunctor of C(F−, Fd)× C(G−, Gd) given by

Ld(c) = {(g : Fc −→ Fd, h : Gc −→ Gd) | ∃f : c −→ d. Ff ≈ g ∧Gf ≈ h}

Logical Relations and Data Abstraction 511

It is routine to verify that L preserves finite products; it takes consider-
ably greater but still routine effort to verify that it preserves cartesian closed
structure. It follows directly from the definition and the fact that F and G are
equivalent that L · i is diagonal.

Combining this completeness result with the soundness result of the previous
section, we have a combined soundness and completeness result as follows.

Theorem 3. Two interpretations F and G are equivalent if and only if they are
linked by a logical relation.

References

1. Alimohamed, A.: A Characterisation of Lambda Definability in Categori-
cal Models of Implicit Polymorphism. Theoretical Computer Science 146
(1995) 5–23.

2. Fiore, M., Plotkin, G.D.: An axiomatisation of computationally adequate
domain-theoretic models of FPC. Proc LICS 94. IEEE Press (1994) 92–
102.

3. Hermida, C.A.: Fibrations, Logical Predicates and Indeterminates. Ph.D.
thesis. Edinburgh (1993) available as ECS-LFCS-93-277.

4. Honsell, F., Sannella, D.T.: Pre-logical relations. Proc. CSL 99. LNCS
1683. Flum and Rodriguez-Artalejo (eds.) Springer (1999) 546–562.

5. Jung, A., Tiuryn, J.: A new characterisation of lambda definability. Proc.
TLCA. LNCS 664. Bezem and Groote (eds.) Springer (1993) 245–257.

6. Kinoshita, Y., O’Hearn, P., Power, A.J., Takeyama, M., Tennent, R.D.: An
Axiomatic Approach to Binary Logical Relations with Applications to Data
Refinement. Proc TACS 97. LNCS 1281. Abadi and Ito (eds.) Springer
(1997) 191–212.

7. Lambek, J., Scott, P.J.: Introduction to higher order categorical logic.
Cambridge studies in advanced mathematics. Cambridge University Press
(1986)

8. Ma, Q., Reynolds, J.C.: Types, abstraction and parametric polymorphism
2. Math. Found. of Prog. Lang. Sem. Lecture Notes in Computer Science.
Springer (1991).

9. Mitchell, J.:Type systems for programming languages. Handbook of The-
oretical Computer Science em B. van Leeuwen (ed). North-Holland (1990)
365–458.

10. Mitchell, J.: Foundations for programming languages. Foundations of Com-
puting Series. MIT Press (1996).

11. Moggi, E.: Computational Lambda-calculus and Monads. Proc LICS 89.
IEEE Press (1989) 14–23.

12. Plotkin, G.D., Power, A.J., Sannella, D.T., Tennent, R.D.: Lax logical re-
lations. (to appear in ICALP 2000).

13. Reynolds, J.C.: Types, abstraction, and parametric polymorphism. Infor-
mation Processing 83 Mason (ed) North Holland (1983) 513–523.

14. Tennent, R.D.: Correctness of data representations in ALGOL-like lan-
guages. In: A Classical Mind, Essays in Honour of C.A.R. Hoare, A.W.
Roscoe (ed.) Prentice-Hall (1994) 405–417.

Elementary Choiceless Constructive Analysis

Peter M. Schuster

Ludwig-Maximilians-Universität München
Mathematisches Institut, Theresienstraße 39, 80333 München, Germany

pschust@rz.mathematik.uni-muenchen.de

Abstract. Existential statements seem to admit a constructive proof
without countable choice only if the object to be constructed is uniquely
determined, or is intended as an approximate solution of the problem in
question. This conjecture is substantiated by re-examining some basic
tools of mathematical analysis from a choice-free constructive point of
view, starting from Dedekind cuts as an appropriate notion of real num-
bers. As a complement, the question whether densely defined continuous
functions do approximate intermediate values is reduced to connectivity
properties of the corresponding domains.

Key Words and Phrases. Constructive Mathematics, Countable
Choice, Unique Existence, Approximate Analysis, Intermediate Values,
Connectedness

2000 MSC. Primary 03F60; Secondary 03E25, 26A15, 26E40, 54D05,
54E35

1 Unique Existence and Countable Choice

Following Beeson ([2], page 25, footnote 16),

Bridges has observed that in general, existence theorems seem to be con-
structive when the object whose existence is in question is unique. Otherwise
put, non-constructive theorems always involve non-uniqueness. . . . In prac-
tice, whenever a theorem is known to be non-constructive, the solution whose
existence is non-constructive is also non-unique. Conversely, the difficulty in
constructivizing certain problems . . . seems to be intimately related to the fact
that the solutions are not known to be (locally) unique.

The purpose of this article is to reconsider Bridges’s conjecture by concentrating
on constructive proofs which, in addition, require as little countable choice as
possible. Making therefore explicit every subsequent invocation of choice prin-
ciples, we proceed in the context of Bishop’s constructive mathematics ([3]; see
also [4,12], and, for a general overview, [2,35]). In its today’s liberal interpreta-
tion advocated by Bridges, Richman, and others (see, e.g., [27]), this is, roughly
speaking, mathematics carried out by intuitionistic logic1, and thus simultane-
1 Anybody questioning whether ex falso quodlibet (EFQ) is really used in constructive
practice might take into account that, even within minimal logic, EFQ is equivalent
with (P ∨Q) ∧ ¬Q→ P .

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 512–526, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Elementary Choiceless Constructive Analysis 513

ously generalises classical, (constructive) recursive, and intuitionistic mathemat-
ics. According to Bridges [6], constructive mathematics in Bishop’s sense is also
suitable as a framework for computational analysis of whatever kind.

Here is our first and guarded claim:

Locally unique existence is closely related with choice-free construction.

One might be able to by-pass choice also in many—if not all—of the rather
frequent situations where a particular problem possibly has several solutions:

– uniqueness can be forced by gathering beforehand all the solutions which
belong to each other in a natural way;

– the question of local (non)uniqueness can be avoided from the outset by
concentrating on approximate instead of exact solutions.

Postponing examples that illustrate either point, let us notice that the former
supports the claim we made above whereas the latter leads to the second half of
our thesis:

Constructions of approximate solutions do presumably not require choice.

We now briefly explain the role of choice principles within constructive mathe-
matics. Although the axiom of choice in its full form can never be transferred to
any constructive framework for entailing the certainly nonconstructive principle
of tertium non datur2, two special cases have yet frequently been invoked by
most constructive mathematicians:

Countable Choice (CC). Given a sequence (An)n∈N of nonempty sets, there
is a sequence (an)n∈N such that an ∈ An for every n ∈ N.

Dependent Choice (DC). If A is a nonempty set and S ⊂ A×A such that
for every a ∈ A there is some a′ ∈ A with (a, a′) ∈ S, then for each a0 ∈ A
there is a sequence (an)n∈N in A, beginning with a0, such that (an, an+1) ∈ S
for all n ∈ N.

2 Diaconescu [17] and Goodman-Myhill [18] have proven this within intuitionistic
topos theory and constructive set theory, respectively, supposing that—as usual in
constructive mathematics, too, where equality is a defined relation—any (choice)
function f is extensional, that is, x = y ⇒ f(x) = f(y) for all x, y.

Let us briefly summarise this argument, following [1]. Given any proposition P ,
consider the sets

A = {x ∈ {0, 1}:P ∨ x = 0}, B = {x ∈ {0, 1}:P ∨ x = 1} ,

and note that both A and B are nonempty for 0 ∈ A and 1 ∈ B in any case. If
f : {A, B} → A ∪ B is a choice function for these data, that is, a = f(A) ∈ A
and b = f(B) ∈ B, then both P ∨ a = 0 and P ∨ b = 1 or, equivalently, either P
or a = 0 ∧ b = 1; whence we only have to derive ¬P from a = 0 ∧ b = 1. To this
end, assume P ; then A = {0, 1} = B and thus a = b by the extensionality of f , a
contradiction. See also footnote 3.

514 P.M. Schuster

Whereas countable choice is nothing else but the countable version of full choice,
dependent choice is slightly stronger, but appears to be indispensable whereever
infinite sequences are ‘constructed’ step-by-step. The justification of either prin-
ciple common to nearly all schools of constructive mathematics is based on
the Brouwer-Heyting-Kolmogorov interpretation (BHK) of any ∀n∃a statement,
which says that some algorithm n ❀ a has to be in the background. Moreover,
since integers are said to be given as such, not requiring any extra presenta-
tion, every (of course, deterministic) algorithm fed with integer inputs defines a
function with integer arguments—in other words, a sequence3.

In spite of this good argument for accepting countable and dependent choice,
there are just as good reasons for rejecting these putatively constructive choice
principles. The idea to refrain from their use in constructive mathematics was
brought up by Ruitenburg [31] and subsequently put forward by Richman [28];
further substantial steps in the direction of a choice-free constructive mathemat-
ics have been made since. We refer to [29] for an overview from Richman’s own
standpoint, including several case studies which clearly show the virtues of doing
constructive mathematics without countable choice.

One of the main counterarguments is that the use of choice for solving
parametrised equations seems to hinder the solutions from depending continu-
ously upon the parameters: choice might enable us to switch between the different
branches of the solution, thus producing points of discontinuity; even ‘choosing’
a fixed branch would become rather useless as soon as we cross some branching

3 Nothing else but BHK stands also behind the derivation of the choice principle
particular to Martin-Löf’s intuitionistic type theory (ITT); see pages 50–52 of [25].
This circumstance has even been noted expressis verbis in the middle of page 50 ibid.:
“The same idea [the justification of choice by means of BHK] can be put into symbols,
getting a formal proof [of the choice principle in ITT] . . . ”. Because the domains of
choice functions in ITT are allowed to be ‘sets’ without any apparent restriction, it
is necessary to stress that in ITT every set has to come along with special rules for,
e.g., introduction and elimination (op.cit., page 24), just as N is formed from the
initial element 0 by the successor operation and embodies the principle of induction.
If only in this sense, choice in ITT could be related with CC, notwithstanding the
fact that, unlike N, sets in ITT are in general neither denumerable nor equipped
with a decidable equality.

In view of the fact that ITT is a definitely constructive theory, it is reasonable to
ask why the provability of the choice principle belonging to ITT does not conflict with
what we have recalled in footnote 2, namely, that the full axiom of choice entails the
law of excluded middle. The answer to this question is neither that, unlike sometimes
suspected, choice functions in ITT need not be extensional (in general, they need),
nor that A and B do not fit the demands of a set in ITT (in spite of their somewhat
pathological character, they do). What hinders us from applying the ITT version
of choice to this situation is rather that, in ITT, something like {A, B} cannot be
equipped with the extensional equality according to which A and B are identified
precisely when they possess the same elements—an essential assumption in footnote
2. Such set formation, however, becomes possible as soon as ITT is enriched by
extensional power sets or effective quotients, constructors which indeed infect ITT
with classical logic; see Maietti [20] and Maietti-Valentini [21].

Elementary Choiceless Constructive Analysis 515

point. If, on the other hand, the solutions are uniquely determined by the pa-
rameters, such discontinuity phenomena are impossible; moreover, solutions are
then functions in the parameters and thus continuously dependent on the latter.
In constructive mathematics, namely, solutions have to be algorithms with the
parameters as inputs, and functions with discontinuities cannot be defined at
all4.

Why exact solutions might require more choice than approximate ones should
become clearer when choice is viewed as a uniformisation principle, transform-
ing any ∀∃ statement into the corresponding ∃∀ statement. To this end, let us
consider some continuous real-valued function f on the unit interval I = [0, 1],
and suppose that we are given the conclusion of the approximate intermediate
value theorem, that is,

(1) ∀ε > 0∃x ∈ I: |f(x)| < ε.

From this fact we could extract—but presumably only by countable choice—
some sequence (xn) in I with |f(xn)| < 1/n for all n � 1. Disregarding that, for
localising some cluster point in I of the sequence (xn), in most cases we needed
the sequential compactness of I which is a rather nonconstructive principle5, any
such cluster point would constitute a witness for ∃x ∈ I : f(x) = 0.

However, by simply writing this conclusion of the exact intermediate value
theorem in the less usual but equivalent form

(2) ∃x ∈ I ∀ε > 0 : |f(x)| < ε ,

one realises which role choice plays in this context: assuming what shall be argued
for in section 4, namely, that statements like (1) seem to allow choice-free proofs,
countable choice proves to be the price one has to pay for the extra step towards
(2) unless something else helps, for instance, unique existence.

2 Completeness of Real Numbers

There are fewer Cauchy reals than Dedekind reals in the absence of count-
able choice6, which is also very likely to be indispensable for proving any com-
pleteness property of Cauchy reals7. This situation can already be related with
4 In intuitionistic and constructive recursive mathematics, functions on continuous
domains such as intervals can even be proven to be pointwise continuous; compare
[12], chapter 6.

5 See, however, [8,9] for investigations of the constructive content of this principle.
6 According to [12], pages 138–140, the rationals are embedded as globally constant
functions into the choice-free intuitionistic model of the reals that consists of all
the continuous functions on some (classical) topological space. Because statements
about reals are local properties in this model, every continuous function can be
approximated arbitrarily closely by rationals, whereas any limit of a sequence of
rationals has to be locally constant.

7 Unless Cauchy sequences are equipped with Cauchy moduli in the sense of [31]
and [35], chapter 5. As Richman noticed, a Cauchy sequence of Cauchy reals in

516 P.M. Schuster

(non)uniqueness phenomena: although the limit of some convergent sequence is
uniquely determined up to equality, no canonical ‘choice’ can be made of any
rational Cauchy sequence representing a given real number.

Dedekind reals, on the other hand, admit almost by definition (and without
choice) the following well-known version of order completeness, which seems to
be stronger than sequential completeness in the absence of countable choice.

Least-Upper-Bound Principle (LUB). A nonempty set S of real numbers
that is bounded above possesses a supremum provided that
(*) given reals α < β, either s � β for all s ∈ S or α < r for some r ∈ S.

A supremum of S is a real number σ such that

� s � σ for all s ∈ S;
� if ρ is a real number with ρ < σ, then ρ < r for some r ∈ S.

Note that each supremum of S is a least upper bound in the usual sense; in
particular, it is uniquely determined, and we may denote it by supS. Moreover,
condition (*) is even necessary for the existence of a supremum, and it suffices
to check (*) for any ordered pair α < β of rational numbers. LUB is, of course,
equivalent with the analogous statement about infima, or greatest lower bounds.

By a Dedekind real we understand a located Dedekind cut in the rationals,
that is, a pair (L,U) of disjoint nonempty open subsets of Q such that either
p ∈ L or q ∈ U for all p, q ∈ Q with p < q. The strict partial order of Dedekind
reals is given by (L,U) < (L′, U ′) if and only if L′ \ L or, equivalently, U \ U ′
is nonempty; the weak partial order is given by (L,U) � (L′, U ′) if and only if
L ⊂ L′ or, equivalently, U ′ ⊂ U . Inequality �= is, of course, the disjunction of <
and >; equality = as the conjunction of � and � is nothing else but the usual
equality relation between pairs of sets. Referring to section 4 of [34] for further
details, we write R for the set of Dedekind reals.

In R, however, as in every constructive model of the reals, one ought to be
careful with the use of negation: although it is readily seen that x � y coincides
with ¬(x > y) and that, consequently, x = y can be identified with ¬(x �= y), it
is quite obvious that x < y and x �= y are constructively stronger than ¬(x � y)
and ¬(x = y), respectively. Let us point out that we shall often employ

(†) x < y ⇒ x < z ∨ z < y ,

an axiom scheme easily justified for Dedekind reals which has proven to be a
good substitute for the nonconstructive law of dichotomy z � 0 ∨ z � 0.

Let R be an archimedean ordered Heyting field, that is, a model of Bridges’s
[6] set of axioms minus LUB. These axioms (of course, together with LUB)
embody all the properties of real numbers that are commonly accepted in con-
structive mathematics, as there is (†); needless to say, R is a perfect model of

the modulated context is nothing else but a doubly indexed sequence of rational
numbers, a notion lacking one of the main features of Cauchy sequences in general,
namely, that they can be utilised for completing arbitrary metric spaces. Compare,
however, footnote 20.

Elementary Choiceless Constructive Analysis 517

those axioms. In particular, any such R contains Q as a dense subfield in the
sense that for all x, y ∈ R with x < y there is some q ∈ Q such that x < q < y.

The following theorem has been pointed out to us by Fred Richman.

Theorem 1. LUB is valid for R if and only if there is an order preserving
mapping j : R→ R that operates as identity on Q.

Proof. If σ = (L,U) ∈ R, then L ⊂ Q—considered as a subset of R—satisfies
condition (*). Provided LUB for R, set j(σ) = supL; it is routine to verify that j
is order preserving, and that j|Q is the identity. Conversely, if S ⊂ R fulfills the
hypotheses of LUB, then σS = (LS , US) ∈ R with LS , US as the open kernels of

{p ∈ Q | ∃s ∈ S: p < s}, {q ∈ Q | ∀s ∈ S: s � q},
respectively; moreover, j(σS) is the supremum of S.✷

Let us underline that we shall utilise the notions of Cauchy sequence and of
convergence of sequences in R only when LUB is valid for R, in order to have
|x| = max{x,−x} for any x ∈ R. Indeed, (†) implies (*) for any S of the form
{x1, . . . , xn}; whence max{x1, . . . , xn} and min{x1, . . . , xn} exist in presence of
LUB for all x1, . . . , xn ∈ R.

The derivation of sequential completeness from LUB given by Bridges [6]
can easily be rendered choice-free; we nevertheless prove this fact in the way
particular to Dedekind reals, following page 132 of [34]:

Corollary 1. If LUB obtains for R then every Cauchy sequence in R converges.

Proof. Each Cauchy sequence (xn) inR determines a Dedekind real ξ = (Lξ, Uξ):
let Lξ, Uξ be the open kernels of

{p ∈ Q | ∃N ∀n � N : p < xn}, {q ∈ Q | ∃N ∀n � N : xn < q},
respectively. Moreover, (xn) converges to j(ξ). ✷

Corollary 2. Dedekind reals satisfy LUB and are sequentially complete. ✷

In particular, R is a model of the whole set of Bridges’s axioms [6], including
LUB.

All these results can equally be applied to the formal reals presented by Negri-
Soravia [26], real numbers developed within the (constructive and predicative)
formal topology due to Sambin [32,33]. Very roughly speaking, a formal real α
consists of pairs of rationals p < q such that the open intervals]p, q[form a
neighbourhood base of α. It is easily checked that the natural bijection between
formal and Dedekind reals is an order isomorphism (compare [26], sections 5
and 9); hence we get LUB for formal reals, too8. Every model akin to formal
8 In order to avoid impredicativity, one might interpret the set S in LUB as a family
indexed by a sufficiently neat set; confer Proposition 6.3 of [26], which is LUB without
the hypothesis (*) and thus providing a weak formal real as supremum. Weak formal
reals, however, are little satisfying because they can hardly have all the features of
their strong counterparts. For a choice-free proof of the sequential completeness of
formal reals not employing their weak version, see [26], Theorem 8.6.

518 P.M. Schuster

reals therefore appears to be as suitable as Dedekind reals for any choice-free
approach9; however, if only for the sake of a uniform presentation, we have chosen
to concentrate on the latter: from now on, we understand by a real number always
a Dedekind real.

3 Exact Intermediate Value Theorems

Given real numbers a < b, set [a, b] = {x ∈ R : a � x � b}. Let us recall the
Intermediate Value Theorem (IVT). If f : [a, b] → R is a continuous10

function with f(a) � 0 � f(b), then f(x) = 0 for some x ∈ [a, b].
Being almost folklore that IVT is nonconstructive unless some hypotheses are
added11, it is noteworthy that the well-known example of a continuous function
f that ‘balks’ at IVT is nondecreasing in the sense that x < y ⇒ f(x) � f(y) for
all x, y (see, e.g., [35], 6.1.2). As Helmut Schwichtenberg pointed out to us, the
classical interval halving argument still applies to functions mapping rationals to
rationals, such as polynomials with rational coefficients, for which even countable
choice is unnecessary because the rationals are totally ordered.

Theorem 2. IVT is valid for every pointwise continuous f : [a, b] → R with
f(Q) ⊂ Q, provided that a, b ∈ Q or f(a) < 0 < f(b).

Proof. We may assume a, b ∈ Q: if, e.g., f(a) < 0, then f(a′) < 0 for some
a′ ∈ Q∩]a, b[. Hence there is a uniquely determined nested sequence of nonempty
intervals In ⊂ [a, b] with rational endpoints, beginning with I0 = [a, b], such that
In+1 is the left (right) half of In whenever f(cn) � 0 (< 0) for cn ∈ Q as the
midpoint of In. In particular, (In) shrinks to a real number x with f(x) = 0. ✷

The putatively most general constructive version of IVT is the one for func-
tions f that are locally nonconstant, which is to say that whenever a � x < y � b
then f(z) �= 0 for some z ∈ [x, y]. Including the extensive class of (nonconstant)
real-analytic functions, this extra condition rules out those ‘balking’ functions
which are locally constant somewhere, but still allows functions to possess multi-
ple zeros: consider, for instance, f(x) = x2− c for c � 0. Accordingly, dependent
choice appears to be necessary for proving this form of IVT by approximate
interval halving (see, e.g., [35], 6.1.5).
9 Notwithstanding the fact that a rather general choice principle is a built-in tool of
formal topology, as of ITT; see footnote 3.

10 Albeit following Bishop’s supposition that any continuous function on [a, b] is uni-
formly continuous ([4], page 38), we shall subsequently make explicit when pointwise
continuity suffices. What Bishop simply postulated fails in constructive recursive
mathematics but is derivable in intuitionistic and, of course, in classical mathemat-
ics; compare [12], chapter 6.

11 IVT implies the law of dichotomy (DICH) for real numbers which in turn entails
the ‘lesser limited principle of omniscience’ (LLPO), a statement provably false in
constructive recursive mathematics; see [12], pages 53, 56 for details. In fact, IVT,
DICH, and LLPO are equivalent, if only by CC.

Elementary Choiceless Constructive Analysis 519

The same proof method was used beforehand (e.g., on page 40 of [4]) for the
IVT for strictly increasing functions, that are functions f such that x < y ⇒
f(x) < f(y) for all x, y 12. Since strictly increasing functions have at most one
zero, the reader might already expect that countable choice is dispensable for this
particular type of functions. Indeed, a choice-free proof by interval tesselating has
recently been noted by Richman ([30], Theorem 4); let us nevertheless provide
a rather order-theoretic proof.

Theorem 3. IVT obtains for every strictly increasing pointwise continuous f .

Proof. Having proven that S = {x ∈ [a, b] : f(x) � 0} possesses a supremum, it
is routine to verify that supS ∈ [a, b] and f(supS) = 0. To check the hypothesis
(*) of LUB, note first that if α < β then either α < a ∨ b < β, in which case we
are done, or a < β ∧ α < b and thus max{a, α} < min{b, β}; in particular, we
may assume α, β ∈ [a, b]. For then f(α) < f(β), either f(α) < 0 or f(β) > 0; in
the former case, f(α′) < 0 and thus α′ ∈ S for some α′ ∈]α, b], whereas in the
latter case β is easily seen to be an upper bound of S. ✷

It is tempting to generalise the choice-free approach to strictly injective func-
tions, by which we mean those f with x �= y ⇒ f(x) �= f(y) for all x, y 13; of
course, any strictly injective nondecreasing function is strictly increasing. Since
strictly injective functions are locally nonconstant, one could derive from the IVT
for locally nonconstant functions (that with choice) that any strictly injective
continuous f is either strictly increasing or else strictly decreasing, depending
on whether f(a) < f(b) or f(a) > f(b), respectively.

There is another positive monotonicity property which at first glance seems
to be suitable for some IVT without choice, namely, f(x) < f(y) ⇒ x < y
for all x, y; this property was named antidecreasing by Mandelkern [23]14. Any
nondecreasing function f is antidecreasing provided that f is also strongly ex-
tensional, which is to say that f(x) �= f(y)⇒ x �= y for all x, y. Since, however,
all pointwise continuous functions are strongly extensional15, we cannot expect
to prove IVT for antidecreasing functions.

4 Some Approximate Analysis

Throughout this section, let (M,d) be a metric space, and a, b ∈M . Recall the

Approximate Intermediate Value Theorem (aIVT). If f : M → R is a
continuous function with f(a) � 0 � f(b), then for every ε > 0 there is some
x ∈M with |f(x)| < ε.

12 Note also that, in both sources just referred to, one does not really have to suppose
f(a) < 0 < f(b).

13 Note that this property is constructively stronger (and thus more appropriate) than
its contrapositive f(x) = f(y)⇒ x = y for all x, y.

14 Bridges-Mahalanobis [10,11], who simply called it increasing, have demonstrated
that this property allows to detect the possible discontinuities of a given function,
and to extend the domain of any partial function to all points where left-hand and
right-hand limit exist and coincide.

15 See also Ishihara [19] for the relation between continuity and strong extensionality.

520 P.M. Schuster

We will subsequently investigate conditions onM and f that ensure the validity
of aIVT under these particular hypotheses. Let us stress that we shall frequently
but tacitly invoke the principle (†) pointed out in section 2.

Although there might well be no path in M that connects a and b, some x
as in aIVT can at least be found on any such path: as we will see later on, aIVT
obtains for intervals. Moreover, the hypothesis 0 ∈ [f(a), f(b)] can be replaced
by 0 ∈ 〈f(a), f(b)〉 where 〈u, v〉 = {u + tv : t ∈ [0, 1]} is the convex hull of any
u, v ∈ R16: in fact, given ε > 0, either |f(a) − f(b)| > 0, i.e., f(a) �= f(b) and
thus, e.g., f(a) < f(b), in which case 〈f(a), f(b)〉 = [f(a), f(b)] and we are done
by aIVT; or |f(a)− f(b)| < ε, in which case max{|f(a)|, |f(b)|} < ε anyway.

In [22] and [35], page 381, a topological space is called connected if U ∩ V is
nonempty whenever U ∪ V is a nontrivial open covering. The following fact in
case M = [0, 1] was noted by Mandelkern [23], who in turn ascribes it to Ray
Mines and Fred Richman.

Theorem 4. aIVT is valid for every pointwise continuous f provided that M
is connected.

Proof. Since M = U ∪ V for the open sets

U = {x ∈M : f(x) < ε}, V = {x ∈M : f(x) > −ε},

there is, by hypothesis, some x ∈ U ∩ V ; in other words, |f(x)| < ε. ✷

The connectedness of any interval, however, seems to rely on dependent
choice (confer [22], Theorem 2 and [35], 6.1.3); observe that this existential state-
ment is essentially lacking uniqueness. As Helmut Schwichtenberg noted17, the
direct proof of aIVT for intervals can nevertheless be rendered choice-free; it suf-
fices to substitute the approximate interval halving argument still used on page
40 of [4] by interval tesselating. We will now slightly generalise this method.

Let us call M almost connected whenever, for all nonempty subsets R,S of
M , if M = R ∪ S then for every ε > 0 there are r ∈ R, s ∈ S with d(r, s) < ε.

Proposition 1. Every connected metric space M is almost connected.

Proof. Given ∅ �= R,S ⊂M with M = R ∪ S, the open sets

U = {x ∈M : d(x, r) < ε/2 for some r ∈ R},
V = {x ∈M : d(x, s) < ε/2 for some s ∈ S}

coverM . By hypothesis, there is x ∈ U∩V ; hence d(x, r) < ε/2 and d(x, s) < ε/2
for some r ∈ R and s ∈ S, respectively, and thus d(r, s) < ε. ✷

Theorem 5. aIVT obtains for every uniformly continuous f provided that M
is almost connected.
16 Compare [5] and [24], 10.12, 16.4; there is a constructive difference between [u, v] and
〈u, v〉 for possibly incomparable u, v ∈ R; what we have in general is 〈u, v〉 ⊂ [u, v]
for u � v and 〈u, v〉 = [u, v] for u < v.

17 Yet unpublished lecture notes.

Elementary Choiceless Constructive Analysis 521

Proof. Given ε > 0, f is uniformly (ε/2)-δ continuous for some δ > 0. Since
M = R ∪ S with

R = {x ∈M : f(x) < ε/2}, S = {x ∈M : f(x) > −ε/2},
there are, by hypothesis, r ∈ R and s ∈ S with d(r, s) < δ; hence |f(r)| < ε and
|f(s)| < ε. ✷

Let us furthermore callM nearly connected if for all a, b ∈M and ε > 0 there
are c0, . . . , cn ∈M such that c0 = a, cn = b, and d(ck, ck−1) < ε for k = 1, . . . , n;
in other words, a and b can be connected by a chain of finitely many points in
M with mesh < ε.

Proposition 2. Every nearly connected metric space is almost connected.

Proof. For any ∅ �= R,S ⊂M with M = R ∪ S, pick a ∈ R, b ∈ S. Given ε > 0,
there are c0, . . . , cn ∈M with a = c0, b = cn, and d(ck, ck−1) < ε for all k. Since
c0 ∈ R, cn ∈ S, and ck ∈ R or ck ∈ S for all k, one can find, by hypothesis, some
k such that r = ck−1 ∈ R and s = ck ∈ S. By construction, d(r, s) < ε. ✷

Proposition 3. If M is a dense subset of some pathwise connected space X,
then M is nearly connected.

Proof. Let γ : [0, 1] → X be a path connecting a, b ∈ M . Given ε > 0, γ is
uniformly (ε/3)-δ continuous for some δ > 0. Construct a tesselation

0 = t0 < . . . < tn = 1

of [0, 1] with mesh < δ, pick ck ∈M with d(ck, γ(tk)) < ε/3 for k = 1, . . . , n− 1,
and set c0 = a, cn = b. Then the chain c0, . . . , cn in M has mesh < ε. ✷

We do not dare to ask under which circumstances the completion of some
nearly connected metric space is pathwise connected.

Lemma 1. Each almost connected metric space M is nearly connected provided
that M =M1 ∪ . . . ∪Mm for nearly connected subspaces M1, . . . ,Mm of M .

Proof. Given a, b ∈ M and ε > 0, we may assume a ∈ M1 and b ∈ Mm. Since
M = R ∪ S for R = M1 ∪ . . . ∪Mm−1 and S = Mm, there are, by hypothesis,
r ∈ R and s ∈ S with d(r, s) < ε. By induction, one can find a chain with mesh
< ε consisting of finitely many elements of R connecting a and r. ✷

Recall that a metric space M is totally bounded if, for every ε > 0, M can
be covered by finitely many open balls of radius ε with centres in M .

Proposition 4. Each almost connected metric spaceM is nearly connected pro-
vided that M is totally bounded, or consists of finitely many path components.

Proof. In view of Proposition 3 we may assume that M is the union of finitely
many nearly connected subspaces; Lemma 1 concludes the proof. ✷

Corollary 3. aIVT obtains for every uniformly continuous f provided that M
is a dense subset of some pathwise connected metric space. ✷

522 P.M. Schuster

It is noteworthy that we have not yet proven aIVT for functions on compact
intervals—one cannot expect to show constructively that these rather simple
spaces are pointwise connected, let alone convex18; we need some approximate
convexity notion instead.

In section 10 of [24], a metric space M is called nearly convex whenever, for
any x, y ∈ M and λ, µ > 0, if d(x, y) < λ + µ then d(x, z) < λ and d(y, z) < µ
for some z ∈M ; furthermore, any subset M of R is called paraconvex whenever,
for any x, y ∈M and z ∈ R, if x � z � y then z ∈M . According to [24], 10.13,
paraconvex subsets of R are nearly convex.

Proposition 5. If M is a dense subset of an interval, then M is nearly convex.

Proof. No matter whether real numbers a, b can be compared with each other, it
is obvious that a � x, y � b and x � z � y entail a � z � b. In particular, inter-
vals are paraconvex and thus nearly convex; the latter property is transmitted
to dense subsets. ✷

Proposition 6. Every nearly convex metric space M is nearly connected.

Proof. Given a, b ∈ M and ε > 0, set c0 = a, cn = b, and ρ0 = d(c0, cn).
Either ρ0 < ε and we are done, or ρ0 > ε/2, in which case, by hypothesis,
there is c1 ∈ M with d(c0, c1) < ε and d(cn, c1) < ρ0 − ε/2 = ρ1. By repeating
this process with c0, ρ0 substituted by c1, ρ1, we get—after a finite number of
steps—some chain c0, . . . , cn in M with mesh < ε. ✷

Corollary 4. aIVT is valid for every uniformly continuous f whenever M is a
dense subset of an interval. ✷

Needless to say, approximate results for intervals can easily be carried over to
convex subsets of normed spaces. In view of Proposition 6, one might suspect that
the notions ‘nearly connected’ and ‘nearly convex’ coincide with each other, but
by removing the hypothenuse from some rectangular triangle one gets a nearly
connected space that is not nearly convex. However, following the proof of [24],
Theorem 10.7, where ‘connected’ is supposed instead of ‘almost connected’, we
realise that for subsets of the line all approximate notions are equivalent.

Proposition 7. Every almost connected subset M of R is nearly convex.

Proof. Given x, y ∈ M and λ, µ > 0 such that |x− y| < λ+ µ, either |x− y| <
min{λ, µ}, in which case we are done, or x �= y; hence we may assume x < y.
For ε > 0 with y − x < (λ− ε) + (µ− ε) and ε < min{λ, µ}, set

R =M∩]−∞, x+ λ− ε[, S =M∩]y − µ+ ε,+∞[.
18 Although it remains to find a Brouwerian counterexample for that compact intervals

cannot be pointwise connected, there is one for that they cannot be convex: following
[24], 10.10, the assumption that [−|x|,+|x|] is convex for given x ∈ R would enable a
decision whether x � 0 or x � 0 (this observation answers also the question on page
69 of [24]). In intuitionistic mathematics, Waaldijk has proven that at least the real
numbers in [0, 1] admitting a ternary expansion form a pathwise connected space;
note that we cannot expect every real number to possess a ternary expansion ([36],
0.2.1, 0.2.2, 2.1.6). Open intervals, on the other hand, are easily seen to be convex.

Elementary Choiceless Constructive Analysis 523

Since M = R ∪ S because of y − µ + ε < x + λ − ε, we get, by hypothesis,
|r − s| < ε for some r ∈ R and s ∈ S; hence z ∈ M∩]y − µ, x + λ[and thus
|x− z| < λ and |y − z| < µ for z = r or z = s. ✷

Corollary 5. For each subset M of R, the following items are equivalent.

(i) M is nearly convex.
(ii) M is nearly connected.
(iii) M is almost connected. ✷

Again, we hesitate to conjecture something like that the closure of a nearly
convex subset of R is an interval. Note that, finally, Q is nearly convex but not
connected:

√
2 cuts Q into two open halves.

5 Concluding Remarks

Although the notion of a strictly increasing function is—at least for practical
purposes—not as restrictive as it seems to be, the corresponding IVT (with-
out choice) is less satisfying than that for locally nonconstant functions (with
choice): unlike the latter19, the former can hardly be extended to functions on
arbitrary normed spaces, let alone metric spaces. The case is just as for Cauchy
sequences versus Dedekind cuts in the rationals20: general Euclidean space lacks
the additional structure of the linear continuum that is given by order. In other
words, there literally is ‘more choice’ in higher dimensions, for instance, of ge-
ometrical directions, and these possible choices can hardly be by-passed unless
one abolishes or neglects them by forcing the solutions to be unique or by con-
centrating on approximate solutions, respectively. By the way, the (choice-free)
approximate form of IVT is from the very outset not restricted to functions of
a single variable.

The phenomenon just mentioned can already be observed in the case of two
dimensions. When dealing with complex numbers, namely, one is often inclined
to use polar coordinates z = |z| exp(i arg z), and every complex number z �= 0
can indeed be equipped with an argument arg z by means of the (choice-free) IVT
for strictly increasing functions. However, no argument can be constructed for
arbitrary—possibly vanishing—complex numbers z: otherwise every real number
(even those close to 0) would admit some sign ±1, a property which is nothing
else but the nonconstructive dichotomy principle for real numbers21. The situa-
tion is as for the classical form of IVT that would, of course, suffice for a general
19 See Bridges’s generalisation to functions on arbitrary normed spaces [5].
20 As Richman noticed, one might well proceed from the rationals to the reals by

a method such as Dedekind cuts by which one cannot complete arbitrary metric
spaces—to speak about a metric requires a notion of real numbers given in advance,
unless one completes the underlying space and the range of the metric simultane-
ously.

21 See Bridges-Dediu [7] for a direct proof of the facts that polar coordinates imply
LLPO, and that polar coordinates with the additional property ei arg z �= 1⇒ z �= 0
even entail the stronger ‘limited principle of omniscience’ (LPO).

524 P.M. Schuster

polar decomposition: solutions of possibly locally constant equations cannot be
isolated constructively.

How to calculate nevertheless square roots of complex numbers, a purpose
for which complex numbers were designed in their origin? Of course, one easily
derives from i2 = −1 the well-known formulas giving both square roots of a
complex number z = x+ iy, provided that x �= 0 or y �= 0. Problems arise, just
as for polar coordinates, only in the neighbourhood of 0: in order to localise a
single root of a complex number z close to 0, one has to choose between the two
possible roots as soon as z �= 0 turns out to be the case—in other words, choice
has to enter the stage.

Some rather specific (and classically valid) countable choice principle pre-
sented in [14] happens, however, to suffice for constructing some square root of an
arbitrary complex number z without making use of the alternative z �= 0 ∨ z = 0,
namely,

Weak Countable Choice (WCC). Given a sequence (An)n∈N of nonempty
sets at most one of which is not a singleton, there is some choice sequence
an ∈ An (n ∈ N).

Roughly speaking, WCC enables the extraction of a choice sequence provided
that there is at most one ‘true choice’ between two possibly different objects, no
matter at which stage this occurs, if at all.

More generally, an entirely choice-free constructive proof of the fundamental
theorem of algebra has been given by Richman in [28]; his construction produces
as output the whole ‘multiset’ of roots of any input polynomial, from which one
can extract a single element by means of WCC; see, again, [14] for the latter
method. Note that Richman could only get completely rid of countable choice
by gathering all roots of some polynomial together and thus forcing the solution
in question to be uniquely determined, whereas one needs some choice—namely,
WCC—as soon as one gives up this uniqueness demand in order to get a single
root.

After all, one might still suspect that choice-free constructive mathemat-
ics cannot deal with infinite-dimensional spaces. That, on the contrary, Hilbert
spaces can well be handled without countable choice has been shown recently in
[13,14,15,16], where one can found proofs of unique existential statements such
as

– the Riesz representation theorem ([15], Theorem 3), and
– the fact that each point in a strictly convex normed space has a closest point
to any complete located subset ([13], Theorem 6),

as well as various results of approximative character.
Let us end with a quotation from the same source with which we have started

our considerations (Beeson [2], page 25, footnote 16):

He [Bridges] wonders why this is. Logicians, is there a meta-theorem to explain
it [that constructive proofs are related with unique existence]?

Elementary Choiceless Constructive Analysis 525

We would like to extend Beeson’s question by asking for reasons why construc-
tions without countable choice seem to require locally unique existence (or some
turning to ‘approximate mathematics’), reasons somewhat deeper than the mere
indications we have given in this article.

Acknowledgements

Preliminary versions of this paper were designed during visits at the Technis-
che Universität Wien, Institut für Analysis und Technische Mathematik, and
at the Università degli Studi di Padova, Dipartimento di Matematica Pura ed
Applicata; the author is indebted to Rudolf Taschner and Giovanni Sambin for
the respective invitations. He also wishes to express his gratitude to Fred Rich-
man and Helmut Schwichtenberg for numerous communications, as well as to
Venanzio Capretta, Milly Maietti, Giovanni Sambin, and, in particular, to Gio-
vanni Curi for patiently explaining parts of Martin-Löf’s theory. The detailed
suggestions by one of the anonymous referees have helped a lot to bring this
article into its final form.

References

1. Bell, J.L., Zorn’s lemma and complete boolean algebras in intuitionistic type
theories. J. Symb. Logic 62 (1997), 1265-1279

2. Beeson, M.J., Foundations of Constructive Mathematics. Ergebn. Math. Grenz-
geb., 3. Folge, Bd. 6. Springer, Berlin and Heidelberg, 1985

3. Bishop, E., Foundations of Constructive Analysis. McGraw-Hill, New York, 1967
4. Bishop, E., Bridges, D., Constructive Analysis. Grundl. math. Wiss., Bd. 279.

Springer, Berlin and Heidelberg, 1985
5. Bridges, D.S., A general constructive intermediate value theorem. Z. math. Logik

Grundl. Math. 53 (1989), 433–453
6. Bridges, D.S., Constructive mathematics: a foundation for computable analysis.

Theoret. Comp. Science 219 (1999), 95–109
7. Bridges, D.S., Dediu, L.S., Paradise lost, or Paradise regained? Europ. Assoc.

Theor. Comp. Science Bull. 63 (1997), 141 – 145
8. Bridges, D., Ishihara, H., Schuster, P., Sequential compactness in constructive

analysis. Österr. Akad. Wiss., Math.-Nat. Kl., Sitzungsber. II 208 (1999)
9. Bridges, D., Ishihara, H., Schuster, P., Compactness and continuity revisited.

Forthcoming.
10. Bridges, D., Mahalanobis, A., Constructive continuity of increasing functions.

Forthcoming.
11. Bridges, D., Mahalanobis, A., Increasing, nondecreasing, and virtually continuous

functions. Forthcoming.
12. Bridges, D., Richman, F., Varieties of Constructive Mathematics. Cambridge Uni-

versity Press, 1987
13. Bridges, D., Richman, F., Schuster, P., Linear independence without choice. Ann.

Pure Appl. Logic 101 (2000), 95–102
14. Bridges, D., Richman, F., Schuster, P., A weak countable choice principle. Proc.

Amer. Math. Soc., to appear

526 P.M. Schuster

15. Bridges, D., Richman, F., Schuster, P., Adjoints, absolute values and polar de-
composition. J. Oper. Theory, to appear

16. Bridges, D., Richman, F., Schuster, P., Trace-class operators. Forthcoming.
17. Diaconescu, R., Axiom of choice and complementation. Proc. Amer. Math. Soc.

51 (1975), 176–178
18. Goodman, N.D., Myhill, J., Choice implies excluded middle. Z. math. Logik

Grundl. Math. 23 (1978), 461
19. Ishihara, H., Continuity and nondiscontinuity in constructive mathematics.

J. Symb. Logic 56 (1991), 1349–1354
20. Maietti, M.E., About effective quotients in constructive type theory. In: T. Al-

tenkirch, W. Naraschewski, B. Reus (eds.), Types ’98. Types for Proofs and Pro-
grams. Proc. 1998 Irsee Meeting. Springer Lecture Notes in Computer Science
1657 (1999)

21. Maietti, M.E., Valentini, S., Can you add power-sets to Martin-Löf intuitionistic
set theory? Math. Logic Quart. 45 (1999), 521–532

22. Mandelkern, M., Connectivity of an interval. Proc. Amer. Math. Soc. 54 (1976),
170–172

23. Mandelkern, M., Continuity of monotone functions. Pac. J. Math. 99 (1982),
413–418

24. Mandelkern, M., Constructive continuity. Mem. Amer. Math. Soc. 42 (1983), no.
277

25. Martin-Löf, P., Intuitionistic Type Theory (Notes by G. Sambin of a series of
lectures given in Padua, June 1980). Bibliopolis, Napoli, 1984

26. Negri, S., Soravia, D., The continuum as a formal space. Arch. Math. Logic 38
(1999), 423–447

27. Richman, F., Intuitionism as generalization. Philos. Math. 5 (1990), 124–128
28. Richman, F., The fundamental theorem of algebra: a constructive treatment with-

out choice. Pac. J. Math., to appear
29. Richman, F., Constructive mathematics without choice. In: U. Berger, H. Osswald,

P. Schuster (eds.), Reuniting the Antipodes. Constructive and Nonstandard Views
of the Continuum. Proc. 1999 Venice Symposion, forthcoming.

30. Richman, F., Pointwise differentiability. Forthcoming in the same volume as [29].
31. Ruitenburg, W.B.G., Constructing roots of polynomials over the complex numbers.

In: A. M. Cohen (ed.), Computational Aspects of Lie Group Representations and
Related Topics. Proc. 1990 Computer Algebra Seminar, Centrum voor Wiskunde
en Informatica (CWI), Amsterdam. CWI Tract 84 (1991), 107–128

32. Sambin, G., Intuitionistic formal spaces—a first communication. In: D. Skordev
(ed.), Mathematical Logic and its Applications. Proc. 1986 Bulgaria Conference.
Plenum, New York and London, 1987

33. Sambin, G., Formal topology and domains. In: Proc. Workshop Domains IV,
Informatik-Berichte 99-01, Universität-Gesamthochschule Siegen, 1999

34. Schuster, P.M., A constructive look at generalised Cauchy reals. Math. Logic Quart.
46 (2000), 125–134

35. Troelstra, A.S., van Dalen, D., Constructivism in Mathematics. An Introduction.
Two volumes. North Holland, Amsterdam, 1988

36. Waaldijk, F., Modern Intuitionistic Topology. Proefschrift, Katholieke Universiteit
Nijmegen, 1996

On the Logic of the Standard Proof Predicate

Rostislav E. Yavorsky �

Steklov Mathematical Institute RAS
Gubkina 8, GSP-1, Moscow, RUSSIA, 117966

tel. (095) 938-3752, fax (095) 135-0555
rey@mi.ras.ru

Abstract. In [2] S. Artemov introduced the logic of proofs LP describ-
ing provability in an arbitrary system. In this paper we present the logic
LPM of the standard multiple conclusion proof predicate in Peano Arith-
metic with the negative introspection operation. We establish the com-
pleteness of LPM with respect to the intended arithmetical semantics.
Two useful artificial semantics for LPM were also found. The first one is
an extension of the usual boolean truth tables, whereas the second one
deals with so-called protocolling extension of a theory. For both cases
the completeness theorem has been established.
In the last section we consider first order version of the logic LPM.
Arithmetical completeness of this logic is established too.

Keywords: logic of proofs, semantics, protocolling extensions of theo-
ries.

1 Introduction

The study of explicit provability logics or logics of proofs was initiated by
S. N. Artemov in [1]. In [2] he presented the operational logic of proofs LP with
the atoms “t is a proof of F” and established that every theorem of the modal
logic S4 admits a reading in LP as the statement about explicit provability. This
completed the effort by Kolmogorov [9] and Gödel [6,7] to provide a Brouwer
– Heyting – Kolmogorov style classical provability semantics for intuitionistic
logic.

In addition, it turned out that LP subsumes the λ-calculus, modal λ-calculus
and combinatory logic. Recently, it was shown in [3] that this new approach to
studying provability is useful for design of advanced system of proof verification.

A semantics for the logic LP was studied in [10]. In this paper we present
two different semantics for the logic of proofs with the monotonicity axiom. In
section 2 the logic LPM is introduced. The so called basic semantics is described
in section 3. In section 4 we prove that LPM is arithmetically complete for the
multiple conclusion version of the standard Gödel proof predicate. In section 5
� The work is partially supported by the Russian Foundation for Basic Research, grants

98-01-00249, 99-01-01282, INTAS grant 97-1259, and grant DAAH04-96-1-0341, by
DARPA under program LPE, project 34145.

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 527–541, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

528 R.E. Yavorsky

we introduce the notion of protocolling extension of a theory. The completeness
of LPM with respect to interpretations into such an extensions is established.
In section 6 we consider the first order logic QLPM and prove arithmetical
completeness theorem for it.

2 Operational Logic LPM with the Monotonicity Axiom

The language of the logic LPM is an extension of the propositional language
with infinite number of proof variables p1, p2, . . ., symbols of operations ·,+, !, ?A
and binary proof predicate t :F .

The definition of a proof term and a formula is given as follows:

1. propositional constants and variables �,⊥, S0, S1, . . . are formulas (atoms);
2. if A, B are formulas then ¬A, (A ∧B), (A ∨B), (A→ B) are formulas too;
3. proof variables p1, p2, . . . are proof terms;
4. if s, t are proof terms then (s · t), (s+ t), !t are proof terms too;
5. if t is a proof term and A is a formula then ?A(t) is a proof term;
6. if A is a formula, t is a proof term then (t :A) is a (quasiatomic) formula.

Thus, ·, +, ! are ordinary functional symbols (binary and unary correspond-
ingly), while ?A is a unary functional symbol with a formula as a parameter. In
what follows A(t) means that the proof term t occurs at least once as a subword
in the formula A.

Definition 1 The logic LPM is defined by the following axioms (over the propo-
sitional calculus in the extended language).

Operational axioms:
1. s : (A→ B) → (t :A→ (s · t) :B) (composition),
2. (t :A) ∨ (s :A) → (t+ s) :A (non-deterministic choice),
3. t :A→!t : (t :A) (verification),
4. ¬ t :A→ (?At) : (¬ t :A) (negative introspection).

General axioms:
5. t :A→ A (reflexivity),
6. ¬(t1 :A1(t2) ∧ t2 :A2(t3) ∧ . . . ∧ tn :An(t1)) (monotonicity).

The rule of inference modus ponens A,A→ B
B .

This system is an extension of S. Artemov’s logic LP (see [2]). We add the
axiom of negative introspection and the monotonicity axiom (it appeared for
the first time in [1]). The former is an operational version of the modal principle
¬✷A→ ✷¬✷A from the modal logic S5. It has very clear computational mean-
ing: if some construction denoted by t is not a proof of a formula A this fact
could be established effectively. The corresponding proof of non-correctness of t
with respect to A is denoted by ?A(t).

The monotonicity axiom characterizes a general property of considered in-
terpretations, namely the fact that any proof of a formula A is more complex
then the formula A itself. So, s :A(t) implies s � t, where “�” denotes the cor-
responding irreflexive order. In the definition of LPM this property is expressed
without additional symbol for the order relation.

On the Logic of the Standard Proof Predicate 529

3 The Basic Semantics for LPM
Let us consider the language Lδ which includes the propositional language, and
for an arbitrary finite set of formulas δ = {ϕ1, . . . , ϕk} and a formula ϕ the
construction [δ]ϕ is a formula of Lδ. Here are some examples of Lδ-formulas:

[ϕ,ψ]ϕ, [ψ,¬ϕ]ϕ ∨ [ϕ]ϕ, [[ϕ]ϕ,ψ, ϕ]ψ → [ψ]ϕ etc.

Below, any finite set of Lδ-formulas is called a configuration.
Let ∗ be an evaluation of the propositional variables by the truth values from

the set {0, 1}. We extend ∗ to all formulas of the language Lδ in the following
way:

[ϕ1, . . . , ϕk]ψ is true iff all formulas ϕ1, . . . , ϕk are true (i. e. the configuration
is correct) and the formula ψ coincides with some formula ϕi from this set.

It is clear that the set of valid formulas of the language Lδ is decidable and
could be axiomatized over the propositional calculus in the language Lδ by the
following axioms:

D1. [ϕ1, . . . , ϕk]ψ ↔ ϕ1 ∧ . . . ∧ ϕk, if ψ ∈ {ϕ1, . . . , ϕk};
D2. ¬[ϕ1, . . . , ϕk]ψ otherwise.

We define the operations ·, +, ! and ?ϕ on the set of all configurations such
that for any configurations δ, δ1, δ2 and formulas ϕ, ψ of the language Lδ the
following holds:

(·) if (ϕ→ ψ) ∈ δ1 and ϕ ∈ δ2 then ψ ∈ (δ1 · δ2);
(+) if ϕ ∈ δ1 or ϕ ∈ δ2 then ϕ ∈ (δ1 + δ2);
(!) if ϕ ∈ δ then [δ]ϕ ∈!(δ);

(?ϕ) if ϕ �∈ δ then (¬[δ]ϕ) ∈?ϕ(δ).

We say that the operations are correct with respect to a given evaluation ∗
if when applied to correct configurations they return a correct configuration.

Note, that the operations defined in the minimal possible way (when the
result is a minimal configuration which satisfies the conditions above) are correct
for any evaluation ∗.

Definition 2 A basic model for LPM is a triple M = (∗, Op, v) where

∗ is a truth evaluation of propositional variables;
Op is a set of operations ·, +, ! and ?ϕ which are correct with respect to the

evaluation ∗;
v is a mapping of proof variables of the language LPM into the set of correct

configurations of the language Lδ.

The assignment v could be extended to the set of all formulas and proof
terms of the language LPM in a natural way. We stipulate that v commutes
with the boolean connectives and operations ·, +, ! and

v(Si)⇀↽ Si, v(t :A)⇀↽ [v(t)]v(A), v(?At)⇀↽?v(A)(v(t)).

530 R.E. Yavorsky

It is clear that for every proof term t of the language LPM the configuration
v(t) is correct with respect to the evaluation ∗. A formula A is defined to be true
in the described model if v(A)∗ = 1.

Theorem 1 Let A be any formula of the language LPM. Then

LPM � A iff A is true in all basic models (∗, Op, v).
Proof. (⇒) For the operational axioms of LPM the statement follows immedi-
ately from the definition of the correct operations. As an example we check that
for any basic model M one has

M |= s : (A→ B) → (t :A→ (s · t) :B).

It means that M |= [v(s)](v(A) → v(B)) → ([v(t)]v(A) → [v(s · t)]v(B)). If
(v(A) → v(B)) �∈ v(s) or v(A) �∈ v(t) then the argument is trivial since one of
the premises turns to be false. If (v(A) → v(B)) ∈ v(s) and v(A) ∈ v(t) then
by the definition of the operation · the configuration v(s · t) is correct in M and
v(B) ∈ v(s · t). So, M |= [v(s · t)]v(B).

The other operational axioms are treated in a similar way.
The correctness of the monotonicity axiom follows from the following obser-

vation. If M |= t1 : A(t2) then the length of the configuration v(t1) (we mean
the number of symbols in its recording) is greater then the length of v(t2) since
v(t2) occurs explicitly (as a part of the formula v(A)) in the configuration v(t1).
So, in every sequence of formulas of the kind

t1 :A1(t2), t2 :A2(t3), . . . , tn :An(t1)

one always can find such an element that v(Ai) �∈ v(ti) and so M |= ¬ti :Ai.
To complete this part of the proof one only need to check that ifM |= A→ B

and M |= A then M |= B.

(⇐) Suppose that LPM �� A and t1, . . . , tm is an exhaustive enumeration
without repetitions of all terms which occur in A. Let us fix the set of fresh
propositional variables Q1, . . . , Qm. We define XA to be the minimal set satis-
fying the following conditions.

1. Each atomic and each quasiatomic subformula of A belongs to XA.
2. If a proof term ?Bt occurs in A and t :B ∈ XA then ?Bt : (¬t :B) ∈ XA.
3. If a proof term s · t occurs in A and s : (B → C) ∈ XA, t :B ∈ XA, then

(s · t) :C ∈ XA.
4. If a proof term s + t occurs in A and s : B ∈ XA or t : B ∈ XA, then

(s+ t) :B ∈ XA.
5. If a proof term !t occurs in A and t :B ∈ XA then !t : (t :B) ∈ XA.
6. For every atomic and quasiatomic formula from XA its negation belongs to
XA too.

7. The following formulas t1 : (Q1 ∨ ¬Q1), . . . , tm : (Qm ∨ ¬Qm) belong to XA
(this artificial condition is responsible for the injectivity of the constructed
interpretation; it will be necessary for the definition of operations).

On the Logic of the Standard Proof Predicate 531

Note that the set XA is finite since for every quasiatomic formula t : B
from XA the proof term t occurs in A, and one can show by induction on the
complexity of t that for any proof term the set of formulas {Bi | t :Bi ∈ XA} is
finite.

Below, we will write “�” instead of “LPM �”.
A set of formulas W ⊂ XA is called to be consistent, if �� ∧W → ⊥. A

consistent subset W of the set XA is called to be maximal, if every extension
of it with a formula from XA is inconsistent. The following properties of the
maximal consistent subsets easily follow from the definition.

Lemma 11 Let W be some maximal consistent subset of XA. Then

1. for every atomic or quasiatomic formula B from XA one has either B ∈W
or ¬B ∈W ;

2. for every subformula B of the formula A one has either � ∧W → B or
� ∧W → ¬B;

3. there exists maximal consistent set W such that � ∧W → ¬A, and all of
the formulas ti : (Qi ∨ ¬Qi) belong to W .

Let now W denote the corresponding set which satisfies the last statement
of the lemma. We will construct the model M = (∗, Op, v) in the following way.
The evaluation ∗ is defined as follows: S∗i = 1 if Si ∈W and S∗i = 0 otherwise.

Recall that for propositional variables v(Si) ⇀↽ Si. Now we are going to
define the assignment v for all subformulas and all proof terms in A and then
the appropriate operations Op will be written down.

Consider the following order relation on the proof terms which occur in A:

t1 ≺ t2 iff t2 :D(t1) ∈W for some formula D.

Recall thatW is consistent, so, according to the monotonicity axiom, every chain
of the kind t1 � t2 � . . . is finite.

Let now t be any minimal (with respect to the defined order) proof term
such that v(t) is not defined. Then for every formula t :D ∈ W the translation
v(D) is already defined. Indeed, either D contains no occurrences of other proof
terms (in this case v(D) = D), or some other proof terms occur in D, which
are less then t with respect to described order, but the translation v is already
defined for them, so v(D) is already defined too. Thus, we can define v(t) in the
following way:

v(t)⇀↽ {v(D) | t :D ∈W}. (1)

Eventually, the translation v will be defined for all proof terms and all sub-
formulas of A.

Lemma 12 For every subformula B of the formula A one has

M |= B iff LPM �
∧
W → B.

532 R.E. Yavorsky

Proof. Induction on the steps of the described procedure for the definition of the
mapping v. On the first step the translation v was defined for the propositional
variables. In this case it is sufficient to note that M |= Si iff Si ∈W . According
to the properties of W one has Si ∈W iff � ∧W → Si.

The case when B is a boolean combination is trivial.
Let now B be of kind t :C. By the induction hypothesis for every formula Di

such that t :Di ∈W the translation v(Di) is already defined and

M |= Di iff LPM �
∧
W → Di.

According to the reflexivity axiom the implication
∧
W → Di is provable for all

such Di, so all Di are true in M . Thus, according to (1), the configuration v(t)
is correct in M . So,

M |= t :C iff v(C) ∈ v(t).
On the other hand, because of (1) one has v(C) ∈ v(t) iff t :C ∈W , and, by the
properties of W ,

t :C ∈W iff LPM �
∧
W → t :C.

It follows from this lemma that M �|= v(A).
Let us now complete the construction of the model. The translation v is now

defined for all proof terms from A, so, it is defined for all proof variables from
A. For all other proof variables we put v(p) to be empty configuration. Now we
have to define the operations Op appropriate to the translation v:

(·) v(t) · v(s)⇀↽ v(t · s), if t · s occurs in A,
δ1 · δ2 ⇀↽ {ψ | φ→ ψ ∈ δ1 and φ ∈ δ2} for all other pairs of configurations.

(+) v(t) + v(s)⇀↽ v(t+ s), if t+ s occurs in A,
δ1 + δ2 ⇀↽ {ψ | ψ ∈ δ1 or φ ∈ δ2} otherwise.

(!) !(v(t))⇀↽ v(!t), if !t occurs in A,
!δ ⇀↽ {[δ]ψ | ψ ∈ δ} for all other configurations.

(?B) ?v(B)(v(t))⇀↽ v(?Bt), if ?Bt occurs in A,
?ϕ(δ) ⇀↽ {¬[δ]ϕ} if ϕ �∈ δ and empty configuration otherwise, for all other
configurations δ.

Note, that the operations Op defined above are correct in M . Indeed, for
those configurations which coincide with images of some proof terms from A it
follows from the definition of the set XA and from the properties of W . For all
other configurations it follows from the correctness of the minimal operations.

Thus, the model M = (∗, Op, v) is constructed, such that M �|= A.

Corollary 11 The logic LPM is decidable.

Proof. It follows from the given proof that the logic LPM is complete under the
class of finitely defined basic models for which only finite number of propositional
variables are true, the operations Op are defined in the minimal way for all
arguments except for the finite set, and only finite number of proof variables are
interpreted by nonempty configurations.

In fact, the detailed inspection of the proof allows to find the exact upper
bounds on the complexity of the countermodel.

On the Logic of the Standard Proof Predicate 533

4 Arithmetical Completeness

Let PROOF (x, y) denote the following multi-conclusion version of the standard
Gödel proof predicate for Peano arithmetic PA:

“x is a number of a finite set of derivations in PA, and y is a number of a
formula, proved by one of this derivations”.

It has the following natural properties (in what follows Th(n) stands for the set
{ϕ | PROOF (n, �ϕ�)}):

1. For every finite set Ω of theorems of PA there exists a natural number n
such that Ω = Th(n).

2. For any arithmetical formula ψ(x) with one free variable x and any natural
numbers m,n the following holds:

PA � PROOF (m, �ψ(n)�) → m > n.

Below, instead of the predicate PROOF we may consider any proof predicate
with these two properties.

An arithmetical interpretation f of the language LPM is organized as follows:

– arithmetical sentences are assigned to all propositional variables;
– computable functions +′, ·′, !′ and ?′ϕ on natural numbers are defined in such

a way that the corresponding operational properties are satisfied;
– numerals are assigned to all proof variables.

Interpretation f commutes with boolean connectives and operations on proofs
and

f(?A(t)) =?′f(A)(f(t)), f(t :A) = PROOF (f(t), �f(A)�).

Theorem 2 Let A be any formula in the language LPM. Then the following
holds

a) if LPM � A then PA � f(A) for all arithmetical interpretations f ;
b) if LPM �� A then there exists arithmetical interpretation f such that

PA � ¬f(A).

Proof. a) Straightforward induction on the length of proof in LPM.
b) Let A be unprovable in LPM. Then there exists a basic model M , such

thatM |= ¬A. It was already mentioned above that we can takeM to be finitely
defined. First of all we define arithmetical assignment for propositional variables
in the following way:

f(Si)⇀↽
{
i = i, if M |= Si;
i = i+ 1, otherwise .

It is clear that for every pure propositional formula ϕ one has

M |= ϕ ⇔ PA � f(ϕ). (2)

534 R.E. Yavorsky

Firstly, we are going to extend the definition of f to all formulas of the
languages Lδ and to keep the condition (2) true.

Let δ = {ϕ1, . . . , ϕn} be a finite set of Lδ-formulas such that the assignment
f(ϕ1), . . . , f(ϕn) is already defined. If all formulas f(ϕ1), . . . , f(ϕn) are provable
in PA then put f(δ) to be the least natural number n such that

Th(n) = {f(ϕ1), . . . , f(ϕn)}.

Otherwise, take f(δ) to be the least natural number n which is not a Gödel
number of any set of proofs, and such that it was not defined to be the f -image
for another configuration δ′.

Stipulating that f([δ]ϕ) ⇀↽ PROOF (f(δ), f(ϕ)) the interpretation f could
be defined for all formulas of the language Lδ. One can easily check that f has
the following properties:

1. for every formula ϕ in the language Lδ the formula f(ϕ) is arithmetical
∆1-sentence;

2. f is computable;
3. f−1 is computable too, namely, for every arithmetical sentence one can ef-

fectively either find its pro-image or establish that it is not an image of some
Lδ-formula; the same holds for configurations: for every natural number n
one can effectively either find the corresponding configuration, or establish
that n is not an image of any Lδ-configuration;

4. f is injective, i.e. if f(ϕ) coincides with f(ψ) then ϕ and ψ coincide too;
5. the condition (2) holds for every formula in the language Lδ;
6. an arbitrary nonempty configuration δ is correct in M if and only if f(δ) is

a Gödel number of some multiple proof in PA.

Now, using the interpretation of the language LPM into the language Lδ

given with the basic model M we can extend definition of f to all formulas of
the language LPM.

For proof terms put f(t) ⇀↽ f(v(t)). The only thing we need to do is an
appropriate definition of arithmetical functions ·, +, ! and ?. The properties
2 − −4, 6 listed above allows us to carry this definition from the model M . We
define:

f(δ1) ·′ f(δ2) = f(δ3) iff δ1 · δ2 = δ3;
f(δ1) +′ f(δ2) = f(δ3) iff δ1 + δ2 = δ3;

!′f(δ1) = f(δ2) iff !δ1 = δ2;
?′f(ϕ)f(δ1) = f(δ2) iff ?ϕδ1 = δ2.

In case not all of the arguments are images of some configurations define the
result in arbitrary computable way.

Since the model M is finitely defined the operations defined in such a way
are computable. It is clear that the condition (2) remains true for all formulas
of the language LPM. So, PA � ¬f(A). Q.E.D.

On the Logic of the Standard Proof Predicate 535

5 Protocolling Extensions of Theories

In this section we generalize arithmetical semantics in the following way. Let us
fix an arbitrary consistent recursively enumerable theory T . We assume that all
tautologies in the language of T are provable in T and the modus ponens rule is
admissible. Also we assume that T is given by some decidable set of axioms and
rules of inference.

Consider now a non-deterministic theorem proving device MT which works
as follows. At each moment the configuration of MT is characterized by a finite
set of formulas in the language of T . The computational process of MT satisfies
the following conditions (below, Ωi denotes a configuration ofMT at the moment
i): MT starts from the empty set of formulas, so Ω1 = ∅, and there are two ways
to obtain Ωi+1 from Ωi:

1. (deduction) Ωi+1 = Ωi ∪ {ϕ}, where ϕ is
– either a tautology in the language of T ,
– or an axiom of T ,
– or immediate consequence of some formulas from Ωi by one of the rules

of inference;
2. (clearing of memory) Ωi+1 = Ωi \ {ϕ}, where ϕ ∈ Ωi.

Any finite sequence of configurations Ω1, . . . , Ωn which satisfies these condi-
tions will be called a protocol for MT . We say that the given protocol verifies
formula ϕ if ϕ ∈ Ωn. We say thatMT verifies formula ϕ if there exists a protocol
for MT which verifies ϕ.

It is clear that MT verifies ϕ if and only if ϕ is a theorem of T .

Suppose now thatMT is strong enough to analyze its own protocols. Namely,
given a list of configurations π and a formula ϕ it can decide whether π is
a protocol for MT which verifies ϕ or not (such a procedure exists since the
corresponding relation is decidable). Also, it means that the device is able to
operate with the set of atomic formulas extended in the following way:

if π is a list of configurations and ϕ is a formula then [π]ϕ is also a formula
denoting the fact that π verifies ϕ.

Now, the corresponding item in the description of the process of computation
looks as follows:

1. (deduction) Ωi+1 = Ωi ∪ {ϕ}, where ϕ is
– either a tautology in the extended language,
– or an axiom of T ,
– or immediate consequence of some formulas from Ωi by one of the rules

of inference;
– or has the form [π]ψ, where π verifies ψ,
– or has the form ¬[π]ψ, where π does not verify ψ.

536 R.E. Yavorsky

This advanced version of the device MT will be denoted by Me
T .

Such an extension of the proving device described above corresponds to the
following extension T e of the theory T . The language of T e is an extension of
the language of T by the formulas of kind [π]ψ. The set of axioms is extended
by all tautologies in the extended language and formulas of the form [π]ϕ, where
π verifies ϕ, and ¬[π]ϕ, where π does not verify ϕ. It is clear that T e � ϕ if and
only if Me

T verifies ϕ.

Now we can define the protocolling semantics for the logic LPM. Let T e be
the protocolling extension of a theory T . An interpretation f of the language of
LPM into the language of T e is a triple 〈∗, Op, v〉 with the following parameters:

∗ maps propositional variables to formulas in the language of T e;
Op is a set of operations +′, ·′, !′ and ?′ϕ defined on the set of all protocols of

Me
T which satisfy the corresponding operational axioms of LPM;

v maps every proof variable to a protocol for Me
T .

Stipulating that f commutes with boolean connectives and operations it could
be extended to the set of all formulas and proof terms of the language LPM. In
particular,

f(?A(t)) =?′f(A)(f(t)), f(t :A) = [f(t)]f(A).

Theorem 3 Suppose that T is a theory and A is an arbitrary formula in the
language of LPM. Then

a) if LPM � A then for any interpretation f one has T e � f(A);
b) if LPM �� A then there exists an interpretation f such that T e � ¬f(A).

Sketch of proof. The first proposition of the theorem follows by straightforward
checking of all axioms of LPM to be provable in T e under any interpretation.

To prove the proposition (b) we use the completeness of LPM with respect
to the basic models. Let M be a basic model such that M �|= A. One can embed
M into T e in the following way. If a propositional variable Si is true in M then
we put fM (Si) to be a tautology in the language of T e, otherwise put fM (Si) to
be any inconsistent sentence. The only thing one should care about is injectivity
of the embedding: different formulas of LPM should be interpreted by different
formulas of T e. It is clear that for every correct configuration δ = {ϕ1, . . . , ϕn}
the corresponding formulas will be provable in T e. So, there exists a protocol
πδ for Me

T which verifies the set of formulas {fM (ϕ1), . . . , fM (ϕn)}. We put
fM (δ)⇀↽ πδ. The operations are treated in the obvious way.

Since M |= ¬A, one has T e � ¬fM (A) for the described interpretation fM .

6 First Order Case

The study of first order logic of proofs was initiated in [5]. Given an arithmetical
theory T and a class K of proof predicates the logic QLPK(T) is defined as
the set of all formulas in the corresponding language described below, which are

On the Logic of the Standard Proof Predicate 537

provable in T under every arithmetical interpretation based on a proof predicate
from K. It was shown there that for different natural classes K and theories T
the corresponding logic QLPK(T) is not effectively axiomatizable.

In this section we consider the first order logic QLPM and prove arithmetical
completeness theorem for it.

6.1 The Main Definition

The language of the first order logic of proofs QLPM is the extension of the pure
predicate language with infinite set of proof variables p1, p2, . . ., proof predicate
t :F , and symbols of operations ·, +, !, ?A (the same as in the propositional case)
and infinite set of new unary operational symbols g1, g2, . . ., for the operation of
generalization over the corresponding individual variables x1, x2,

Formulas and proof terms of the language QLPM are constructed as follows:

1. if Q is any n-ary predicate symbol and y1, . . . , yn are individual variables
then Q(y1, . . . , yn) is a formula;

2. if A, B are formulas then ¬A, (A ∧B), (A ∨B), (A→ B) are formulas too;
3. if A is a formula, and xi is an individual variable then ∀xiA is a formula too,

and xi is excluded from the set of free variables in A;
4. proof variables p1, p2, . . . are proof terms;
5. if s, t are proof terms then (s · t), (s+ t), !t, gi(t) are proof terms too;
6. if t is a proof term and A is a formula then ?A(t) is a proof term;
7. if A is a formula, t is a proof term then (t :A) is a (quasiatomic) formula

with no free variables, i.e. the proof operator bounds all free occurrences of
individual variables in A.

Definition 3 The logic QLPM is defined by the following axioms (over the first
order calculus in the extended language).

Operational axioms:
1. s : (A→ B) → (t :A→ (s · t) :B) (composition),
2. (t :A) ∨ (s :A) → (t+ s) :A (non-deterministic choice),
3. t :A→!t : (t :A) (verification),
4. ¬t :A→ (?At) : (¬t :A) (negative introspection),
5. t :A→ gi(t) :∀xiA (generalization),

General axioms:
6. t :A→ A (reflexivity),
7. ¬(t1 :A1(t2) ∧ t2 :A2(t3) ∧ . . . ∧ tn :An(t1)) (monotonicity).

The rules of inference: A,A→ B
B (modus ponens), A

∀xiA (generalization).

6.2 Arithmetical Semantics

Let T be any consistent extension of PA with decidable set of axioms. We suppose
that Gödel numbering of arithmetical language is fixed, so for every such a theory
we may consider multi-conclusion version of the standard proof predicate:

538 R.E. Yavorsky

“x is a number of a finite set of derivations in T , and y is a number of a
formula, proved by one of these derivations”.

The corresponding arithmetical formula is denoted by PROOFT (x, y).
An arithmetical interpretation fT of the language QLPM is organized in the

following way:

– every atomic formula is interpreted by an arithmetical formula with the same
set of free variables;

– fT commutes with the Boolean connectives, quantifiers and substitution of
variables, i.e. if fT (Q(x)) = ϕ(x) then fT (Q(y)) = ϕ(y);

– every proof variable is interpreted by a natural number;
– totally computable functions ·′,+′, !′, ?′ϕ and g′i for all i and ϕ are defined,

which satisfy the operational axioms 1–5 of the logic QLPM, i.e.
• if PROOFT (n, �ϕ → ψ�) and PROOFT (m, �ϕ�) then PROOFT (n ·′
m, �ψ�);

• if not PROOFT (n, �ϕ�) then PROOFT (?′ϕ(n), �¬PROOFT (n, �ϕ�)�);
• if PROOFT (n, �ϕ�) then PROOFT (g′i(n), �∀xiϕ�) etc.

for any natural numbers i,m, n and arithmetical formulas ϕ and ψ ;
– using these functions the interpretation of proof terms is computed;
– fT (t :A)⇀↽ PROOFT (fT (t), �fT (A)�).

6.3 Arithmetical Completeness

Theorem 4 Let A be any formula in the language QLPM. Then
a) if QLPM � A then for every theory T and interpretation fT one has

T � fT (A);
b) if QLPM �� A then there exists an extension T of PA by finite set of true

sentences and interpretation fT such that T �� fT (A).

Sketch of proof. a) Straightforward induction on the proof in QLPM.
b) Scheme of the proof is the following. Firstly, we build finite set XA of

quasiatomic formulas which are adequate to A. Using this set we turn from the
fact that QLPM �� A to the fact of nonprovability of the implication K∗A → A∗

in the first order calculus for the conjunction KA and translation ∗ described
below. According to the arithmetical formalization of the Gödel completeness
theorem there exists arithmetical interpretation h of the pure predicate language
such that h(K∗A → A∗) is false in the standard model N of arithmetic. Then,
by combining the translation ∗ and interpretation h we construct the desired
theory T and interpretation fT .

Let Tm(A) denote the set of all proof terms which occur in A. The set XA
is defined as the minimal set of quasiatomic formulas such that

1. all quasiatomic subformulas of A belong to XA;
2. if (s · t) ∈ Tm(A) and s : (B → C) ∈ XA, t :C ∈ XA then s · t :C ∈ XA;
3. if (s+ t) ∈ Tm(A) and either s :B ∈ XA, or t :B ∈ XA then s+ t :B ∈ XA;
4. if (!t) ∈ Tm(A) and t :B ∈ XA then !t : t :B ∈ XA;

On the Logic of the Standard Proof Predicate 539

5. if gi(t) ∈ Tm(A) and t :B ∈ XA then gi(t) : (∀xiB) ∈ XA;
6. if ?B(t) ∈ Tm(A) then ?B(t) : (¬t :B) ∈ XA.

One can show by induction of the length of a proof term t that for every t ∈
Tm(A) the set {A | t :A ∈ XA} is finite. So, XA is finite too.

Let KA denote the conjunction of all proper axioms of QLPM which use only
formulas from XA. For axiom 6 we take its universal closure.

Consider now a translation ∗ of the language QLPM into the pure predicate
language which substitutes corresponding fresh propositional variables St:F for
all the occurrences of quasiatomic formula t :F .

It leaves unchanged all pure predicate formulas, and every quasiatomic for-
mula t : F is interpreted by some fresh propositional variable, say St:F . We
stipulate that ∗ commutes with Boolean connectives, quantifiers and operation
of renaming of individual variables.

One can easily verify that implication K∗A → A∗ is not provable in the first
order calculus, since QLPM �� A. So, according to the arithmetical formalization
of the Gödel completeness theorem for the first order calculus (see [8]), there
exists an arithmetical interpretation h of the pure predicate language, such that
the formula h(K∗A → A∗) is false in N, i.e. N |= h∗(KA) ∧ ¬h∗(A).

The composition of ∗ and h (denoted by h∗) is arranged very similar to the
desirable interpretation fT . Indeed, it assigns to every atomic predicate formula
some arithmetical formula with the same set of free variables, it commutes with
boolean connectives, quantifiers and operation of renaming variables, and N |=
¬h∗(A). Unfortunately, h∗ does not correlate with provability, but it can be
fixed.

Without loss of generality one may assume that for every propositional vari-
able S either h(S) = � or h(S) = ⊥ for �⇀↽ (0 = 0), ⊥⇀↽ (0 = 1).

Recall that for every quasiatomic formula t : F from XA the implication
t :F → F is included into KA. So, if h∗(t :F) = � then N |= h∗(F).

Now we can define the desired extension T of PA:

T = PA + {h∗(F) | t :F ∈ XA and h∗(t :F) = �}.
It follows from the observation above that all additional axioms are true in N.

We define fT (Q) ⇀↽ h∗(Q) for all pure predicate formulas. For all proof
variables not occurring in A put fT (p) ⇀↽ 0. Now we are going to define in-
terpretation fT for all proof terms from Tm(A), and then the corresponding
computable functions for the operations on proofs will be provided.

Consider a partial order on Tm(A) which is the transitive closure of the
following relation: t1 ≺ t2 iff for some formula B(t1) one has t2 :B(t1) ∈ XA and
h∗(t2 :B(t1)) = �. This order is well founded, since the monotonicity axiom for
all such formulas is included in KA.

Consider a term t, which is minimal with respect to this order relation. The
set Ω(t) ⇀↽ {F | t : F ∈ XA and h∗(t : F) = �} contains only pure predicate
formulas, therefore the interpretation fT is already defined for them. On the
other hand, according to the definition of T the results of translation of all these
formulas are axioms of T . So, there are infinitely many proofs of the set fT (Ω(t)).

540 R.E. Yavorsky

We define fT (t) to be Gödel number of one of them. The only thing one should
care about is the injectivity of fT on the set Tm(A). It will be needed for the
appropriate definition of operations.

Thus, fT is defined for all minimal proof terms. One can easily see that for
every formula F in the language QLPM if fT (F) is already defined then the
following condition holds:

PA � fT (F) ↔ h∗(F) (3)

Let now t ∈ Tm(A) be a minimal proof term such that fT (t) is not defined.
Then, for every formula F ∈ Ω(t) the interpretation fT (F) is already defined.
On the other hand, according to property (3) all formulas from fT (Ω(t)) are
equivalent in PA to some axioms of T . So, they are provable in T , and we can
define fT (t) as Gödel number of a proof of this set of formulas. It is clear, that
for the extended version of fT the condition (3) remains true. In a finite number
of steps the definition of fT can be extended to all proof terms from Tm(A).
Then, following this definition one easily can define the appropriate computable
functions for operations of proofs (see the corresponding part in the proofs of
theorems 1 and 2).

So, according to the condition (3) one has N |= ¬fT (A), since N |= ¬h∗(A).
Hence, T �� fT (A).

Acknowledgments

I am very grateful to my scientific advisor and coordinator professor Sergei Niko-
laevich Artemov for his permanent care and encouragement. Also, I am very
thankful to Vladimir Nikolaevich Krupski and Tanya Yavorskaya (Sidon) for
helpful discussion of the subject.

References

1. S. Artemov, Logic of Proofs. Annals of Pure and Applied Logic, 67 (1994), pp. 29–
59.

2. S. Artemov, Explicit provability: the intended semantics for intuitionistic and modal
logic. Techn. Rep. No 98–10. Mathematical Science Institute, Cornell University,
1998. Available at http://www.math.cornell.edu/˜ artemov/publ.html

3. S. Artemov, On explicit reflection in theorem proving and formal verification. In
Springer Lecture Notes in Artificial Intelligence, 1632 (1999), pp. 267–281.

4. S. Artemov, E. Kazakov and D. Shapiro, Logic of knowledge with justifications.
Techn. Rep. No 99–12. Mathematical Science Institute, Cornell University, 1999.

5. S. Artemov and T. Sidon-Yavorskaya, On the first order logic of proofs. Techn. Rep.
No 99–11. Mathematical Science Institute, Cornell University, 1999.

6. K. Gödel, Eine Interpretation des intuitionistischen Aussagenkalkuls, Ergebnisse
Math. Colloq., Bd. 4 (1933), S. 39–40.

7. K. Gödel, Vortrag bei Zilsel (1938), in S. Feferman, ed., Kurt Gödel Collected Works.
Volume III, Oxford University Press, 1995

8. D. Hilbert, P. Bernays, Grundlagen der Mathematik, II, Springer–Verlag, 1968.

On the Logic of the Standard Proof Predicate 541

9. A. Kolmogoroff, Zur Deutung der intuitionistischen Logik, Math. Ztschr., Bd. 35
(1932), S. 58–65.

10. A. Mkrtychev, Models for the Logic of Proofs. In Springer Lecture Notes in Com-
puter Science, 1234 (1997), pp. 266–275.

Author Index

Abramsky, S. 140
Aspinall, D. 156
Atserias, A. 172

Börger, E. 41
Baaz, M. 187
Bauer, A. 202
Benedikt, M. 217
Birkedal, L. 202
Blass, A. 1, 18
Blumensath, A. 232
Bradfield, J.C. 247

Comon, H. 262
Coquand, T. 277
Cortier, V. 262

Danos, V. 292

Ésik, Z. 302

Giesl, J. 457
Gurevich, Y. 1, 18

Hancock, P. 317
Hemaspaandra, E. 332

Jaume, M. 343

Kahle, R. 356
Keisler, H.J. 217
Krivine, J.-L. 292
Kuznets, R. 371

Laird, J. 384
Lenisa, M. 140

Makowsky, J.A. 399
Meer, K. 399
Middeldorp, A. 457
Momigliano, A. 411
Murawski, A.S. 427

Naijun, Z. 442

Ohsaki, H. 457
Ong, C.-H.L. 427

Parigot, M. 472
Pauly, M. 485
Poizat, B. 61
Power, J. 497

Robinson, E. 497

Schmid, J. 41
Schulte, W. 71
Schuster, P.M. 512
Setzer, A. 317
Shelah, S. 72
Stirling, C. 126
Studer, T. 356

Vardi, M.Y. 139

Yavorsky, R.E. 527

Zach, R. 187
Zhang, G.-Q. 277

	Computer Science Logic
	Preface
	Organization
	Yuri Gurevitch: The Evolution of a Research Life from Algebra through Logic to Computer Science
	Table of Contents
	Background, Reserve, and Gandy Machines
	Introduction
	Structures
	Syntax
	Semantics

	Sequential-Time and Abstract-State Postulates
	Hereditarily Finite Sets

	Background Classes
	Preliminaries
	Main Definitions
	Analysis

	Examples of Background Classes
	Set Background
	String Background
	List Background
	Set/List Background
	A Non-finitary Background

	Background Structures and the Reserve
	Inessential Nondeterminism
	Gandy Machines
	The Nondeterministic Choice Problem
	Nondeterministic (Specifications for) Gandy Machines
	Essential Determinism and Structurality

	Choiceless Polynomial Time Computation and the Zero-One Law
	Introduction
	The Zero-One Law
	BGS Programs
	Outline of Proof of Zero-One Law
	Tasks and Their Computational Order
	Involved and Active Elements
	Strong Extension Axioms
	Supports
	Combinatorics
	Putting the Proof Together
	Extension and Strong Extension
	The Almost Sure Theory Is Undecidable

	Composition and Submachine Concepts for Sequential ASMs
	Introduction
	Standard ASMs
	Sequential Composition and Iteration
	Sequence Constructor
	Iteration Constructor
	B{"o}hm-Jacopini ASMs

	Parameterized Machines
	Further Concepts
	Local State
	ASMs with Return Value
	Error Handling

	Related Work
	Deduction Rules for Computing Update Sets

	Une tentative malheureuse de construire une structure éliminant rapidement les quanteurs
	Introduction
	Deux successeurs
	Le prédicat de vérité
	L'art de faire des hypothèses

	Translating Theory into Practice -- Abstract State Machines within Microsoft
	Choiceless Polynomial Time Logic: Inability to Express
	Introduction
	The Choiceless Polynomial Time Logic Presented
	The General Systems of Partial Isomorphisms
	The Canonical Example
	Relating the Definitions in [BGSh 533] to the One Here
	Closing Comments
	References

	Schema Revisited
	Introduction
	Monadic Recursion Schemes
	Recursive Program Schemes
	The Decision Procedure
	Conclusion

	Automated Verification = Graphs, Automata, and Logic
	A Fully Complete PER Model for ML Polymorphic Types
	ML Polymorphism
	Models of System F
	Models of PERs over a Linear Combinatory Algebra
	Partial Involutions Affine Combinatory Algebra
	A Fully Complete PER Model
	Final Remarks and Directions for Future Work

	Subtyping with Power Types
	Introducing Power Types
	Examples in lambdaPower
	A Simple Programming Example
	Subtyping Type Operators and Families
	lambdaPower as a Logical Framework

	The System lambdaPower
	Properties of lambdaPower
	Further Properties

	Rough Type-Checking
	Rough Typing System

	Semantics
	Structures
	Environments and Interpretations
	Models
	Soundness

	Conclusions

	The Descriptive Complexity of the Fixed-Points of Bounded Formulas
	Introduction
	Background
	Main Results

	Preliminaries
	General Facts about Bounded Formulas
	Fixed-Points of Bounded Formulas on ${cal BFR}$
	The Presence of Input Predicates

	Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic
	Introduction
	Syntax and Semantics of Intuitionistic Fuzzy Logic
	Hypersequents and IF
	Cut Elimination and Midhypersequent Theorem
	Elimination of the Takeuti-Titani Rule

	Continuous Functionals of Dependent Types and Equilogical Spaces
	Introduction
	Overview of Technical Work
	Equilogical Spaces
	Domains and Totality
	Comparison of Dependent Types
	Continuous Choice Principle
	Concluding Remarks

	Definability over Linear Constraints
	Introduction
	Notation
	The Language FO_{LIN}
	 Nonstandard Analysis and Undefinability

	Undefinability in First-Order Logic
	Definability over Thin Sets
	Definability of n-Linked
	Conclusions and Future Work

	Bounded Arithmetic and Descriptive Complexity
	Introduction
	Preliminaries
	Arithmetic and High Complexity Classes
	The Free Monoid and Low Complexity Classes

	Independence: Logics and Concurrency
	Introduction
	`Independence-Friendly' First-Order Logic
	Partial Quantifiers à la Henkin
	Partial Knowledge Games and Quantifiers à la Hintikka

	Henkin Modal Logic
	A Distributed System Model
	Henkin Modalities
	Adding Fixpoints
	Cost of Henkin Modalities

	IF-FOL and Fixpoints
	Fixpoints and the Henkin Quantifier
	Fixpoints and Full IF-FOL

	Independence-Friendly Modal Mu-Calculus?
	Summary and Future Work

	Flatness Is Not a Weakness
	Introduction
	Flat Counter Automata
	(Un)decidability Results for Flat Counter Automata
	The Flat Counter Logic L_p
	A Logic with Counters
	The Flat Fragment of the Logic

	Satisfiability and Model-Checking in L_p
	L_p^+: A Decidable Extension of L_p and LTL
	Conclusion

	Sequents, Frames, and Completeness
	Introduction
	Coverage and Spatiality of Spectral Frames
	Sequent Structures, Distributive Lattices, and Frames
	Ideal Elements, Prime and Completely Prime Filters
	Clausal Logic and Hyperresolution
	Explicit Construction of Generated Frame Using Coverage
	Example: Spectrum of a Ring
	Categorical Equivalences
	Concluding Remarks

	Disjunctive Tautologies as Synchronisation Schemes
	Introduction
	Terms, Types and Models
	The Programming Language
	The Typing System
	Truth Values and Models

	The Specification Problem
	The Symmetric Excluded Middle
	Booleans
	The Excluded Middle
	Disjunctive Tautologies

	Conclusion

	Axiomatizing the Least Fixed Point Operation and Binary Supremum
	Introduction
	The Models
	Preiteration Algebras
	Iteration Algebras

	The Completeness Results
	Synchronization Trees
	The Simulation Preorder

	A Characterization of Simulation Equivalence Classes of Regular Trees
	An Embedding Theorem
	Further Results

	Interactive Programs in Dependent Type Theory
	I/O Concepts in Type Theory
	I/O-Trees
	Constructions for Defining I/O-Trees
	Normalising Version
	Conclusion

	Modal Satisfiability Is in Deterministic Linear Space
	Introduction
	Preliminaries
	Modal Logic
	Space Complexity

	Satisfiability in Quadratic Space
	Satisfiability in Nondeterministic Linear Space
	Satisfiability in Deterministic Linear Space
	What about Other Modal Logics?

	Logic Programming and Co-inductive Definitions
	Introduction -- Motivations
	Logic Programs as (Co-)inductive Definitions
	Infinite SLD-Derivations over the Domain of Finite Terms
	Proof Trees and Fair Derivations
	SLD-Proofs over the Domain of Finite Terms
	Infinite SLD-Derivations Which Do Not Compute Anything

	Conclusion

	A Theory of Explicit Mathematics Equivalent to ID_1
	Introduction
	The Theory NEM of Explicit Mathematics with Name Induction
	Explicit Mathematics
	Name Induction

	Accessible Parts in NEM
	Modelling ID_1^{acc} in NEM
	Modelling NEM in ID_1

	On the Complexity of Explicit Modal Logics
	Introduction and Main Definitions
	Semantics for Explicit Logics and Completeness Theorem
	The Decision Algorithm
	The Saturation Algorithm
	The Completion Algorithm

	Finite Models and Full Completeness
	Introduction
	A Linear/Non-linear lambda-Calculus
	Finitary PCF and Loader's Theorem
	The Translation
	Normal Forms for lambda _{L/NL}
	Completeness of the Translation

	Finitary Full Completeness and Intuitionistic Logic
	Further Work

	On the Complexity of Combinatorial and Metafinite Generating Functions of Graph Properties in the Computational Model of Blum, Shub and Smale
	Introduction
	Background on IR-Structures
	Generating Functions of Graph Properties
	Non-combinatorial Counting

	Elimination of Negation in a Logical Framework
	Introduction
	A Motivating Example
	Provability and Unprovability
	Clause Complementation
	Conclusions and Future Work

	Discreet Games, Light Affine Logic and PTIME Computation
	Introduction
	IMLAL
	A Model of IMLAL
	Games and Strategies
	Network Protocol and Discreet Strategies
	Full Completeness

	Completeness of Higher-Order Duration Calculus
	Introduction
	Two-Sorted Interval Temporal Logic
	Syntax of $emph {IL}_{2} $
	Semantics of $emph {IL}_{2} $ on Abstract Domains
	Proof System of $emph {IL}_{2} $ with $Omega $

	Higher-Order Duration Calculus
	Syntax of HDC
	Semantics of HDC
	Proof System of HDC

	Completeness of HDC on Abstract Domains
	Discussion

	Equational Termination by Semantic Labelling
	Introduction
	Preliminaries
	Semantic Labelling for Equational Rewriting
	Semantic Labelling Cube
	Dummy Elimination for Equational Rewriting
	Distribution Elimination for Equational Rewriting

	On the Computational Interpretation of Negation
	Introduction
	 About Typed lambda-Calculus and neg neg A = A
	Normalisation
	Correctness
	Discussion
	The Role of |

	 Typed lambda mu-Calculus with neg neg A = A
	lambda mu-Calculus
	Symmetric lambda mu-Calculus

	 Interpretation of Symmetric lambda-Calculus in Symmetric lambda mu-Calculus
	The Symmetric lambda-Calculus of Barbanera and Berardi
	Interpretation of the Symmetric lambda-Calculus in the Symmetric lambda mu-Calculus

	From Programs to Games: Invariance and Safety for Bisimulation
	Introduction
	Syntax and Semantics of Game Logic
	Bisimulation for Game Models
	Games on Kripke Models I: mu-Calculus
	Games on Kripke Models II: First-Order Logic
	Beyond First-Order Logic

	Logical Relations and Data Abstraction
	Introduction
	Contextual Equivalence
	Abstract Types
	Logical Relations
	Jung-Tiuryn's Logical Relations of Varying Arity
	Completeness of Logical Relations

	Elementary Choiceless Constructive Analysis
	Unique Existence and Countable Choice
	Completeness of Real Numbers
	Exact Intermediate Value Theorems
	Some Approximate Analysis
	Concluding Remarks

	On the Logic of the Standard Proof Predicate
	Introduction
	Operational Logic LPM with the Monotonicity Axiom
	The Basic Semantics for LPM
	Arithmetical Completeness
	Protocolling Extensions of Theories
	First Order Case
	The Main Definition
	Arithmetical Semantics
	Arithmetical Completeness

	Author Index

